
Citation: Wang, J.; Zhang, D.; Liang,

L. A Classification Model with

Cognitive Reasoning Ability.

Symmetry 2022, 14, 1034. https://

doi.org/10.3390/sym14051034

Academic Editors: Yanhong She,

Xiaoyan Zhang and Weihua Xu

Received: 4 April 2022

Accepted: 10 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Classification Model with Cognitive Reasoning Ability
Jinghong Wang 1,2,3,*, Daipeng Zhang 1 and Lina Liang 1

1 College of Computer and Cyber Security, Hebei Normal University, Shijiazhuang 050024, China;
zhangdaipeng@stu.hebtu.edu.cn (D.Z.); lianglina@stu.hebtu.edu.cn (L.L.)

2 Hebei Provincial Engineering Research Center for Supply Chain Big Data Analytics & Security,
Hebei Normal University, Shijiazhuang 050024, China

3 Hebei Key Laboratory of Network and Information Security, Hebei Normal University,
Shijiazhuang 050024, China

* Correspondence: wjh@hebtu.edu.cn

Abstract: In this paper, we study the classification problem of large data with many features and
strong feature dependencies. This type of problem has shortcomings when handled by machine
learning models. Therefore, a classification model with cognitive reasoning ability is proposed. The
core idea is to use cognitive reasoning mechanism proposed in this paper to solve the classification
problem of large structured data with multiple features and strong correlation between features, and
then implements cognitive reasoning for features. The model has three parts. The first part proposes a
Feature-to-Image algorithm for converting structured data into image data. The algorithm quantifies
the dependencies between features, so as to take into account the impact of individual independent
features and correlations between features on the prediction results. The second part designs and im-
plements low-level feature extraction of the quantified features using convolutional neural networks.
With the relative symmetry of the capsule network, the third part proposes a cognitive reasoning
mechanism to implement high-level feature extraction, feature cognitive reasoning, and classifica-
tion tasks of the data. At the same time, this paper provides the derivation process and algorithm
description of cognitive reasoning mechanism. Experiments show that our model is efficient and
outperforms comparable models on the category prediction experiment of ADMET properties of five
compounds.This work will provide a new way for cognitive computing of intelligent data analysis.

Keywords: ADMET properties; feature-to-image; low-level feature extraction; high-level feature
extraction; cognitive reasoning mechanism; capsule network; machine learning

1. Introduction

To become a candidate drug, a compound should be evaluated for its pharmacokinetic
safety, collectively known as ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) [1]. The discovery and optimization of therapeutic drugs with ideal ADMET
properties are at the heart of drug development. In the past decades, up to 50% of clinical
trials have failed due to the lack of ADMET property evaluation [2]. Traditional candidate
drug screening relies on human experience and cannot guarantee the effectiveness and
accuracy of candidate drug detection, so it is impossible to find suitable candidate drugs
quickly and accurately. In recent years, the rapid development of machine learning has
attracted extensive attention in the medical field, especially in candidate drug screening,
predicting test results, reducing drug costs, medical care, and emergency real-time decision-
making [3–8]. Supervised machine learning (ML) is usually used to predict the properties
of ADMET [2]. Many researchers use k-nearest prediction neighbor (KNN), support vector
machine (SVM), decision tree (DT), logistic regression (LR) Bayesian (NB), Fisher linear
discriminant analysis (LDA), and other machine learning classification algorithms to predict
candidate drug compounds [9–13].

