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Abstract: In this paper, we define a new Kantorovich-type (p, q)-generalization of the Balázs–
Szabados operators. We derive a recurrence formula, and with the help of this formula, we give
explicit formulas for the first and second-order moments, which follow a symmetric pattern. We esti-
mate the second and fourth-order central moments. We examine the local approximation properties
in terms of modulus of continuity, we give a Voronovskaja type theorem, and we give the weighted
approximation properties of the operators.
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1. Introduction

Bernstein operators have a long-standing history, and many studies have been written
on them. Among all types of positive linear operators, they occupy a unique position
because of their elegance and notable approximation properties (see [1]).

Bernstein type rational functions defined by Katalin Balázs in [2] are as follows:

Rn( f ; x) =
1

(1 + anx)n

n

∑
k=0

f
(

k
bn

)(
n
k

)
(anx)k (n = 1, 2, . . .)

where f is a real and single valued function which is defined on the unbounded interval
[0, ∞), an and bn are real numbers which are selected suitably and do not depend on x.
Later in 1982, Balázs and Szabados studied together and improved the estimation given
in [2] by selecting a suitable an and bn under some restrictions for f (x) (see [3]).

Several q-generalizations of these operators have recently been studied by Hamal
and Sabancigil ([4]), Doğru ([5]), and Özkan ([6]). On the other hand, the approximation
properties of the q-Balázs–Szabados complex operators are studied by Mahmudov in [7]
and by Ispir and Özkan in [8]. The Kantorovich-type q-analogue of Balázs–Szabados
operators defined by Hamal and Sabancigil in [4] is as follows:

R∗n,q( f , x) =
n

∑
k=0

rn,k(q, x)
1∫

0

f

(
[k]q + qkt

bn

)
dqt (1)

where

rn,k(q, x) = 1
(1+anx)n

[
n
k

]
q
(anx)kn−k−1

∏
s=0

(1 + (1− q)[s]qanx), q ∈ (0, 1),

an = [n]β−1
q , bn = [n]βq , 0 < β ≤ 2

3 , n ∈ N, x ≥ 0
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and f is a real-valued continuous function defined on [0, ∞). The operators R∗n,q( f , x) are
positive and linear operators. Compared to the previous q-analogues of Balázs–Szabados
operators (see [7,8]), these operators have some advantages. The operators introduced
by Mahmudov are summation type operators, which cannot be used to approximate
integrable functions and the operators introduced by Özkan are positive if f is a non-
decreasing function. New Kantorovich-type q-analogue of the Balázs –Szabados operators
introduced in [4] also approximates the integrable functions, and they are positive even if f
is not a non-decreasing function.

Additionally, the fast rise of (p, q)-calculus has encouraged many mathematicians in
this subject to discover different generalizations. In the last decade, Mursaleen et al. defined
and studied the (p, q)-analogue of many operators (see [9–15]). The (p, q)-generalization
of Szász–Mirakjan operators was studied by Acar (see [16]), Kantorovich modification of
(p, q)-Bernstein operators was studied by Acar and Aral (see [17]). A generalization of
q-Balázs–Szabados operators based on (p, q)-integers which was studied by Özkan and
İspir in [18] is as follows:

<n,p,q( f , x) =
1

(1 + anx)p,q

n

∑
k=0

f

(
[k]p,q

qk−1bn

)
p

(n−k)(n−k−1)
2 q

k(k−1)
2

[
n
k

]
p,q

(anx)k (2)

where f : [0, ∞)→ R is a continuous function, 0 < q < p ≤ 1, n ∈ N, x ∈ [0, ∞) and
an = [n]β−1

p,q , bn = [n]βp,q, 0 < β ≤ 2
3 .

On the other hand, another the (p, q)-generalization of Balázs–Szabados operators
defined by Hamal and Sabancigil in [19] is as follows:

Rn,p,q( f , x) = 1
pn(n−1)/2

n
∑

k=0

[
n
k

]
p,q

pk(k−1)/2 f
(

pn−k [k]p,q
bn

) (
anx

1+anx

)k

×
n−k−1

∏
j=0

(
pj − qj anx

1+anx

) (3)

where 0 < q < p ≤ 1, an = [n]β−1
p,q , bn = [n]βp,q, 0 <β ≤ 2

3 , n ∈ N, x ≥ 0, f is a real-valued
function defined on [0, ∞).

These two operators defined by (2) and (3) are summation type operators and they are
not capable of approximating integrable functions.

