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Abstract: Using the ranks and Moore-Penrose inverses of involved matrices, in this paper we establish
some necessary and sufficient solvability conditions for a system of Sylvester-type quaternion matrix
equations, and give an expression of the general solution to the system when it is solvable. As an
application of the system, we consider a special symmetry solution, named the 77-Hermitian solution,
for a system of quaternion matrix equations. Moreover, we present an algorithm and a numerical

example to verify the main results of this paper.

Keywords: Sylvester-type matrix equation; quaternion matrix; rank; Moore-Penrose inverse;

n-Hermitian matrix

1. Introduction

In 1952, Roth [1] studied the following one-sided generalized Sylvester matrix equation
for the first time
A1X+YB; =Cy, 1)

which is widely used in system and control theory. Since then, many researches have paid
attention to Sylvester-type matrix equations (e.g., [2-5]) because of their wide range of
applications, such as in descriptor system control theory [6], neural networks [7], robust,
feedback [8], graph theory [9] and other areas. For instance, Baksalary and Kala [10]
established a necessary and sufficient condition for Equation (1) to have a solution and
gave an expression of its general solution. In [11], Baksalary and Kala give a solvability
condition for the equation

AXB+CYD =E. )

Wang investigated Equation (2) over arbitrary regular rings with identity [12].

In 1843, the very famous mathematician Hamilton discovered the quaternion. It is
well known that quaternion algebra, denoted by I, is an associative and non-commutative
division algebra over the real number field R, where

H = {ag + a1i + azj + azk|i® = j* = k® = ijk = —1, ap,ay,ap,a3 € R}.

Since the 1970s, quaternions and the quaternion matrix have been studied a lot
(e.g., [13-16]). The widespread applications of quaternions and the quaternion matrix
include theoretical mechanics, optics, computer graphics, flight mechanics and aerospace
technology, quantum physics, signal processing and so on (e.g., [17-20]).
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In the last decade, the study of Sylvester-type matrix equations was extended to H
(e.g., [21-28]). In 2012, Wang and He [29] presented the necessary and sufficient conditions
for the Sylvester-type matrix equation

A1 X+ XoB1 + C3X3D3 + CyXyDy = E 3)

to be consistent and derived the expression of its general solution, which can be easily
generalized to H. For the Sylvester-type matrix equations with multiple variables and
multiple equations, Wang [4] gave a solvability condition and the general solution to the
system of Sylvester-type matrix equations

A3W = B3, ZC3 = D3,

@)
AsW + ZBs = D,

Zhang [30] investigated the necessary and sufficient conditions for the solvability of
the following system of Sylvester-like matrix equations

A1X =By, XCy =Dy,

AY =By, YCy, = Do,

ZC3 = D3, A4V = By,
AgV+ZBg + AyXBy + AgYBg = Ds,

©)

and presented a formula of its general solution. We note that Equations (1)-(5) are the
special cases of the following Sylvester-type quaternion matrix equations

A1 X = By, XC; = Dy,
A)Y =By, YCy = Dy,
AsW = Bs, ZCs = D, (6)
AsW + ZBs = Dy, A4V = By,
A¢V+ZBg + A7XBy + AgYBg = Ds,

where A;, B;, Cj, Dy (i=1,8 j=1,3 k =1,5) are given matrices over H; X,Y,Z,V,W
are unknown.

Motivated by the work mentioned above, in this paper we aim to investigate the
solvability conditions and the general solutions to a more general system of a Sylvester-
type quaternion matrix equation, Equation (6). In 2011, Took et al. [31] defined a special
class of symmetric matrices, named y-Hermitian. For 7 € {i,j, k}, a quaternion matrix A is
called 7-Hermitian if A = A", where A7" = —yA*;, A* is the conjugate and transpose
matrix of A. It is well known that #-Hermitian matrices have some applications in linear
modeling (e.g., [32-34]) and so on.

As an application of (6), we derive the solvability conditions and an expression of the
n-Hermitian solution to the system of matrix equations

AgV = By,
A1 X =By, X=X",
AY =B, Y=Y,

AV + (AgV)T" + A7XAl + AgYA! = Ds, Ds =D},

@)
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where A;(i = 1,2,4,6,8), By, By, By, Ds are given matrices over H; X and Y are -Hermitian
matrices over [H.

We organize the rest of this article as follows: In Section 2, we introduce the basic
knowledge of quaternions and Moore-Penrose inverse of a quaternion matrix, and review
some matrix equations. In Section 3, we establish the solvability conditions for the system
of (6) in terms of the Moore-Penrose inverses and the ranks of the coefficients” quaternion
matrices in (6). In Section 4, we give an expression of the general solution to the system
of (6), and illustrate the main results using a numerical example. In Section 5, we give
some solvability conditions and an expression of the #-Hermitian solution to the system
(7). Finally, we present a brief conclusion in Section 6 to end this paper.

2. Preliminaries

Let R and H™*" stand for the real number field and the set of all m x n matrix spaces
over the quaternion algebra, respectively. The symbols r(A), A*, I and 0 are denoted by the
rank of a given quaternion matrix A, the conjugate transpose of A, an identity matrix, and
a zero matrix with appropriate sizes, respectively. The Moore-Penrose inverse of A € H/**
is defined to be the unique matrix, denoted by A', satisfying

AATA = A, ATAAT = AT, (AAT)* = AAT, (ATA)" = ATA.
Moreover, L4 = [ — ATA and R4 = I — AA" represent two projectors. Clearly,
(La)" =R+ and (Ry)7 = L= of A.
The following lemma was given by Marsaglia and Stynan [35], which is also available

over H.