The method of ML goes to link the properties of ADMET with molecular charac-
teristics, and establish complex structure-property relationships for different ranges of
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molecular structures and mechanisms, showing good potential in predicting the prop-
erties of ADMT [14,15]. In recent years, with the development of ML, researchers have
improved ML methods to further cover a variety of ADMET properties, especially in terms
of predicting absorption, excretion, distribution, and other properties [16–19]. Generally
speaking, the ML model establishes a quantitative relationship between structure and prop-
erty, and then realizes the category prediction of properties. The simplest ML model may be
LR. The model is assumed that the properties of ADMET to be predicted are linearly depen-
dent on the characteristics of the compound. This model is easy to see and explain, which
means that its predictive ability is seriously insufficient, and nonlinear models can usually
obtain better performance [20]. KNN is a non-linear method for pattern recognition, and it
is a standard, classic, and well-known technique for benchmarking [21]. Shen et al. [22]
studied metabolic stability based on the KNN QSPR model. Stratton et al. [23] developed
a NB-based model to predict the stability of mouse liver microsomes (MLM). The most
frequently used nonlinear classification model is most likely a DT. The advantage of a
decision tree is the fact that it can visualize its prediction process. The DT realizes property
prediction by establishing one or more sets of if-else-then rules. However, when data faces
an imbalanced number of categories and sparse data, the information gain tends to favor
a large number of features, so that the classification effect cannot be achieved well. SVM
solves this problem well. SVM divides the hyperplane by finding the category, and realizes
the prediction of the category. Doniger et al. [24] studied the penetration of the blood-brain
barrier based on SVM with a training set consisting of CNS active compounds and 145 in-
active molecules. The average performance of the model was 81.5%. Svetnik et al. used a
combination of random forest and decision tree for drug property detection. The accuracy
of BBB penetration and P-glycoprotein (P-gp) binding property prediction reached 80% [25].
Kumar et al. [26] used SVM, ANN, KNN, Probabilistic Neural Network, Partial Least
Squares, and LDA for predicting ADMET properties. The results show that SVM has the
best prediction performance. SVM has been the most effective in recent studies [27].

However, the KNN, LDA, DT, and SVM methods do not consider the correlation
of features well when classifying and predicting the ADMET characteristics of drug can-
didates, and RF is not as effective as SVM although it can consider features in multiple
dimensions. These algorithms perform classification prediction of ADMET properties
along one dimension of that property and rarely consider multiple dimensions of that
property as the basis for classification prediction [28–32]. For example, when predicting the
category of attribute Caco-2, it is common to consider only the effect of attribute ALogp or
attribute ALogp2 on its prediction results, without considering the effect of the correlation
between attribute ALogP and attribute ALogp2 on the results. In addition, these algorithms
cannot effectively accomplish category prediction when faced with a large amount of
multi-featured structured data.

In this paper, we believe that using structured data transformed into image data can
solve this obstacles. This method transforms each dimension of the nature of ADMET
into pixel points of the image, and the correlation between features is better considered
through the reorganization of pixel points. In this paper, we propose a Feature-to-Image
(F2I) transformation module that converts structured data into image data by reorganizing
the pixels of the image data and considering the correlation between features. After the
transformation of the F2I transformation model, this problem is transformed into an
image classification problem, and the image classification model can be used to deal with
this problem.

DL-based models may be the future of ADMET property prediction, however, the use
of DL-based models for ADMET prediction is particularly abundant at present [33]. Deep
learning has been applied accordingly in drug detection and drug screening, and the
most widely used deep learning model is the convolutional neural network (CNN). Wal-
lach et al. [34] proposed the AtomNet model. It was the first structure-based CNN model
for predicting chemical ligands of a given receptor and achieved better performance than
classical docking methods. Goh et al. [35] established a CNN-based Chemception model,
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which uses two-dimensional molecular images to predict chemical properties. Recently,
Kearnes et al. [36] used molecular graphs as CNN inputs to construct a molecular toxicity
classification model and achieved good results. Tingting Shi et al. [37] also used a molecular
2D image-based CNN approach to build a prediction model for ADMET properties and
achieved comparable performance to existing machine learning models.

Although CNN have achieved some results in ADMET property prediction, CNN
have some limitations. CNN have the advantage of translational symmetry, but this
information processing mechanism cannot solve some problems of ADMET property
prediction, for example, it cannot handle affine transformation because it cannot obtain
the spatial hierarchy and relative symmetry of features [38]. ADMET prediction requires
finding the relationship between high-level features and relationships between low-level
features. That is, it needs to deal with the correlation and relative symmetry of features.

Hinton et al. [39] proposed Capsular Networks (CapsNet) as an alternative to CNN.
Unlike CNN, CapsNet uses capsules instead of scalar neurons in the network. Capsules
are equivalent. Each capsule consists of a vector, and each neuron represents a different
attribute value of the same feature [40]. There are three general approaches to implement
capsules: conversion automatic encoder [39], vector capsule based on dynamic routing [41]
and matrix capsule based on expected maximization routing [42]. The first capsule network
aims to emphasize the ability of the network to recognize posture; the second capsule
network improves the previous capsule, removes the pose data as the input, and uses the
vector to represent the capsule; in the third capsule, contrary to using vector output, it is
proposed to represent the input and output of the capsule as a matrix.