In this paper, we introduce a Kantorovich-type (p, q)-analogue of Balázs–Szabados
operators by generalizing the new Kantorovich-type q-analogue of Balázs–Szabados oper-
ators, R∗n,q, given by (1). We derive a recurrence formula, and by using this formula, we
give explicit formulas for the first and second-order moments, which follow a symmetric
pattern. We study some of the approximation properties of the new Kantorovich-type
(p, q)-analogue of Balázs–Szabados operators in terms of the modulus of continuity, we
prove a Voronovskaja-type theorem and we examine the weighted approximation proper-
ties of these new operators. Compared to the previous (p, q)-analogues of Balázs–Szabados
operators defined in [18] and in [19], these new operators have an advantage of also
approximating the integrable functions.

Before stating the main results for these operators, we will give some important
notations and definitions of (p, q)-calculus. For any p > 0, q > 0 and a non-negative
integer n, the (p, q)-integer of the number n is defined as:

[n]p,q = pn−1 + pn−2q + · · ·+ pqn−2 + qn−1 =


pn−qn

p−q i f p 6= q 6= 1
npn−1 i f p = q 6= 1
[n]q i f p = 1

n i f p = q = 1

.
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One can easily see that, [n]p,q = pn(n−1)/2[n] q
p

.

(p, q)-factorial is defined by

[n]p,q! =
n

∏
k=1

[k]p,q , n ≥ 1 and [0]p,q! = 1.

(p, q)-binomial coefficient is defined by[
n
k

]
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!
, 0 ≤ k ≤ n,

and the formula of (p, q)-binomial expansion is

(ax + by)n
p,q =

n
∑

k=0
p

(n−k)(n−k−1)
2 q

k(k−1)
2 an−kbkxn−kyk

= (ax + by)(pax + qby) . . .
(

pn−1ax + qn−1by
)

and
(x− y)n

p,q = (x− y)(px− qy)
(

p2x− q2y
)

. . .
(

pn−1x− qn−1y
)

.

From (p, q)-binomial expansion, we can see that

n

∑
k=0

pk(k−1)/2
[

n
k

]
p,q

xk(1− x)n−k
p,q = pn(n−1)/2 , x ∈ [0, 1].

Let f : C[0, a]→ R, the (p, q)-integral of f is defined by:

a∫
0

f (t)dp,qt = (p− q)a
∞

∑
k=0

f

(
qk

pk+1 a

)
qk

pk+1 if
∣∣∣∣ p

q

∣∣∣∣ > 1

The paper is organized as follows. In Section 2, we give the construction of the
operators, we derive a recurrence formula, and we give explicit formulas for the first and
second-order moments. In Section 3, we give an estimation of the central moments. In
Section 4, we prove a local approximation theorem and a Voronovskaja-type theorem. In
Section 5, we give weighted approximation properties of the operators.

2. Construction of the Operators and Their Moments

Definition 1. Let 0 < q < p ≤ 1, we introduce a new Kantorovich-type (p, q)-analogue of the
Balázs–Szabados operators by

R∗n,p,q( f , x) =
n

∑
k=0

r∗n,k(p, q, x)
1∫

0

f

 pn−k
(
[k]p,q + qkt

)
bn

 dp,q t,

where

r∗n,k(p, q, x) =
1

pn(n−1)/2

[
n
k

]
p,q

pk(k−1)/2
(

anx
1 + anx

)k n−k−1

∏
j=0

(
pj − qj anx

1 + anx

)

and an = [n]β−1
p,q , bn = [n]βp,q, 0 <β ≤ 2

3 , n ∈ N, x ≥ 0, f is a real-valued function defined
on [0, ∞).
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If p = 1, these polynomials reduce to the new Kantorovich-type q-analogue of the
Balázs–Szabados operators, which are defined by Hamal and Sabancigil in [4]. Moreover,
we considered the following two special cases:

• If 0 < p < q ≤ 1 or 1 ≤ p < q < ∞ then the positivity property of the operators
R∗n,p,q( f , x) fails.

• If 1 ≤ q < p < ∞ then approximation by the new operators R∗n,p,q( f , x) becomes

difficult because if p is large enough then the sequence
{

R∗n,p,q

}
n∈N

may diverge.

Thus, in this paper, we study the approximation properties of the operators for
0 < q < p ≤ 1.

In the following lemma, we give a recurrence formula for R∗n,p,q(tm, x).

Lemma 1. For all n ∈ N, x ∈ [0, ∞), m ∈ Z∪ {0}, and 0 < q < p ≤ 1, we have

R∗n,p,q(tm, x) =
m
∑

j=0

(
m
j

)
1

[m−j+1]p,q

(
pn

bn

)m−j

×
m−j
∑

i=0

(
m− j

i

)(
an
pn

)i
(qn − pn)iRn,p,q

(
ti+j, x

)

where Rn,p,q( f , x) is the (p, q)-Balázs–Szabados operator defined by (3).