Lemma 1 ([35]). Let A € H"*",B € H"*k,C € H>*",D € HW*K and E € H'*!. Then,

A  BLp
7 =r
ReC 0

Lemma 2 ([36]). Let A1 and Cq be known matrices with feasible dimensions over H. Then, the

o N0 x>

B 0
0 E | —r(D)-rE).
D 0

matrix equation A1 X = Cy has a solution if and only if R4, C; = 0. In this case, its general
solution is expressed as
X =AlC; +La, T,

where Ty is an arbitrary matrix of an appropriate size.

Lemma 3 ([36]). Let By and D1 be known matrices with allowable dimensions over H. Then,
the matrix equation YBy = D1 has a solution if and only if D1Lp, = 0. In this case, its general
solution is

Y = D1B! + ThRp,,
where Ty is an arbitrary matrix of an appropriate size.
Lemma 4 ([37]). Let A1, B1, C1 and Cy be the given matrices. Then, the system of matrix equations

AY =Cy, YBi =G,
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is consistent if and only if
Rp,C1 =0, CLg, =0, A1Cy = CBy.
In this case, its general solution is
Y = A{Cy + La,C2B} + La, T3Rp,,
where Ty is an arbitrary matrix of an appropriate size.

Lemma 5 ([10]). Let A, B and C be given over H. Then, the Equation (1) is solvable if and only if
RACLp = 0. Under this condition, the general solution to Equation (1) can be expressed as

X =A"C—U;B+ LUy,
Y = Ro,CB' + AU, + U3Rp,

where Uy, Up and Us are arbitrary matrices with appropriate sizes over H.
Lemma 6 ([38]). Consider the following matrix equation over H

A1X1 4+ XoB1 + A2Y1By + A3Y,Bs + A4Y3By = B, (8)

where A;, B; (i = 1,4), B are given and the others are unknown. Let

Rp, A2 = A11, Ra Az = A, Ra Aqy = Asz, BoLp, = Byy, BaoLlp,, = Ny,
BsLp, = By, B4Lp, = B3z, Rp, A2 = My, S1 = AppLym,, Ra BLg, =Ty,
C = RmRa,, €1 = CAzz, Co = Ray Asz, C3 = Ray, Ass, Cy = Ass,
D = Lp,,Ln,, D1 = B33, D2 = BssLp,,, D3 = B3zLp,,;, Dy = B33D,
E1 =CTy, E = Ra, T1Lpy,, Es = Ra,, T1Lp,,, E4 = T1D,

Rp
Ci1 = (Lgy, Le,), D1 = (RD;>’ Co2 = Lc,, D2 = Rp,, C33 = Lc,,
D33 = Rp,, E11 = R¢,,Ca2, Ex2 = R¢,,Cs3, Es3 = DaoLp,,, Ess = D3sLp,,,
M = R, Ep, N = EylLg,, F=F,—F, E=Re, FLp,, S = EnLy,
Fi1 = GL¢,, G = Ey — CCTE1DiDy, Foy = CyLc,, Gy = Eq — C4CIE3D3Dy,
F = C{EyDf + Le,CIE;DS, F, = CIE3DS + L, CIE4DJ.

Then, the following statements are equivalent:
(1) Equation (8) is consistent.

(2)

RgEi =0, EiLp, =0 (i=14), Ry ELEy; = 0.
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0 0 0 0
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In this case, the general solution to Equation (8) can be expressed as

B, 0
A, A, 0 0 A
0 B, +r< 2 4).
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Xy = Al(B — AyY1By — A3Y2Bs — AyY3By) — ATUL By + Lo, Uy,

Xa = R, (B — AyY1By — A3YaBs — A4Y3By) B + A1 ATU; + UsRp,,

Y; = A} TBY, — AT, Ap MITB}, — A},S1AY, TN{ ByyBf; — AT, S1UsRN, BoBY, + L, Us + UsRp,,,
Y, = M{TB}, + S1S1 AL, TN + Ly, Ls, Uy + UgRp,, + Ly, UsRy,,

Y; = F + Lc,Vi + VaRp, + Le, VaRp,, or Y3 = F, — Lc,W; — WaRp, — Lc,WsRp,,

where T = Ty — As3Y3Bss,; U;(i = 1, 8) represents any matrix with appropriate dimensions over H,

Vi = (In0) {CL(F — CpV3Dyy — C33W3Ds3) — Cfy Ui Dy + Ly, U12} ,

Wi = (0 Iy) [CL (F — CnV3Dyy — C33W3Ds33) — CfUy1 D1y + Ly, Ulz},

0
Wy = [ch (F — CnV3Dyy — C33W3D33) Dy + C11Cly Uy + UZlRDH] < I )
n

I
Vo = {Rcu (F — Cx2V3D2 — C33W3D33) Df; + Ci Cfy Uns + uﬂRDH] ( g )

V3 = Ef\FEY; — Ef, Es M'FEY; — E, SEY, FNTEyEL; — Ef,SU3 RNEssEl; + Lg, Usp + UssRE,,
W; = M+FEZ4 + S+SE;2FN+ + Ly LsUy + LUz Ry — U42RE44,
where Uy1, U1p, Uy, Usy, Usp, Uss, Ugy and Uyy are any matrix with appropriate dimensions over H.

3. Solvability Conditions to the System (6)

The goal of this section is to give the necessary and sufficient conditions for the
existence of a solution to system (6).