In this paper, we base ourselves on the idea of CapsNet and use the second method
of constructing capsules mentioned above to establish a cognitive reasoning mechanism
for features to achieve the classification and prediction of ADMET features. The cognitive
reasoning mechanism activates low-level capsules into high-level capsules to achieve
feature reasoning. The low-level capsules represent the low-level features and the high-
level capsules represent the high-level features, and the correlation between features is
transformed into feature mapping, which in turn mines the relative symmetry feature
information of their spatial levels. Due to the advantages and disadvantages for CNN
in performing ADMET property prediction, in order to improve the robustness [43] and
performance [44] of the model, this paper is based on the idea of combining CNN and
CapsNet to achieve the classification and prediction of ADMET properties.

In view of the problems that exist in the classification of large-scale multi-feature
structured data with strong correlation among features, this paper proposes a classifi-
cation model with cognitive reasoning ability (Caps3MC) to predict ADMET property
categories.The main contributions of this paper are as follows.

• The method of transforming structured data into image data is proposed, and the
correlation between features is taken into account in the classification basis, which
makes the experimental results more real and effective;

• A cognitive reasoning mechanism is proposed. When dealing with structured data,
the existing classification model cannot carry out cognitive reasoning on features,
and can only deal with small structured labeled data. This method can deal with
large multi feature structured data by combining the transformed image data and the
proposed cognitive reasoning mechanism. The cognitive reasoning mechanism largely
guarantees the reliability of classification results. At the same time, this paper provides
the derivation process and algorithm description of cognitive reasoning mechanism;

• A large number of experiments have shown that Caps3MC model has excellent
performance in complex multi feature data sets when predicting ADMET properties.

The rest of the paper is organized as follows: First, this paper outlines the background
and current status of ADMET system modeling, and the current situation of ADMET
prediction by using machine learning and deep learning methods. Secondly, in the section
of Materials and Methods, we mainly describe the construction principle of three-layer
design of Caps3MC model. The three layers are F2I layer, Low-level Feature Extraction
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layer, and High-level Feature Extraction layer. In the high-level feature extraction layer,
the proposed cognitive reasoning mechanism is described. The third section focuses on
the principle of cognitive reasoning mechanism and the description of related algorithms,
and also the derivation process of the loss function and the training process algorithm of
the Caps3MC model based on the cognitive inference mechanism are described. Then,
the Experimental Results of Caps3MC model are shown in the Experimental analysis,
and the Experimental Results of the comparison between the Caps3MC model, six machine
learning classification models, and the CNN model are discussed. Finally, the Conclusions
are summarized and the future work direction is described.

2. Materials and Methods

Compared with traditional machine learning classification methods, the Caps3MC
model is a technology that can process large data sets and extract high-dimensional features.
The basic structure of the Caps3MC model is shown in Figure 1. Caps3MC mainly contains
three major layers: namely the F2I layer, Low-level Feature Extraction layer, and High-
level Feature Extraction layer. The F2I layer is mainly used to convert structured data
into image data; the Low-level Feature Extraction layer is mainly used for preliminary
feature extraction; the High-level Feature Extraction layer is mainly used for further feature
extraction, feature combination, and the proposed cognitive reasoning mechanism is used
to realize category prediction.

Figure 1. Caps3MC model.

2.1. Feature-to-Image Layer

In Caps3MC model, Feature-to-Image Layer is combined with the F2I conversion
model proposed by us. Inspired by Biao et al. [45], this paper proposes a F2I conversion
model. The task of the F2I conversion model is to convert structured data into image data.
According to the characteristics of structured data sets, when considering classification
tasks based on features, traditional machine learning algorithms can only learn based on
each feature information, ignoring the correlation between features. In actual classification
tasks, considering the correlation between features will greatly enhance the classification
effect. After the feature information is converted into image data through the F2I conversion
model, the attribute of each feature will become a pixel on the image, and the relevant
information between the features can be extracted by feature extraction on the image data.