Proof. By direct calculations, the recurrence formula is obtained as follows:

R∗n,p,q(t
m, x) =

n

∑
k=0

r∗n,k(p, q, x)
1∫

0

 pn−k
(
[k]p,q + qkt

)
bn

m

dp,q t,

by using the binomial expansion of
(
[k]p,q + qkt

)m
and evaluating the (p, q)-integral we get

R∗n,p,q(tm, x) =
n
∑

k=0
r∗n,k(p, q, x)

m
∑

j=0

(
m
j

)
1

[m−j+1]p,q

p(n−k)m

bm
n

[k]jp,qqk(m−j)

=
m
∑

j=0

(
m
j

)
pnm

[m−j+1]p,qbm
n

n
∑

k=0

m−j
∑

i=0

(
m− j

i

)
p−k(i+j)

(
qk − pk

)i
[k]jp,qr∗n,k(p, q, x)

=
m
∑

j=0

(
m
j

)
pnm

[m−j+1]p,qbm
n

m−j
∑

i=0

(
m− j

i

)
(q− p)i n

∑
k=0

p−k(i+j)[k]i+j
p,q r∗n,k(p, q, x)

=
m
∑

j=0

(
m
j

)
pn(m−j)

[m−j+1]p,qbm−j
n

m−j
∑

i=0

(
m− j

i

)(
an
pn

)i
(qn − pn)i

×
n
∑

k=0
p(n−k)(i+j) [k]

i+j
p,q

bi+j
n

r∗n,k(p, q, x).

Now, in the last equality, by using the definition of the operators Rn,p,q( f , x) given by
(3), we may write

R∗n,p,q(tm, x) =
m
∑

j=0

(
m
j

)
1

[m−j+1]p,q

(
pn

bn

)m−j

×
m−j
∑

i=0

(
m− j

i

)(
an
pn

)i
(qn − pn)iRn,p,q

(
ti+j, x

)
.

Moments and central moments possess a great deal of importance in the approximation
theory. In the following lemma, with the help of the recurrence formula we calculate the
first, second, and the third-order moments of the operators R∗n,p,q( f , x). �
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Lemma 2. For all n ∈ N, x ∈ [0, ∞) and 0 < q < p ≤ 1, we have the following equalities:

R∗n,p,q(1, x) = 1. (4)

R∗n,p,q(t, x) =
pn

[2]p,qbn
+

2q
[2]p,q

(
x

1 + anx

)
. (5)

R∗n,p,q
(
t2, x

)
= p2n

[3]p,qb2
n
+

(4q3+5q2 p+3qp2)pn−1

[2]p,q [3]p,qbn

(
x

1+anx

)
+

q[n−1]p,q
[n]p,q

4q3+q2 p+qp2

[2]p,q [3]p,q

(
x

1+anx

)2
.

(6)

Proof.

R∗n,p,q(1, x) = 1
pn(n−1)/2

n
∑

k=0

[
n
k

]
p,q

pk(k−1)/2
(

anx
1+anx

)kn−k−1
∏
j=0

(
pj − qj anx

1+anx

)
= 1,

R∗n,p,q(t, x) =
1
∑

j=0

(
1
j

)
1

[2−j]p,q

(
pn

bn

)1−j1−j
∑

i=0

(
1− j

i

)(
an
pn

)i
(qn − pn)iRn,p,q

(
ti+j, x

)
= pn

bn [2]p,q

{
1 + an

pn (qn − pn)Rn,p,q(t, x)
}
+ Rn,p,q(t, x).

Now, by using the formula for Rn,p,q(t, x) which is given in [19], we get

R∗n,p,q(t, x) =
pn

[2]p,qbn
+

2q
[2]p,q

(
x

1 + anx

)
.

In a similar way,

R∗n,p,q
(
t2, x

)
=

2
∑

j=0

(
2
j

)
1

[3−j]p,q

(
pn

bn

)2−j2−j
∑

i=0

(
2− j

i

)(
an
pn

)i
(qn − pn)i

×Rn,p,q
(
ti+j, x

)
= p2n

[3]p,qb2
n

{
1 + 2an

pn (qn − pn)Rn,p,q(t, x) +
(

an
pn

)2
(qn − pn)2Rn,p,q

(
t2, x

)}
+ 2pn

[2]p,qbn

{
Rn,p,q(t, x) + an

pn (qn − pn)Rn,p,q
(
t2, x

)}
+ Rn,p,q

(
t2, x

)
,

by simple calculations in the last equality, we get

R∗n,p,q
(
t2, x

)
= p2n

[3]p,qb2
n
+

(4q3+5q2 p+3qp2)pn−1

[2]p,q [3]p,qbn

(
x

1+anx

)
+

q[n−1]p,q
[n]p,q

4q3+q2 p+qp2

[2]p,q [3]p,q

(
x

1+anx

)2
.