Theorem 1. Let A; € H"*"(i = 1,4),As € H"*",Ag € H"",A; € H"™ ™, Ag €
H™="2, B; € H"™*i(j = 1,2),B; € H"™*,By, € H™*!,Bs € H5*1,Bs € H5*/,B; €
Hh*!, By € H2X!,C, € HW*Pr(k = 1,3),D; € H'*Vi(j = 1,2),D3 € H™*"2,D, € H"*1
and D5 € H"™*!. Set

Ay = AsLa,, By = Re,Bs, Ci1 = Dy — AsA3Bs — D3CiBs, Ay = AgLa,, )
By = Rp,, R, Bs, A3z = AyLa,, B3z = Rc By, Ay = AgLa,, By = Rc,Bs, (10)
Ass = A11, Bss = Re;Bs, M1 = Ra,,Ass, Ma = Ra,,Ags, M3 = Ra,, Ass, (11)
Cay = D5 — AgA}By — D3CIBg — Ra,,C11B1 Re,Bs

— A7(AYBy + La,D1Cf)By — Ag(A3By + La,D2CY)Bg, (12)
Ny = BssLg,,, No = ByLp,,, N3 = BssLp,,, Gi = NoLn,, Hi = Ry, My, (13)
S1 =MLy, T=Ra,ColLg,,, P = Ry,Rpy,, P = PM3, P, = Ry, M3, (14)
Py = RyyM3, Py = M3, Q = Ly, Lg,, Q1 = N3, Q2 = N3Ln,, Q3 = N3Ly,, (15)
Q4 = N3Q, Ey = PT, E; = Ry, TLN,, E3 = Ry, TLN,, E4 = TQ, (16)

R
Ey1 = (Lp, Lp,), Fi1 = < Rgl >, Exy = Lp,, F» = Rq,, Es3 = Lp,, F33 = Rq,, (17)
3
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M1 = Rg, Ex, My = Rg, E33, Maz = FopLp,, Mys = F33Lp,,, M = Ry, Mo,
N = MyLy,, F=F—F, E=Rg, FLg,, S = MyLy, G = P2Lp,
Hy = E — P,PTE1Q}Qo, Gy = PyLp, Hy = Ey — PyPIE3QIQu,

F = P{E,Qf + Lp, PYE,QS,  Fi = PIE;QY + Lp, PJE4Q].

Then, the following statements are equivalent:
(1) System (6) has a solution.

(2)
A1Dy = B1Cy, A2Dy = B

and
Ra,B1 =0, DiLc, =0, Rg,B; =0, DoLc, =0,
Ra,B3 =0, D3sLc, =0, RayBy =0, Ra,,C1alp, =0,
RpE; =0, EiLo, =0 (i =1,4), Ry, ELp,, = 0.

(3) (22) holds and

C
T’(Ag, Bg) = 1’(143), 1’( DZ > = r(Cg), T’(A4 B4) = r(A4),
Dy As D3
rl Bs 0 G =7< A5>+7( Bs GC;3 ),
By A; O 3

Ds A; As As Dy As D

BB, A, 0 0 0 0
BB 0 A, 0 0 0

Ds A7 A6 Ag Dy Dy A5 Ds
B 0 0O C 0 0 0
B 0 0 0 B 0 G

Al 0 0 Bs C; 0 0
+r ,
Be 0 Bs G

Ds As As AsD; Dy As D

. B, 0 0 0 Bs 0 Cs _, A, 0 0 +r< B, C; 0 0 )
BBg A, 0 0 0 0 0 0 Ay O B 0 Bs G
B, 0 Ay 0 0 0 o0 0 0 Az
0 0 0 0 B; A; 0

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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os]
it

os]
N

o O O O

Ds A¢ AyDy AgD, Dy As Djs
B, 0 Cy 0 0 0 0
B 0 0 G 0 0 0
B 0 0 0 By 0 GCs
B, A, 0 0O 0 0 0
0 0 0 0 By A; 0
B, C¢ 0 0 O Ag As
=r| Bg 0 C 0 O +r] Ay O ,
Be 0 0 Bs G 0 A
Ds Ay As Ag Ds A As A
Be 0 0 0 GCs A0 0
B1B; A4 0 0 0 =r +7’( B6 C3 ),
BB 0 A, 0 0 0 A 0
B, 0 0 A; O 0 0 A
Ds A7 Ag¢ AgDp Dj
Bg 0 0 Cy 0 ( Bs C, 0 ) Ay Ag
Bg 0 0 0 Cs =71 +r Al 0 ’
BiB; A O 0 0 By 0 G 0 A
B, 0 A, 0 0
Ds As As A7D1 D3
By 0 0 Cy 0 ( B, C; 0 > Ag Ag
Bg 0 0 0 Cs =r +7r A2 0 ’
BsBg Ay, O 0 0 By 0 G 0 Ay
B, 0 A, 0 0
Ds A¢ A7D1 AsDy Djs
B, 0 G 0 0 B; ¢&¢ 0 0 A
B 0 0 G 0 |=r[ B 0 C o0 +r< A6 )
Bs 0 0 0 G Bs 0 0 G *
B, Ay, O 0 0
0 0 0 AsD, D, 0 0 0 As D3y 0 0
0 0 0 @) 0 0 0 0 0 0 0 0
0 0 0O 0 B 0O 0 O 0 C 0 0
Ds Ag As 0 0 A Dy Dy 0 0 0 As Ds
By 0 0 0 0 G 0 0 0 0 0 0
B 0 O O 0 O B 0 0 0 0 G
Bg 0 0 0 0 0 0 C 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
ByBg Ay O 0 0 0 0 0 0 0 0 0
B, 0 A, O 0 0O 0 0 0 0 0 0
0 0 0 0 Bs 0 0 0 A3 O 0 0
0 0 A, O 0 0O B 0 0 0 A; 0

(30)

(31)

(32)

(33)