The core idea of F2I conversion model conversion is to combine the characteristics
of the RGB images stored in the computer, convert each feature vector representing an
instance in the structured data set into a gray-scale image matrix, and then classify the
instances using the method of image classification.

A structured data set is defined as F
(
aij
)
∈ Rn×d, 2-Dimensional (2D) matrix X

(
sij
)
∈

Rz×z as a gray-level image matrix, Fi indicates i-th feature vectors, z indicates dimensions
of the gray-level image matrix, z = d 2

√
de, aij indicates the j-th feature of the i-th feature

vector, sij indicates the gray value of the image. Then X is equal to

X = F2I(Fi, d) (1)
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The F2I conversion model first normalizes the feature matrix F according to the feature
column, and the normalization function is defined as

âij =
(
1− Ij

) aij −min
(
a1j, a2j, . . . , anj

))
max

(
a1j, a2j, . . . , anj

)
−min

(
a1j, a2j, . . . , anj

)
+ Ij

eaij

∑n
i=1 eaij

, i ∈ (1, 2, . . . , n), j ∈ (1, 2, . . . , d)

(2)

I denotes the normalized indicator function, I = 0 means there is no negative value in
the feature column, on the contrary, I = 1. After the normalization, the normalized value is
input into the Formula (3) to generate z× z of the gray-level image matrix. The gray-level
image matrix is further converted into an image with a size of z× z, as shown in Figure 2.

Figure 2. A part of the images transformed from the F2I model.

During the conversion, When z2 > d, Corner-Filling is required. Corner-Filling means
that when the feature vector is converted into a gray-level image matrix X, it cannot fill X,
and it is necessary to supplement the pixel value where it is not filled.

The Corner-Filling is filled with the average value of the feature vector, as shown below.

suk =

⌈
255

∑d
j=1 âij

d

⌉
(3)

suk represents the value that needs to be filled in the u-th row and k-th column of the
gray-level image matrix.

The Gray-Level Image Matrix Conversion Algorithm

After the filling is completed, the conversion of the gray-level image can be realized.
The detailed flow of the algorithm can be summarized as follows:

In Algorithm 1, the input is the row vector Fi
(
âij
)
∈ R1×d of the feature matrix,

the feature matrix dimension is d-dimension, and the output is the grayscale image matrix
X
(
sij
)
∈ Rz×z, where âij denotes the j-th element value of Fi, j ∈ {1, 2, . . . , z}, and sij

denotes the element value of the i th row and j-th column of X, i, j ∈ {1, 2, . . . , z}. Algorithm
1 first calculates the dimension z of the grayscale image matrix based on the dimension d of
the feature matrix, and then initializes a z× z grayscale image matrix X. After sufficient
preparation, the grayscale value filling starts, which is the value of the elements in the row
vector Fi passing through the feature matrix. First, a count variable b is defined, and the
value b of the count variable is smaller than the feature dimension d. The count variable
serves as the index value of Fi, i.e., âib denotes the b-th value of Fi. Next, the loop traverses
the grayscale image matrix X, and fills in the element values of the corresponding feature
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row vectors, into it. When filling in, if the row vector are completely filled, but the pixels
value of X are not completely filled, i.e., z2 > d is filled with missing corners. Finally,
the generated grayscale image matrix X is output to complete the grayscale image matrix
conversion. The time complexity of the gray-level image matrix conversion Algorithm is
O
(
n2). The grayscale image conversion is processed only once during data preprocessing,

which is relatively within the acceptable time complexity. The algorithm reorganizes
the attribute information of features to achieve the processing of interdependent feature
information and significantly improves the performance of classification.

Algorithm 1 The Gray-Level Image Matrix Conversion Algorithm

Input: the row vector of Feature Matrix Fi
(
âij
)
∈ R1×d, the dimension of Feature Matrix d.