�

Remark 1. From Lemma 2, it can be easily seen that for p = 1, we obtain the moments of the
new Kantorovich-type q-analogue of the Balázs–Szabados operators, R∗n,q(tm, x) for m = 0, 1, 2,
(see [4]).

3. Estimation of the Central Moments

In the next lemma, we present the estimations of the second and fourth-order central
moments of the operators R∗n,p,q.
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Lemma 3. For all n ∈ N and 0 < q < p ≤ 1, we have the following estimations:

(
R∗n,p,q((t− x), x)

)2
≤ 1

bn

{
1
bn

+
(pn − qn)2

bn

(
1

p + q
+

1
p− q

(anx)
)2
}

, x ∈ [0, ∞), (7)

R∗n,p,q

(
(t− x)2, x

)
≤ A1

bn
φn(p, q)(1 + x)2, x ∈ [0, ∞), (8)

R∗n,p,q

(
(t− x)4, x

)
≤ A2

b2
n
(1 + x)2, x ∈ [0, ∞), (9)

where A1 > 0, A2 > 0 and φn(p, q) = max
{

pn−1, bn − an pn−1, 1
[3]p,qbn

}
.

Proof. First, we estimate
(

R∗n,p,q((t− x), x)
)2

. For x ∈ [0, ∞),

(
R∗n,p,q((t− x), x)

)2
=
(

R∗n,p,q(t, x)− xR∗n,p,q(1, x)
)2

≤
(

pn

[2]p,qbn
− (p−q)

[2]p,q

x
1+anx −

anx2

1+anx

)2

≤ 2p2n(
[2]p,qbn

)2 + 2
(

(p−q)
[2]p,q

x
1+anx + anx2

1+anx

)2

≤ 1
bn

{
1
bn

+ (pn−qn)2

bn

(
1

p+q +
1

p−q (anx)
)2
}

.

For the estimation of R∗n,p,q

(
(t− x)2, x

)
, we use the formula of Rn,p,q

(
(t− x)2, x

)
,

which is calculated in [19].

R∗n,p,q

(
(t− x)2, x

)
=

n
∑

k=0
r∗n,k(p, q, x)

1∫
0

(
pn−k

(
[k]p,q+qkt

)
bn

− x

)2

dp,q t

≤ 2
n
∑

k=0
r∗n,k(p, q, x)

1∫
0

(
pn−kqk

bn

)2
t2dp,q t.

+2
n
∑

k=0
r∗n,k(p, q, x)

(
pn−k [k]p,q

bn
− x
)2

≤ 2
n
∑

k=0
r∗n,k(p, q, x) p2(n−k)q2k

[3]p,qb2
n

+ 2Rn,p,q

(
(t− x)2, x

)
≤ 2

[3]p,qb2
n
+ 2
{

pn−1

bn
x +

(
1− pn−1

[n]p,q

)
x2
}

≤ 2
bn

{
1

[3]p,qbn
+ pn−1x +

(
bn − an pn−1)x2

}
and we may simplify the last expression as follows:

2
bn

{
1

[3]p,qbn
+ pn−1x +

(
bn − an pn−1

)
x2

}
≤ A1

bn
φn(p, q)(1 + x)2

where A1 > 0 and φn(p, q) = max
{

pn−1, bn − an pn−1, 1
[3]p,qbn

}
.
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Now for x ∈ [0, ∞), we use similar calculations for the estimation of R∗n,p,q

(
(t− x)4, x

)
.

R∗n,p,q

(
(t− x)4, x

)
=

n
∑

k=0
r∗n,k(p, q, x)

1∫
0

(
pn−k

(
[k]p,q+qkt

)
bn

− x

)4

dp,q t

≤ 8
n
∑

k=0
r∗n,k(p, q, x)

1∫
0

(
qk p(n−k)

bn

)4
t4 dp,q t

+8
n
∑

k=0
r∗n,k(p, q, x)

(
pn−k [k]p,q

bn
− x
)4

by evaluating the (p, q)-integral and using the formula of Rn,p,q

(
(t− x)4, x

)
which is given

in [19], we get

R∗n,p,q

(
(t− x)4, x

)
≤ 8

n
∑

k=0
r∗n,k(p, q, x) q4k p4(n−k)

b4
n [5]p,q

+ 8Rn,p,q

(
(t− x)4, x

)
≤ 8

b4
n [5]p,q

+ 8
b2

n
C2 ϕ(p, q)(1 + x)2

where C2 > 0 and ϕ(p, q) > 0. Now we can write

R∗n,p,q

(
(t− x)4, x

)
≤ 8

b2
n

{
1

[5]p,q
+ C2 ϕ(p, q)(1 + x)2

}
≤ A2

b2
n
(1 + x)2,

where A2 > 0. �

Remark 2. To investigate the convergence results of the operators R∗n,p,q, let q = qn, p = pn be
the sequences such that 0 < qn < pn ≤ 1. If qn → 1 as n→ ∞ then by the Squeeze Theorem,
pn → 1 which implies lim

n→∞
[n]pn ,qn

= ∞.