(34)
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0 0 Ag Ag 0 As
0 & 0 0 0 o0 0 O AL 0 0 0 0 0
0 0 Bs 0 O 0 C3 O 0 A 0 0 0 0
B700C10000+r004A000 (35)
B 0 0 0 By 0 0 GCs OOOZAOO
B 0 0 0 0 C3 0 0 00004A30
0 0 0 0 0 A
Proof. (1) < (2)
The proof is divided into three parts:
e  Firstly, we divide the system (6) into the following:
A3W = B3, ZC3 = D3, A4V = B4/ (36)
A1X = By, XC1 =Dy, AzY = B,, YCZ = D,,
AsZ +WBs = Dy, (37)
AgV + ZBg + AyXBy + AgYBg = Ds, (38)

and consider the solvability conditions and the general solution to the system of
matrices of Equation (36). For more information, see Step 1.
¢ Secondly, substituting the W and Z obtained in the first step into Equation (37) yields

AnTs + TyByp = Cqy, (39)

where A11, B11 and Cy; are defined by (9); Tz and Ty are unknowns. For more informa-
tion, see Step 2.

*  Finally, by substituting the X, Y, Z, and V obtained from the above two steps into
Equation (38), we obtain a matrix equation with the following form

A Ts + U3By + A33T1Bsz + AgaToBag + AssUy Bss = Cop, (40)
where Aj;, B;; (i = 2,5) and Cy, are given by (9)-(12); Ty, T, Ts, U; and Uj are un-
knowns. For more information, see Step 3.

We can obtain the results from the following steps: First, we consider the solvabil-
ity conditions and the expression of the general solutions to the system of the matrix
Equation (36).

Step 1. It follows from Lemmas 2—4 that system (36) has a solution if and only if (22)
holds and

Ra,B1 =0, DiLc, =0, R4,Bo =0, DL, =0,
Ra,B3 =0, DsLc, =0, Ry,By = 0.

(41)

In this case, the general solution to system (36) can be written as

X = AYBy + Ly, DiCf + La, TiRc,,
Y = AIBy + L4,D>C3 4+ L, ToRc,, (42)
W = AlBs+ La,T5, Z = D3C} + TyRc,, V = AlBy+ L, Ts,

where T; (i = 1,5) are arbitrary matrices over H with appropriate sizes.
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Step 2. Substituting W, Z in (42) into (37) yields (39). According to Lemma 5, it follows
that Equation (39) has a solution if and only if

Ra,,CiiLp, = 0. (43)
In this case, the general solution to Equation (39) can be expressed as

T3 = A};C1 — U3 Byy + Lo, Uy, (44)
Ty = R4, C11Bf; + AUy + UsRgp,,, (45)

where Uj, U, and Uz are any matrix with appropriate sizes over H.
Substituting (45) into Z = D3C} + T4Rc, yields

Z = D3Ci + Ra,,C11BY  Re, + AU R, + UsRp,, Re, . (46)

Step 3. By substituting X, Y, V in (42) and Z in (46) into (38), we obtain Equation (40).
By using Lemma 6, Equation (40) is consistent if and only if

Rp.Ei =0, EiLo, = 0 (i = 1,4), Rppy, ELp,, = O, (47)

namely,

. Con Az Ay Ass Axp
Bo» 0 0 0 0

) =7(Bn)+7r( Az Au Ass Ap ),  (48)
Cpn Az Ass Ax B

r Byy 0 0 0 = 1’( Azz Asgs Ax ) + 7’< B44 ), (49)
B, 0 0 0 22
Con Ay Ass Ap B

r B3z 0 0 0 = 1’( Agy Ass Axp ) + 7’< 3 ), (50)

B
B, 0 0 0 2
Cn Ass Ax B
By 0 0 33
r =r| By |+7( Ass Axp ), (51)
Byy 0 0 B
By 0 0 22
Cn Azz Ay Apx B
r B55 0 0 0 :1’( A33 A44 A22 )+T< B55 >, (52)
B, 0 0 0 22
Cn Azz Axp B
Bu 0 0 4
r =r| Bss | +7( Az Az ), (53)
Bss 0 0
By
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Cyn Ay Axn B
By 0 0 33
r =r| Bss |+7( Au Ax ), (54)
Bss 0 0 B
B 0 0 2
Cn Ax
B33
r| Bug O =r| 7% | +r(An), (55)
Bss
Bss 0 5
By 0 2
Cyn Aszz Apn 0 0 0 Ass
By 0 O 0 0 0 0 By O
B, 0 0 0 0 0 0 By 0
_ Az An 0 0 Ass
r 0 0 0 —C22 A44 A22 A55 =r 0 B33 + . (56)
0 0 Ay Axn Ass
0 0 0 B33 0 0 0 0 By
0 0 0 By 0 0 0 Bss Bss
Bss 0 0 Bss 0 0 0

In this case, the general solution to Equation (40) can be expressed as

Ts = Ay (Coo — A33TiBsz — AsuuToBas — AssUyBss) + A3 ViBy + La,, Vo,
Us = Ray, (Cop — As3TiBas — AusToBus — AssUsBss)Bly + An AL, Vi + VaRp,,,
Ty = M{Ty;i N — M{MoHI Ty Nf — MI S MI T GINoNT — M S ViR, NoNf
+ Lag, Vs + VeRn,,
Ty = H{ T11N3 + S§SiM3Ty1 G + Ly, Ls, Vo + VsRy, + Liy, VaRg,,
Uy = Fy + Lp,Wy + WaRg, + Lp, WsRg,, or Uy = F, — Lp, Wy — WsRg, — Lp,WeRo,,

where T1; = T — M3U1N3, Vi(i = 1,8) are any matrix with suitable dimensions over H,