Output: the gray-level image matrix X
1. Calculate the dimensions of the gray-level image matrix z← d 2

√
d |

2. Random init X
(
sij
)
∈ Rz×z

3. Define counting variables b← 0
4. for j← 1 : z do
5. for k← 1 : z do
6. if b < d:
7. sjk ← d255âibe;
8. b← b + 1;
9. else:

10. sjk ←
∣∣∣∣255

∑d
p=1 âip

d

∣∣∣∣
2.2. Low-Level Feature Extraction Layer

The low-level feature extraction layer is mainly used for low-level feature extraction
of images transformed by F2I layer of Section 1 of this Section. The low-level feature
extraction layer is integrated with CNN. CNN have always been at the core of significant
progress in DL. CNN have a wide range of applications in the field of image processing,
including the image classification, target detection, etc. [46–48]. Compared with fully
connected neural networks, CNN have the advantages of local connection, weight sharing,
and downsampling dimensionality reduction [49]. In view of the advantages of CNN,
the low-level feature extraction layer is designed according to the architecture of CNN
and consists of convolution layer, pooling layer and full connection layer. The low-level
feature extraction layer adopts four groups of two-dimensional convolution, one group of
one-dimensional convolution, one group of pooling layer and two groups of full connection
layer, as shown in Figure 3. The first and second convolution layers adopt 5× 5× 64
convolution kernels and use ReLU function as the activation function. The third and fourth
convolution layers used 3× 3× 32 convolution kernels and ReLU function as the activation
function, and the last one used 9× 9× 256 convolution kernel and ReLU function as the
activation function. The pooling layer selects average pooling to save more background
information of image data, and the full connection layer is used for feature fitting.

Figure 3. The low-level feature extraction layer of the Caps3MC model.
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2.2.1. The Convolution Layer

The convolution layer is mainly used to extract the local features of the feature map
generated by the F2I layer. The convolution layer contains multiple convolution kernels,
and different convolution kernels extract different local features. The deeper the convolu-
tion kernel, the more features of the F2I feature map will be extracted. The local connection
and shared parameters between the convolution layers ensure that each convolution kernel
can output a local feature.

Let the gray-level image matrix X of the input layer l be δl
i (i = 1, 2, . . . , I), the output

layer l + 1 feature map is δl+1
j (j = 1, 2, . . . , J), the input convolution kernel is W l+1

ji , and the
size is K× K. The l + 1 layer feature map of the output can be

δ0
j = σ(wb),

δ1
j = σ

(
I

∑
i=1

K−1

∑
w,h

W1
ji ∗ δ0

i (x− w, y− h) + wb

)
,

δ2
j = σ

(
I

∑
i=1

K−1

∑
w,h

W2
ji(w, h) ∗ δ1

i (x− w, y− h) + wb

)

= σ

(
I

∑
i=1

K−1

∑
w,h

W2
ji ∗ σ

(
I

∑
i=1

K−1

∑
w,h

W1
ji ∗ δ0

i (x− w, y− h) + wb

)
+ wb

)
,

. . . ,

δl+1
j (x, y) = σ

(
I

∑
i=1

K−1

∑
w,h

W l+1
ji (w, h) ∗ δl

i (x− w, y− h) + wb

)

(4)

where I represents the depth of the input feature mapping, J represents the depth of the
output feature mapping, and (x, y) represents the x-th row and y-th column features of
the output feature mapping. (w, h) describe the features of row w and column h of the
input feature mapping. wb is offset. “*” indicates convolution operation, σ(·) represents
the activation function. In this paper, ReLU function is selected as the activation function.

2.2.2. The Pooling Layer

The pooling layer is used to reduce the dimension of the feature mapping output
from the convolution layer, avoid over fitting and reduce the dimension of the output
feature mapping. Pooling treatment is generally divided into maximum pooling and
average pooling [50]. Maximum pooling is to use the maximum value in the pooling space,
which can effectively extract the texture information of the feature map. Average pooling
takes the average value in the pooling space, which can effectively extract the background
information of the feature map. According to the characteristics of the two kinds of pooling,
this paper adopts average pooling.

To protect the background information of F2I characteristic map to the greatest extent,
the calculation method of average pooling is as follows:

f j(x, y, z) =
h,w

∑
1≤x≤h,1≤y≤w

δl+1
j (x− h, y− w, z)

h + w

=
h,w

∑
1≤x≤h,1≤y≤w

σ
(

∑l
i=1 ∑K−1

w,h W l+1
ji (w, h) ∗ δl

i (x− w, y− h) + wb

)
h + w

(5)

where (x, y) represents the x-th row and y-column features of the output feature map, z rep-
resents the eigenvalue, and h and w represent the width and height of the spatial window.
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2.2.3. The Full Connection Layer

The function of the full connection layer is to fit the feature mapping output after
the multi-layer convolution kernel pooling operation, so as to prepare for the input of the
CapsNet module.