In the following lemma we give two limits that later will be used to prove the
Voronovskaja-type theorem for the operators R∗n,p,q( f , x).

Lemma 4. Assume that 0 < qn < pn < 1, qn → 1, qn
n → 1 as n→ ∞ and 0 < β < 1

2 .
Then we have the following limits

(i) lim
n→∞

bn,pn ,qn R∗n,pn ,qn((t− x), x) = 1
2

(ii) lim
n→∞

bn,pn ,qn R∗n,pn ,qn

(
(t− x)2, x

)
= x,

where an,pn ,qn = [n]β−1
pn ,qn

and bn,pn ,qn = [n]βpn ,qn
.

Proof. For the proof of this lemma, we use the formulas of R∗n,pn ,qn(t, x) and R∗n,pn ,qn

(
t2, x

)
,

which are given in Lemma 2. The first statement is clear,

lim
n→∞

bn,pn ,qn R∗n,pn ,qn((t− x), x) = lim
n→∞

bn,pn ,qn

(
R∗n,pn ,qn(t, x)− x

)
= lim

n→∞
bn,pn ,qn

(
pn

n
[2]pn ,qn bn,pn ,qn

− (pn−qn)
[2]pn ,qn

x
1+an,pn ,qn x −

an,pn ,qn x2

1+an,pn ,qn x

)
= lim

n→∞
bn,pn ,qn

pn
n

[2]pn ,qn bn,pn ,qn
+ lim

n→∞
an,pn ,qn

(qn
n−pn

n)
[2]pn ,qn

x
1+an,pn ,qn x

− lim
n→∞

[n]2β−1
pn ,qn x2

1+an,pn ,qn x = 1
2 .
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For the second statement, we write

lim
n→∞

bn,pn ,qn R∗n,pn ,qn

(
(t− x)2, x

)
= lim

n→∞
bn,pn ,qn

{
R∗n,pn ,qn

(
t2, x

)
− x2 − 2xR∗n,pn ,qn((t− x), x)

}
= lim

n→∞
p2n

n
[3]pn ,qn bn,pn ,qn

+

{
lim

n→∞

(4q3
n+5q2

n pn+3qn p2
n)pn−1

n
[2]pn ,qn [3]pn ,qn

× lim
n→∞

1
1+an,pn ,qn x

}
x

+ lim
n→∞

bn,pn ,qn

{
4q3

n+q2
n pn+qn p2

n
[2]pn ,qn [3]pn ,qn

1
(1+an,pn ,qn)

2 − 1
}

x2

− lim
n→∞

an,pn ,qn pn−1
n × lim

n→∞
4q3

n+q2
n pn+qn p2

n
[2]pn ,qn [3]pn ,qn

× lim
n→∞

x2

(1+an,pn ,qn x)
2 − x,

now, if we substitute the following limits in the previous equality

lim
n→∞

p2n
n

[3]pn ,qn bn,pn ,qn
= 0, lim

n→∞
an,pn ,qn pn−1

n = 0, lim
n→∞

1
(1+an,pn ,qn x)

= 1,

lim
n→∞

(4q3
n+5q2

n pn+3qn p2
n)pn−1

n
[2]pn ,qn [3]pn ,qn

= 1, lim
n→∞

1
(1+an,pn ,qn x)

= lim
n→∞

1
(1+an,pn ,qn x)

2 = 1,

lim
n→∞

bn,pn ,qn

{
4q3

n+q2
n pn+qn p2

n
[2]pn ,qn [3]pn ,qn

− 1
}

= 0,

lim
n→∞

an,pn ,qn(q
n
n − pn

n)
(

3q3
n−p3

n−p2
nqn−pnq2

n
q4

n−p4
n+pnq3

n−qn p3
n

)
= 0,

we obtain lim
n→∞

bn,pn ,qn R∗n,pn ,qn

(
(t− x)2, x

)
= x, which proves the lemma. �

4. Local Approximation Theorem

In this section, we establish local approximation theorem for the new Kantorovich-
type (p, q)-analogue of the Balázs–Szabados operators. Let CB[0, ∞) be the space of
all the real-valued continuous bounded functions f on [0, ∞), endowed with the norm
‖ f ‖ = supx∈[0,∞) | f (x)|. We consider the Peetre’s K-functional (see [20]).