Wi=|1I1, 0O ] [Eﬁ(F — ExyW3Fy — EssWeFs3) — Ef Ui Fip + LE“UH],

Wy=10 Iy ] [EL(F — ExnW3Fy — EssWeFs3) — Ef Ui Fip + Lg, Ulz],

Iy
0 7

7

Wa = |Rg,, (F — EnWsFx — EssWeFs3)Fj; + EnnEl Usp + U21RF11}

Ws = |Re, (F = ExaWaFz — ExsWeFss) Ffy + EnEfyUnt + Uni Rp |

Iy

Wi = Mi, FMY, — Mi, MypMTEME, — ME SME, ENT My M2, — M, SUs Ry Mgy M,
+ Lary, Usz + Uz Ry,

We = MTFMJ, + STSMI,FN" + LyLsUsy + LyyUs Ry — Uso R,

where Uy, Uy, Upy, Uy, Usp, Usz, Uy and Uy, are any matrix with suitable dimensions
over H.

To sum up, the system of matrices of Equation (6) has a solution if and only if (41), (43)
and (47) hold.

(2) < (3) We divide it into three parts to prove its equivalence.
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Part 1. In this part, we prove that (41) holds if and only if (24) and (25) hold. According
to Lemma 1, it is easy to show that (41) holds if and only if (24) and (25) hold.

Part 2. In this part, we prove that (43) <= (26). It follows from Lemma 1 and
elementary operations that

Ci1 An

(43) & r( By 0

> =r(An) +r(B11)

Ci1 AsLg,
S =r(AsL r(Rc. B
(RC3B5 0 (AsLa,) +1(Rc,Bs)

Dy — AsAlB; — D3CiBs As 0 A
= Bs 0 GCs :l’< 5)-‘1-7”( Bs Cg)
A3
0 A; 0

=7t Bs 0 Cs

Dy As Ds
_, (
By Az 0

>+r( Bs Cs ) & (26).

Part 3. In this part, we show that (47) holds if and only if (27) to (35) hold. By using
Lemma 6, (47) holds if and only if (48) to (56) hold. Hence, we only show that (48) to (56)
hold if and only if (27) to (35) hold, respectively. We first prove that (48) < (27).

Note that

Xo = A}By +La,D1C{, Yo = AIBy + La,D,C}, Zy = D3C3, Vo = AlBy, Wy = A}B;
are the special solution to the equations

A1X = By, XCy = Dy,
A)Y = By, YCy = Dy,
A3W = B3/ ZC3 = D3/ A4V = B4/

respectively. Then, we have that

Ci1 = Dy — AsWy — ZyBs, (57)
Cy = D5 — AgVy — ZoBg — RAll C11 BIlRC3B6 — AyXoBy — AgYyBs. (58)

It follows from Lemma 1 and elementary operations to (47) that

Cn A7 Ag An As O
R,Bs 0 0 0 0 By
48) & r 0 A, 0 0 0 0 =7r( Re,Bs By )+
0 0 A, 0 0 0
0 0 0 0 Ay 0
Ds—ZoBg A7 As Ag Ci1 An
Re,Bs 0 0 0 By 0
oy BB, A, 0 0 0 0
By, Bg 0 A, 0 0 0
By 0 0 Ay O 0

A7 As Al As
A, 0 0 0
0 A 0 0
0 0 0 Ay

A7 Ag A Ae

A, 0 0 0
=7 ! +7( Re,Bs By )
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Ds A; Ag As Dy As Ds

A, As As A
B 0 0O 0 Bs 0 G 708 5 76

A; 0 0 O

BiB A, 0 0 0 0 0
sr| 127 1 =r| 0 A, 0 0 |+4+r( By Bs C3)e (27).
BBs 0 A, 0 0 0 0 o o o0 a4
B, 0 0 A, 0 0 0 4
0 0 A; O
0 0 0 0 By A; O

Similarly, we can prove that Rp,E; = 0 <> (28), Rp,E3 = 0 < (29), Rp,E4 = 0 < (30)
and E;Lo. = 0 (i = 1,4) hold if and only if (31) to (34) hold, respectively. Next, we
show that Ry1,, ELp,, = 0 < (35). According to Lemma 1 and elementary operations, we
have that

E D
Ry, ELpy; =0 = r( 2 > =1(D2) +1(Ds3)