Set the input layer l feature mapping to yl
i(i = 1, 2, . . . , I), the output l + 1 feature

map is yl+1
j (j = 1, 2, . . . , J), and the weighted weight is ωl+1

ji , offset wb. This module is
described by:

y0
i = σ(wb)

y1
i = σ

(
n

∑
i=1

ω1
jiy

0
i + wb

)

y2
i = σ

(
n

∑
i=1

ω2
jiy

1
i + wb

)

= σ

(
n

∑
i=1

ω2
jiσ

(
n

∑
i=1

ω1
jiy

0
i + wb

)
+ wb

)
,

. . . ,

yl+1
j = σ

(
n

∑
i=1

ωl+1
ji yl

i + wb

)

(6)

Among them, σ(·) represents the activation function, and n represents the number of
neurons. In this paper, ReLU function is selected as the activation function.

2.3. High-Level Feature Extraction Layer

Based on the low-level extraction layer of Section 2.2 of this Section, The high-level
feature extraction layer is used for further extraction of image features, feature combi-
nation, cognitive reasoning of features, and category prediction of ADMET properties.
The feature mapping extracted by the low-level extraction layer is used as the low-level
capsule for this subsection. A capsule is a set of neurons—a vector. The module length of
the capsule represents the probability of predicting the class, and the direction represents
the instantiation parameter. The capsules of the next layer can predict the capsules of
the next layer through cognitive reasoning mechanism. When multiple capsules of the
lower layer make the same prediction to the capsules of the upper layer, the capsules of
the upper layer will be activated and become the activation vector. The high-level feature
extraction layer consists of two groups of capsule layers, as shown in Figure 4. The first
group of capsules is composed of 32 6× 6× 8 capsules, and the second group of capsules is
calculated by cognitive reasoning mechanism. The second group of capsules is composed
of C 16-dimensional digital capsules. Finally, the corresponding probabilities of C categories
are output by extrusion function to complete category prediction. See Section 3 for details
of the principles and algorithms.
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Figure 4. The high-level feature extraction layer of Caps3MC.

3. Caps3MC Cognitive Reasoning Mechanism and Algorithm

The cognitive reasoning mechanism is mainly used to perform cognitive reasoning
on the features in the high-level feature extraction layer in Section 2. This section focuses
on the principle of cognitive reasoning mechanism and the description of related algo-
rithms. The derivation process of cognitive reasoning mechanism is described in Section 3.1
of this Section. Section 3.2 describes the Caps3MC cognitive reasoning algorithm. In
Sections 3.3 and 3.4 of this Section, the derivation process of the loss function and the train-
ing process algorithm of the Caps3MC model based on the cognitive reasoning mechanism
are described.

3.1. The Cognitive Reasoning Mechanism

The core of the high-level feature extraction layer is the cognitive reasoning mech-
anism. The cognitive reasoning mechanism realizes the low-level capsule through the
voting mechanism and finds out the relationship between high-level features and low-level
features by activating the high-level capsule, as shown in Figure 5.

Figure 5. The cognitive reasoning mechanism of the Caps3MC model.
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High-level features and low-level features by activating the high-level capsule. The in-
put of the cognitive reasoning mechanism is 32-th low-level capsule of 6× 6× 8, the number
of iterations r and the number of capsule layers l, using ui represents a capsule unit of the
lower capsule of the l-th layer. The output is the probability of j-th categories. The cognitive
reasoning mechanism first initializes the iteration coefficient b, and the initialization value
of b is zero. Multiply the l-th lower capsule u by the weight matrix W of 8× 16, which is
affine transformed to obtain the high-level capsule û with Wij, which represents an element
of the weight matrix W using ûj|i, which represents a unit of the obtained high-level capsule,
then ûj|i = Wijui. The category probability capsule vj is as follows:

v1 = squashing

(
∑

i
û1|i

)
= squashing

(
∑

i
Wi1ui

)

v2 = squashing

∑
i

exp
(

v1û1|i

)
exp

(
v1û1|i

) û2|i


= squashing

(
∑

i

exp(v1 Wi1ui)