K2( f , δ) := inf
{
‖ f − g‖+ δ‖g′′ ‖ : g ∈ C2

B[0, ∞)
}

, δ ≥ 0,

where
C2

B[0, ∞) :=
{

g ∈ CB[0, ∞) : g′, g′′ ∈ CB[0, ∞)
}

From the known result given in [20], there exists an absolute constant C0 > 0 such that

K2( f , δ) ≤ C0ω2

(
f ,
√

δ
)

, (10)

where ω2

(
f ,
√

δ
)
= sup

0≤h≤
√

δ

sup
x±h∈[0,∞)

| f (x− h)− 2 f (x) + f (x + h)| is the second modulus

of smoothness of f ∈ CB[0, ∞). Moreover, we let

ω( f , δ) = sup
0<h≤δ

sup
x∈[0,∞)

| f (x + h)− f (x)|.

First main result on the local approximation of the operators R∗n,pn ,qn( f , x) is stated in
the following theorem.
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Theorem 1. There exists an absolute constant C > 0 such that∣∣∣R∗n,pn ,qn( f , x)− f (x)
∣∣∣ ≤ C ω2

(
f ,
√

ηn(x)
)
+ ω( f , λn(x))

where
f ∈ CB[0, ∞), 0 ≤ x < ∞, 0 < qn < pn < 1,

ηn(x) =
{

A1
bn

φn(pn, qn)(1 + x)2
}

+ 1
bn,pn ,qn

{
1

bn,pn ,qn
+ (pn

n−qn
n)

2

bn,pn ,qn

(
1

pn+qn
+ 1

pn−qn

(
an,pn ,qn x

))2
}

and

λn(x) =
pn

[2]p,qbn
+

(
(p− q)
[2]p,q

+ anx

)
x

1 + anx
.

Proof. Let

R̃∗n,pn ,qn( f , x) = R∗n,pn ,qn( f , x) + f (x)− f
(

γn + α
x

1 + an,pn ,qn x

)

where f ∈ CB[0, ∞), γn = pn
n

[2]pn ,qn bn,pn ,qn
, α = 2qn

[2]pn ,qn
.

By using the Taylor’s formula, we have

g(t) = g(x) + g′(x)(t− x) +
t∫

x

(t− s)g′′ (s)ds, g ∈ C2
B[0, ∞),

then, we have

R̃∗n,pn ,qn(g, x) = g(x) + R∗n,pn ,qn

(
t∫

x
(t− s)g′′ (s)ds, x

)

−
γn+α x

1+an,pn ,qn x∫
x

(
γn + α x

1+an,pn ,qn x − s
)

g′′ (s)ds

Hence,

∣∣∣R̃∗n,pn ,qn(g, x)− g(x)
∣∣∣ ≤ R∗n,pn ,qn

(∣∣∣∣∣ t∫
x
|t− s| |g′′ (s)| ds

∣∣∣∣∣, x

)

+

∣∣∣∣∣∣
γn+α x

1+an,pn ,qn x∫
x

∣∣∣γn + α x
1+an,pn ,qn x − s

∣∣∣ |g′′ (s)| ds

∣∣∣∣∣∣
(11)

≤ ‖g′′ ‖ R∗n,pn ,qn

(
(t− x)2, x

)
+ ‖g′′ ‖

(
γn + α x

1+an,pn ,qn x − x
)2

= ‖g′′ ‖ Rn,p,q

(
(t− x)2, x

)
+ ‖g′′ ‖

(
Rn,p,q((t− x), x)

)2

≤ ‖g′′ ‖
{

A1
bn

φn(p, q)(1 + x)2
}

+‖g′′ ‖ 1
bn

{
1
bn

+ (pn−qn)2

bn

(
1

p+q +
1

p−q (anx)
)2
}

= ‖g′′ ‖ ηn(x).

(12)
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Using (12) and the uniform boundedness of R̃∗n,pn ,qn we get∣∣∣R∗n,pn ,qn( f , x)− f (x)
∣∣∣ ≤ ∣∣∣R̃∗n,pn ,qn(( f − g), x)

∣∣∣+ ∣∣∣R̃∗n,pn ,qn(g, x)− g(x)
∣∣∣

+| f (x)− g(x)|+
∣∣∣ f(γn + α x

1+an,pn ,qn x

)
− f (x)

∣∣∣
≤ 4‖ f − g‖+ ‖g′′ ‖ηn(x) + ω

(
f ,
∣∣∣γn + α x

1+an,pn ,qn x − x
∣∣∣).

If we take the infimum on the right-hand side overall, g ∈ C2
B[0, ∞), we obtain∣∣Rn,p,q( f , x)− f (x)

∣∣ ≤ 4K2( f ; ηn(x)) + ω( f , λn(x)),

which together with (10) gives the proof of the theorem. �

Corollary 1. Let 0 < qn < pn ≤ 1, qn → 1 as n→ ∞. Then for each f ∈ C[0, ∞) the sequence{
R∗n,pn ,qn( f , x)

}
converges to f uniformly on [0, a], a > 0.