D33 0
Cyp A Ap 0 0 0 Ass
By 0 0 0 0 0 0 By O
B 0 0 0 0 0 0 Byy 0
2 . 2 Az A O 0 Ass
=T 0 0 0 —Cyp Ay Axp Ass =r 0 Bs3 +r
0 0 Ay Ay Asg
0 0 0 By 0 0 0 0 By
0 0 0 Bp 0 0 0 Bss Bss
Bs 0 O Bs 0 0 0
Coy Ay Ag O 0 0 A; O 0 0 0 0
Bs 0 0 0 0 0 0 C 0 0 0 0
Re,Bs 0 0 0 0 0 0 0 By 0O 0 0
0 0 0 —Cp Ag Ag Ay O 0 0 0 0
0 0 0 B 0 0 0 0 0 GG 0 o0
&y 0 0 0 ReBs 0 0 0 0O 0 0 By 0
B 0O 0O B 0 0O O O O 0 0 GCs
0 A 0 0 0 0 0 0 0 0 0 0
0 0 Ay O 0 0 0 0 0 0 0 0
0 0 0 0 A 0 O 0 0 0 0 0
0 0 0 0 0 A, 0 0 0 0 0 0
A, Ag 0 0 Ap
B 0 C 0 0 0 0
8 2 0 0 Ag Ag Ap
Re,Bs 0 0 By 0 0 0
A, 0 0 0 0
=r 0 By 0 Ci O 0 +r
0 ReBg 0 0O 0 By O 0 A 000
B (1:336 0 0 0 51 C 0 0 A4 0 0
6 6 3 0 0 0 A, O
A, Ag 0 0 A 0
B 0 CC 0 0 0 0 0 0 76 1
0 0 Ag Ag 0 A1l
Be 0 0 Bs 0 0 0 C3 0
A, 0 0 0 0 0
<rl 0 B, 0 0 ¢ 0 0 0 0 |[+7
0 A, 0 0 0 0
0 B 0 0 0 Bs 0 0 GCs
B B 0 0 0 0 C3 0 0 0 0 A4 0 0 0
6 "6 3 0 0 0 A, 0 0
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Ds—ZoBs A; Ag 0 0 0 AsDy Cn 0 0 0 Ay 0 0 0
Bg 0 0 0 0 0 Cy 0 0 0 0 0 0 0 0
Bg 0 0 0 0 0 0 Bsg 0 0 0 0 Cs 0 0
0 0 0 ZBg—Ds As Ag 0 0 —AD; -C4 0 0 0 Ay O
0 0 0 By 0 0 0 0 Cy 0 0 0 0 0 0

=r 0 0 0 Bg 0 0 0 0 0 Bs 0 0 0 0 Cs
Bg 0 0 Be 0 0 0 0 0 0 GG 0 0 0 0
B1B7 Aq 0 0 0 0 0 0 0 0 0 0 0 0 0
By Ay 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0  —BBg Ay 0 0 0 0 0 0 0 0 0 0
0 0 0 —By 0 Ay 0 0 0 0 0 0 0 0 0
A7 Ag 0 0 As 0
By 0 G, 0 0 0 0O 0 O 0 0 As As 0 4
A, 0 0 0 0 0
B 0 0 Bs 0 0 0 C3 0
0 A, 0 0 0 0
sr|l 0 B, 0 0 C, 0 0 0 0 |+7
0 B 0 0 0 Bs 0 0 GCs 0 0 A 0 0 0
0 0 0 A, 0 0
B B¢ 0 0 0 0 C3 0 O
0 0 0 0 A; 0
0 0 0 0 0 A

Ds A, As 0 0 0 AgD, Dy 0 0 0 As D3y 0 0

B 0 0O 0O O O G 0 0 0 0 0 0 0 0

B 0 O O O O O B 0O 0 0 0 C3 0 0
0 0 0 Ds Ag As 0 0 AD;, Dy 0 0 0 As Dy
o o o B 0 O 0O 0 ¢ 0 0 0 0 0 0
O 0 0 B 0O O 0 O 0 B 0 0 0 0 GCs

=r] B, 0 0O B 0O O 0 0O 0 0 C 0 0 0 0 |<@35.

BB, A, 0 O O O O 0 O 0 0 0 0 0 0

B, 0 A, O 0O O O O 0 0 0 0 0 0 0
0 0 O BBg A, 0 0O 0O 0 0 0 0 0 0 0
O 0 0 B 0O A, O O 0 0 0O 0O 0 0 0
o 0 0o 0 0 O 0 B 0O 0 0 A3 0O 0 0
o o0 0 0 0 0O 0 0 0 B 0 0 0 A3 0

O

4. The General Solution to the System (6)

In this section, we give an expression for the general solution of Equation (6) by using
the Moore-Penrose inverse. According to the proof of Theorem 1, we obtain the following the-
orem:

Theorem 2. The general solution to system (6) can be expressed as follows when the solvability
conditions are met:

X = AfBy + La,D1C{ + La,TiRc,, Y = A3By+La,D2Ci + La,T2Rc,,
Z = D3C} + Ra,,C11Bl R, + AnUiRe, + UsRgp,, Re,,
W = AlBs + L4, AT C1 — La, Al UL By + LayLa, U,
V = A}By+ L, A%y (Cop — As3T1Bss — Ay ToBay — AssUyBss) + La, AJyViBoy + L, Ly, Va,
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where Ty = T — M3U1 N3, V;(i = 1,8) are arbitrary matrices with appropriate sizes.

Ty = M{Ty N — M{MoHI Ty Nf — Mi S M3 T GINoNT — MI S VaRg, NoNf
+ L, Vs + VsRy,,
T, = H{ T11 N} + S1SiME Ty G + Ly, Ls, V7 + VsRy, + Liy, VaRg,,
U3z = Ra,, (Coo — A33T1Bsz — Ay TrBay — Assly Bss)BY, + An AL, Vi + VaRp,,,
Uy = Fy + Lp,W; + WoRg, + Lp W3R, or Uy = F, — Lp,Wy — WsRg, — Lp,WsRo,,
Wi =[ Lo 0 |[Efi(F — EWsFa — ExsWeFss) — Efy Ui Fiy + L, U],

Wy = { 0 Iy } [EL(F — EpWsFy — EsWeFs3) — EjjUri Fiy + Lg,, U1z},

I
W, = {REH (F — ExoW3Fy — EssWeFs3)Ffy + EniEf; Unp + uﬂRF“} [ S ]'

7

0
Ws = {REH (F — ExoW3Fy — E3WeFs3)Ffy + EnEf; Unq + u21RP11} [ I
n

W; = Mi; FMY, — Mf; Moy MYFME, — MI, SME, FNT MyyM, — M, SUz Ry Myy M,
+ Ly, Usp + U3z Ry,
W = M+FMZ4 + S+SM;2FN+ + LapLsUy + LUz Ry — U42RM44,

where Uy1, Uqp, Uy, Usy, Usp, Uss, Uyy and Uyy are arbitrary matrices over H of appropriate sizes.