exp(v1 Wi1ui)
Wi2ui

)
,

v3 = squashing

∑
i

exp
(

v1û1|i + v2û2|i

)
exp

(
v1û1|i

)
+ exp

(
v1û1|i + v2û2|i

) û3|i


= squashing

(
∑

i

exp(v1Wi1ui + v2Wi2ui)

exp(v1Wi1ui) + exp(v1Wi1ui + v2Wi2ui)
Wi3ui

)
,

, . . . ,

vj = squashing

∑
i

exp
(

∑
j
o=1 voûo|i

)
exp

(
v1û1|i

)
+ exp

(
v1û1|i + v2û2|i

)
+ · · ·+ exp

(
∑

j
o=1 voûo|i

) ûj|i


= squashing

∑
i

exp
(

∑
j
o=1 voWioui

)
exp(v1Wi1ui) + exp(v1Wi1ui + v2Wi2ui) + · · ·+ exp

(
∑

j
o=1 voWioui

)Wijui



(7)

Squashing refers to the squeezing function that compresses the capsule into a proba-
bility between [0, 1].

Assume as follows:

bi1 = v1û1|i,

bi2 = v1û1|i + v2û2|i, . . . ,

bij =
j

∑
o=1

vo Wioui = v1û1|i + v2û2|i + · · · vjûj|i

(8)

We can get this by bringing Formula (8) into Formula (7):

vj = squashing

(
exp

(
bij
)

∑k exp(bik)
ûj|i

)
(9)

Let the coupling coefficient be cij =
exp(bij)

∑k exp(bik)
, then the digital capsule

xj = ∑
i

cijûj|i (10)

Then
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vj = squashing
(
xj
)
=

∥∥xj
∥∥2

1 +
∥∥xj
∥∥2

xj∥∥xj
∥∥ (11)

3.2. Caps3MC Cognitive Reasoning Mechanism Algorithm

Based on the derivation process of the cognitive reasoning mechanism in the Section 3.1
of this Section, this paper proposes an algorithmic description of the cognitive reasoning
mechanism applicable to Caps3MC feature reasoning. The algorithm is described as follows.

The cognitive reasoning mechanism will get the high-level capsule û through the
coupling coefficient cij votes on it and gets j-th 16 dimensional digital capsules xj. The
digital capsule xj is compressed into a category probability capsule vj between [0, 1] using
the squashing function. We update the iteration coefficient bij until the number of iterations
r is reached, where bij = bij + ûj|ivj. Finally, the probability values of each category are
compared to predict the category. The cognitive reasoning mechanism iterative process
algorithm of Caps3MC model is shown as follows Algorithm 2:

Algorithm 2 The cognitive reasoning mechanism iterative process algorithm
Input: low-level capsule u, Number of iterations r, Number of capsule layers l, Label of the
current category j
Output: j-th probability capsule of category vj
1. for all low-level capsule u in layer l and all high-level capsule û in layer (l + 1) : bij ← 0;
2. for i← 1, 2, · · · len(u) do
3. ûj|i ←Wijui, xj ← ∑i cijûj|i, r ← 3;
4. for r iterations do
5. cij ←

exp(bij)
∑k exp(bik)

6. xj ← ∑i cijûj|i
7. vj ← squash

(
xj
)

8. bij ← bij + ûj|ivj
9.Return vj

The algorithm achieves cognitive reasoning from low-level to high-level capsules
through a cognitive reasoning mechanism. The complexity of the algorithm is O(n), and the
time complexity is calculated mainly from the transformation process of low-level capsules
and high-level capsules. The algorithm achieves feature inference through a cognitive
reasoning mechanism, which calculates a probabilistic likelihood for each feature, making
the final classification results cognitive and interpretable, and significantly improving the
classification performance.

3.3. Caps3MC Model Training Loss Function

This section describes the derivation process of the training loss functions for the
Caps3MC model based on cognitive reasoning mechanism and algorithm of the Section 3.2
of this Section.

The loss function of Caps3MC model adopts the margin loss function, which limits
the upper bound of the edge to m+, and the lower bound of the edge to m−.