One of the main problems in approximation theory is estimating the rate of convergence for
sequences of positive linear operators. Voronovskaja-type formulas are one of the most important
tools for studying their asymptotic behavior. Now, we give a Voronovskaja-type theorem for the new
Kantorovich-type (p, q)-analogue of the Balázs–Szabados operators.

Theorem 2. Assume that 0 < qn < pn ≤ 1, qn → 1 , qn
n → 1 as n→ ∞ and let a > 0,

0 < β < 1
2 . For any f ∈ C2

B[0, ∞) the following equality holds:

lim
n→∞

bn,pn ,qn

(
R∗n,pn ,qn( f , x)− f (x)

)
=

1
2

f ′(x) +
1
2

x f ′′ (x),

uniformly on [0, a].

Proof. Suppose that f ∈ C2
B[0, ∞) and x ∈ [0, ∞) is fixed. By using Taylor’s formula, we write

f (t) = f (x) + f ′(x)(t− x) +
1
2

f ′′ (x)(t− x)2 + r(t, x)(t− x)2, (13)

where the function r(t, x) is the Peano form of the remainder r(t, x) ∈ CB[0, ∞) and
lim
t→x

r(t, x) = 0. Applying R∗n,pn ,qn to (13) we obtain

bn,pn ,qn

(
R∗n,pn ,qn( f , x)− f (x)

)
= f ′(x)bn,pn ,qn R∗n,pn ,qn((t− x), x) + 1

2 f ′′ (x)bn,pn ,qn R∗n,pn ,qn

(
(t− x)2, x

)
+bn,pn ,qn R∗n,pn ,qn

(
r(t, x)(t− x)2, x

)
.

(14)

By using Cauchy–Schwartz inequality, we get

R∗n,pn ,qn

(
r(t, x)(t− x)2, x

)
≤
√

R∗n,pn ,qn(r
2(t, x), x)

√
R∗n,pn ,qn

(
(t− x)4, x

)
. (15)

We observe that r2(x, x) = 0 , r2(., x) ∈ CB[0, ∞). Then by the well-known Korovkin-
type result, which is given in Corollary 1, it follows that

lim
n→∞

R∗n,pn ,qn

(
r2(t, x), x

)
= r2(x, x) = 0, (16)
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uniformly for x ∈ [0, a]. Now by (15), (16), and Lemma 3, we get immediately

lim
n→∞

bn,pn ,qn R∗n,pn ,qn

(
r(t, x)(t− x)2, x

)
≤ lim

n→∞

√
R∗n,pn ,qn(r

2(t, x), x)× lim
n→∞

bn,pn ,qn

√
R∗n,pn ,qn

(
(t− x)4, x

)
= 0.

(17)

Then, substituting the limits given in Lemma 4 and using (17) in Equation (14), we get
the desired result. �

5. Weighted Approximation

Let Bσ(R+) be a weighted space of functions f (x) defined on R+ = [0, ∞) and satisfy
the inequality | f (x)| ≤ L f σ(x), where σ(x) represents a weighted function that is continu-
ously increasing on R+ = [0, ∞), σ(x) ≥ 1 and L f represents a positive constant depending

on f . The norm of each function f that belongs to Bσ(R+) is given by ‖ f ‖σ = sup
x∈R+

| f (x)|
σ(x) .

We consider the following spaces:

Cσ[0, ∞) = { f : f ∈ Bσ[0, ∞) and f is continuous },

C∗σ[0, ∞) =
{

f : f ∈ Cσ[0, ∞) and lim
x→∞

f (x)
σ(x) < ∞

}
.

Remark 3. Let σ(x) be a weighted function such that σ(x) ≥ 1 and the inequality
∣∣∣R∗n,p,q(σ, x)

∣∣∣ ≤ Lσ(x) ,

L > 0, is satisfied. Then we can say that the sequence of positive linear operators
(

R∗n,p,q

)
n≥1

acts

from Cσ[0, ∞) to Bσ[0, ∞) (see [21]).

Theorem 3. Assume that q = qn, p = pn are sequences such that 0 < qn < pn ≤ 1 and
qn → 1 as n→ ∞. Then for each f ∈ C∗σ[0, ∞), we have lim

n→∞
‖R∗n,pn ,qn( f , x)− f (x)‖

σ
= 0,

where σ(x) = 1 + x2.