Next, we discuss the special cases of the system of matrices of Equation (6). Letting
A3z, B3, As, Bs and Dy vanish yields the following;:

Corollary 1. Suppose that A;, B;, C]-, D]- (i=1,4, j =1,5) and E; are given, denote

A¢ = A4Lp,, Be=Rp By, C¢=C4lp,, D= Rp,Dy, C;=CsLy,, D7=Rp,Ds,
Eg = E; — A4ATCy — D1BIBy — C, (A}Cz + LAZDZB;)D4 —Cs (A;,cg, + LA3D3B§) Ds,

A =Ru,C, B=Delp, C=RpC;, D=DyLg,

E=RuEslg, M=RsC, N=DLg, S=CLy.

Then, the following statements are equivalent:
(1)System (5) is consistent.

(2)

Ra,Ci=0, DiLp, =0(i=1,23), AD,=C;B;, A3zD3 = C3Bj3,
R4E = MM'E, ELgy=EN'N, R ELp =0, RcELp=0.
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B; .
r(Ai Cl) = T’(AZ‘), 1’( l) = r(BZ-) (l = 1,2,3), A2D2 = Csz, A3D3 = CgB3,

Ey Ay Dy CDy GCsD3

By 0 B 0 0 A B, Bf 0 0
—r< 1>+r Dy 0 B, 0 |,

Ds 0 0 B

Ay Cy C
B, 0 0 0 B A4 04 05
e a0 0o f=rf +r( B B ),
GDy 0 A, 0 0 X 02 )
CGiDs 0 0 A; 0 3
Ey Ay C Dy GCsDs
B 0 0 B 0 As C
4 1 3 4 B4 Bl 0
r D5 0 0 0 B3 =r Al 0 +r ’
Ds 0 B
;G AL 0 0 0 0 A,
Dy 0 A, 0 0
Ey Ay G D; GDy
B 0 0 B 0 Ay C
4 1 4 5 B4 B1 0
r D4 0 0 0 B, =r A1 0 +7r D 0 B .
G, A 0 0 0 0 As ‘ ?

CGiDs 0 Az O 0
In this case, the general solution to system (5) can be expressed as

X1 = AlCi +La U, Xp=D1Bf +URp,,

X3 = AJCy + La,DyB + La,UsRp,,

Xy = A3Cs + La, D3B3 + La,UsRp,,

Uy = Af(Es — CeUsDg — C7UsD7) — AfWaBg + La, Wy,

Uy = Ra, (Es — CeUsDg — C7UyD7) B + AgALW, + W3R,

Us = ATEBT — ATCMTEBY — ATSCTENTDB' — ATSV,RNDB + LoV + VaRp,
Uy = MTED' + StSCTENT + LyLgVs + Ly VaRn + VsRp,

where V;, W;(i = 1,5, j = 1,3) are arbitrary matrices over H with appropriate sizes.
Remark 1. The above corollary is from the important findings of [30].
Letting A;, B;, C;, D; (i=1,2,4,6,7,8,j = 1,2) and Ds vanish, we have the following:

Corollary 2. Given Az, B3, Cs, D3, As, Bs and Dy of feasible dimensions over H. Set A1 =
AsLa,, Bin = Rc,Cand Eyp = Dy — A5A§B3 — D3C§B5. Then, the following statements
are equivalent:

(1) System (4) is consistent.
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C Dy As D3 A
(2) r(As Bs) =r(As),r| 2| =r(Cs),r| Bs 0 G| =r["")+rBs C3).
D3 A3
By A; 0

In this case, the general solution to system (4) can be expressed as

= AlBs+ La, (AT E;; — AJWoByq + La,,Wh),
Z = D3CI + (Ray, E11BI; + A1 AT, W, + W3Rp, )R,

where Wy, Wy and Wi are arbitrary matrices over H of appropriate sizes.
Remark 2. The above corollary is from the vital investigation of [4].

Finally, we give Algorithm 1 and an example to illustrate the main results of this paper.

Algorithm 1: Algorithm for solving Equation (6)

(1) Feed the values of A;, B;, Cj, Dy (i=1,8, j =1,3, k =1,5) with conformable shapes over H.
(2) Compute the symbols in (9) to (21).

(3) Check (22), (23) or rank equalities in (24) to (35) hold or not. If no, then return “inconsistent”.
(4) Otherwise, compute X, Y, Z, V, W.

Example 1. Consider the matrix of Equation (6). Assume

—1-ji i+ 1+k jrk =14 1+j 24k
= i 71 2 = i+k k , A3 = —i+k i , A4 = 1—i+k 2]+2k ,
1—i —] 1+i 14+i+k i+ —jtk Iitjtk 14it]
—j+k T4itj+k 1 i+j  14i —ltitj—k —i
1 ]+k k , Ag = 0 1+i |, Ay = | 1+i+k1+j |, Ag = —1+j-k i—-j |,
i+k 14+j 1+ T+it+j 14j —14j+k 1+
i— 5] —1+i 1+itj—k —1+3i+j+k —2-2itj—k —342j—3k —3—2j+k
( —2+i —1-2i+j ), B, = (1+2i+j+k —1+i+2f ), B3 = ( —1-k 2—i+4j  1-i+k >,
1-2i—j—k —24i—j+k 1+3i—j —3+3i —143k  —3—j—2k 1-2i—j
24i-j 3k 24it5 -2k 2 (i 14tk 1tk [ 242itjrk 24274k 1+it)
Bs = B =

143i+2j43k 2—-3i+2j—k 1-2i+j f L . . L
343i+k 3i45)  2j+2k 0 i 14ty 14+2i+j+2k 142i+k 2+2i+2j+k

k itjitk i j itk _ ( 1+itk 14i+k 14i+k _ i -1 0
) Bg = (1 14k 145 ) G=( 13" o ) C= 1—i+j—k —i—ji+k )
i+j 14+2i+j—k  142i+j —i—j+k —1—i+j 0

j j j ) Dz—( j i )

z+k] 1

0 —
1+]+k z+]+k 1+z+k)/ Dy = (1+4i+4k 1+i+4k  1+2i+j+3k 4+2i+3k i—j—3k —3—i—j+k

—i+j4+2k —1+j+2k i+j+2k i+2k 3+j+5k 4+k
= -1- ]+2k —3+2k —2+z+k> Dy = ( 1+j —2—6i+5j+4k —i+j+3k)
—1+i+3j+k i+7k —i+3k

—7+8i—j+7k —12+2i+10j—k —5+5i+j—k
—744i—4j+6k —8+2i+6j—4k —11+9i+j—8k

( ~1-j 0
( 7i—2j+9%k 2+10i+13j+10k 4i+6] )
Computing directly yields

" B = r(A) =2, r(ﬁ') =r(C) =2(=T4,j=T3)

j
(26) = 4, (27) = 10, (28) = 10, (29) = 10, (30) = 10,
(31) =8, (32) =8, (33) =8, (34) = 8, (35) = 24.

All rank equations hold. Thus, according to Theorem 1, the system of matrix equations has a
solution, and the general solution to the system can be expressed as
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147 1 14+i—j 0 L L+k
J— l_
x=(_" T, v= Fooom ), z=|1+j+k i+k]|,
24k 14i—j 1 2i—j+k )
i+k 0

V= 1 24i—k 14j W — j 3i+j+k j
C\l—j+k it o ) " \1+i i+j —i+2j)
5. The General Solution to the System (7) with #-Hermicity

As an application of the results of system (6), we study the necessary and sufficient
conditions for system (7) to have a solution involving #-Hermicity and derive a formula of
its general solution, where X, Y are r7-Hermitian matrices.

Theorem 3. Given A;, B]- (i=1,278, j= 1,2,5,8),C3,D3,Dy of appropriate dimensions over
HL. Set

App = Agla,, Asz = A7La,, Ay = AgLa,,
Cx = D5 — A{AsBs — A7 AT (A])T + La,Cf (C])" A} — AsAJ(AD)T + La,CF (D)) AL,
My = Ry, Asz3, Mo = RpyAgg, T = RAZZCZZRZZZr M = Ry, M3, S = MaLy.

Then, the following statements are equivalent:
(1) System (7) has a solution.

(2)
Ra,B1 =0, Ra,By =0, Ry,By =0,
Ry, RuT =0, Ra,, T(Ra,,)" = 0.

(3)

r(A1 Bl):r(A1), T(Az Bz):T(Az), 7’<A4 B4):7’<A4),
Ds A Bl A;BI  AgBI

UM s AT
A 0 A 0 0 Ag AL 00 4,
rl Ao 0 A] 0 =rl A7 0 Al 0 |+rl )
* * * * 6
Al 0 0 0 Al Al 0o o Al
By Ay 0 0 0
Ds As A; Bl AgBI
/A /A
Ag 00 A 0 AT AT o Aq Az
rl Al 0o o o0 Al =r Ag* g )t Ao
B, Ay 0 0 0 8 2 0 A

BiAI 0 Ay 0 0
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Under these conditions, the general solution with y-Hermicity to the system (7) can be stated as

V = AlBy+La, UL,

X = A{By + La,B] (AT + Ly WpLY ,

Y = AjBy+L4,B) (AD)" +La,UsLl

U, = AEZ(CQZ — A33U2A1373 — A44U3AZ4) - AIZWZAZZ + La,, Wy,

Uy = MITM! — MEMoMYTM! — MESMET(M7 ) MY M — MESVy(Lyg)" MY M
+ Lo, Vi + Va (L),

Us = M'TM] + STSMETMY" + LygLsVs + LagVa(Lag)"" + Vs(Lag,)",

where V; (i = 1,5) and W; (j = 1,3) are arbitrary matrices with appropriate sizes over H.

Proof. Since the solvability of the system (7) is equivalent to the system

AgVy = By, Va(Ag)T = (By)", Vo= (W),
A1Xy =By, AT =BI', Xy = X7,
AYy =By, iAl =B, v, =T,

AeVi + VoAl + A% AL + AgV1 Al = Ds, Ds = DI .

(59)

If system (7) has a solution, say, (V, X, Y), then system (59) has a solution, (V;, V3, X1, Y1) =
(V, V", X,Y). Conversely, if system (59) has a solution (V3, V3, X1, Y1), then

w+@*&+ﬂ*m+@x
2 72 72

(V,X,Y) = (
is the solution of (7). It follows from Corollary 1 that this proof can be completed. O

6. Conclusions

We established the solvability conditions for system (6) by using the Moore—Penrose
inverses and ranks of the coefficient quaternion matrices in (6), and derived a formula of
its general solution when it is solvable. In terms of applications, we derived the necessary
and sufficient conditions for system (7) to have an y#-Hermitian solution as well as the
expression of the general solution. In addition, we used an algorithm and a numerical
example to verify the main results of this paper. It is worth noting that the main results
of (6) are available not only for R and C, but also any division ring. Moreover, inspired
by [39], we can investigate the system (6) tensor equations over the quaternion algebra.
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