Proof. By using the Korovkin Theorem for weighted approximation which is given in [22],
it is sufficient to show that

lim
n→∞
‖R∗n,pn ,qn(t

m, x)− xm‖
σ
= 0, for m = 0, 1, 2. (18)

Since R∗n,pn ,qn(1, x) = 1, (18) holds for m = 0. Now by Lemma 2, we have

R∗n,pn ,qn(t, x)− x = pn
n

[2]pn ,qn bn
+ 2qn

[2]pn ,qn

(
x

1+an,pn ,qn x

)
− x

= pn
n

[2]pn ,qn bn,pn ,qn
− (pn−qn)

[2]pn ,qn

x
1+an,pn ,qn x −

an,pn ,qn x2

1+an,pn ,qn x .

Then, we obtain

‖R∗n,pn ,qn(t, x)− x‖
σ

≤ sup
0≤x<∞

1
1+x2

{
pn

n
[2]pn ,qn bn,pn ,qn

+ (pn−qn)
[2]pn ,qn

x
1+an,pn ,qn x +

an,pn ,qn x2

1+an,pn ,qn x

}
≤ pn

n
[2]pn ,qn bn,pn ,qn

sup
0≤x<∞

1
1+x2 +

(pn−qn)
[2]pn ,qn

sup
0≤x<∞

x
1+x2(1+an,pn ,qn x)

+an,pn ,qn sup
0≤x<∞

x2

1+x2(1+an,pn ,qn x)
,
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now by taking limit overall the last inequality, we have

lim
n→∞
‖R∗n,pn ,qn(t, x)− x‖

σ
≤ lim

n→∞

pn
n

[2]pn ,qn
bn,pn ,qn

+ lim
n→∞

(pn − qn)

[2]pn ,qn

+ lim
n→∞

an,pn ,qn = 0.

Again, by using Lemma 2, we have

R∗n,pn ,qn

(
t2, x

)
− x2 = p2n

n
[3]pn ,qn b2

n
+

(4q3
n+5q2

n pn+3qn p2
n)pn−1

n
[2]pn ,qn [3]pn ,qn bn

(
x

1+an,pn ,qn x

)
+

qn [n−1]pn ,qn
[n]pn ,qn

4q3
n+q2

n pn+qn p2
n

[2]pn ,qn [3]pn ,qn

(
x

1+an,pn ,qn x

)2
− x2.

Therefore,

‖R∗n,pn ,qn

(
t2, x

)
− x2‖

σ
≤ p2n

n
[3]pn ,qn b2

n
× sup

0≤x<∞

1
1+x2

+
(4q3

n+5q2
n pn+3qn p2

n)pn−1
n

[2]pn ,qn [3]pn ,qn bn
× sup

0≤x<∞

x
(1+an,pn ,qn x)(1+x2)

+ pn−1
n

[n]pn ,qn

4q3
n+q2

n pn+qn p2
n

[2]pn ,qn [3]pn ,qn
× sup

0≤x<∞

x2

(1+an,pn ,qn x)
2
(1+x2)

+

{
1− 4q3

n+q2
n pn+qn p2

n
[2]pn ,qn [3]pn ,qn

}
× sup

0≤x<∞

x2

(1+an,pn ,qn x)
2
(1+x2)

.

Now by taking limit overall the last inequality, we get

lim
n→∞
‖R∗n,pn ,qn

(
t2, x

)
− x2‖

σ

≤ lim
n→∞

p2n
n

[3]pn ,qn b2
n
+ lim

n→∞

(4q3
n+5q2

n pn+3qn p2
n)pn−1

n
[2]pn ,qn [3]pn ,qn bn

× lim
n→∞

1
(1+an,pn ,qn x)

+ lim
n→∞

pn−1
n

[n]pn ,qn

4q3
n+q2

n pn+qn p2
n

[2]pn ,qn [3]pn ,qn
× lim

n→∞
1

(1+an,pn ,qn x)
2

+ lim
n→∞

{
1− 4q3

n+q2
n pn+qn p2

n
[2]pn ,qn [3]pn ,qn

}
× lim

n→∞
1

(1+an,pn ,qn x)
2 = 0.

Therefore, we obtain the desired result lim
n→∞
‖R∗n,pn ,qn

(
t2, x

)
− x2‖

σ
= 0. �

6. Conclusions

By using the notion of (p, q)-integers, we introduced a new Kantorovich-type (p, q)-
analogue of the Balázs–Szabados operators. The new operators have an advantage com-
pared with the previous analogues; they are capable of approximating integrable functions.
In the case p = 1 these polynomials reduce to the new Kantorovich-type q-analogue of
the Balázs–Szabados operators which are defined by Hamal and Sabancigil in [14]. We
established the moments of the operators with the help of the recurrence formula. We
studied the local approximation properties of these new operators in terms of modulus of
continuity and proved a Voronovskaja-type theorem. Lastly, we examined the weighted
approximation properties of the operators.
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