It is assumed that the probability sample obtained by Caps3MC model is

v1, v2, . . . , vj, . . . , vn, vj ∈ Rc, j = 1, 2, . . . , n,

where vj is the probability capsule of c-Dimension, c is the number of categories, and n is
the number of samples. These probability samples are linearly separable in R-Dimensional
Space, that is, there is a hyperplane

g(x) = x2
1 + x2

2 + · · ·+ x2
c = m2 (12)
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So that all probability samples can be separated without error. Where xi ∈ Rc is
the probability capsule vj in the dimensional space, as well as the probability value of
predicting a certain category, and m represents the boundary.

If the category predicted by the probability sample exists, the predicted probability
sample values are greater than or equal to m+. If the category predicted by the probability
sample does not exist, the predicted probability sample values are less than or equal to m−.
Then, the decision function is

√
x2

1 + x2
2 + . . . + x2

c ≥ m+, xi ∈ Rc√
x2

1 + x2
2 + . . . + x2

c ≤ m−, xi ∈ Rc
(13)

m+ is the edge upper bound, m− is the edge lower bound, and c refers to the category
of prediction probability. According to Minimum Squared Error criterion, Minimum

Squared Error loss from the probability sample to the edge is | m− 2
√
|g(x)| |2.

For the lower bound of the edge, the loss predicted by the probability sample is

∑
j

min
(

0, m− − 2
√
|g(x)|

)2

s.t. 2
√

x2
1 + x2

2 + . . . + x2
c −m− ≤ 0, xi ∈ Rc

(14)

Equivalent to

∑
j

max
(

0, 2
√
|g(x)| −m−

)2

s.t. 2
√

x2
1 + x2

2 + . . . + x2
c −m− ≤ 0, xi ∈ Rc

(15)

For the edge upper bound, the loss of the probability sample is

∑
j

min
(

0, 2
√
|g(x)| −m+

)2

s.t. 2
√

x2
1 + x2

2 + . . . + x2
c −m+ ≥ 0, xi ∈ Rc

(16)

Equivalent to

∑
j

max
(

0, m+ − 2
√
|g(x)|

)2

s.t. 2
√

x2
1 + x2

2 + . . . + x2
c −m+ ≥ 0, xi ∈ Rc

(17)

For all probability samples, there are only two kinds of predicted categories: categories
that exist and categories that do not exist, that is, category samples are mutually exclusive.
If I is defined as the classification indicator function, I = 1 when the predicted category
exists and I = 0 when the predicted category does not exist. Then the loss of all probability
samples is

∑
j

Ij max
(
0, m+ −

∥∥vj
∥∥)2

+
(
1− Ij

)
max

(
0,
∥∥vj
∥∥−m−

)2
(18)

In the process of model training, the proportion of category samples will be unbalanced.
Therefore, a weight factor is added to adjust the proportion of category existence and non-
existence. The final loss function is
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Caps3MC_Loss = ∑
j

Ij max
(
0, m+ −

∥∥vj
∥∥)2

+ λ
(
1− Ij

)
max

(
0,
∥∥vj
∥∥−m−

)2
(19)

where m+ represents the upper bound of the edge and m− represents the lower bound of
the edge. vj is the probability capsule, indicating the probability that the output belongs to
a certain category,

∥∥vj
∥∥ represents the L2 norm of a capsule. λ is a weight factor. In order to

reduce when a certain type does not appear, all activated digital capsules are compressed.
In this paper λ = 0.5, m+ = 0.9, m− = 0.1.

3.4. Caps3MC Model Training Progress Algorithm

This subsection describes the training process algorithm for the Caps3MC model based
on the algorithm description of the cognitive reasoning mechanism in Section 3.2 of this
Section and the loss function in Section 3.3 of this Section.

In the learning process, the model first converts the data set into graph data through
the F2I conversion model, and segments the data set according to the proportion that the
training set accounts for 70% of the total sample and the test set accounts for 30% of the
total sample. We input the segmented data set to the low-level feature extraction layer,
and the output of the low-level feature extraction layer is the input of the high-level feature
extraction layer. The high-level feature extraction layer outputs the possible probability
of each category, and selects the one with high probability as the prediction category of
the category by comparing the probability, so as to realize category prediction.This paper
briefly describes the training process of the proposed Caps3MC model, and the progress is
described as follows Algorithm 3:

Algorithm 3 The training process of the Caps3MC model
Input: Dataset with n rows and d columns, training epochs T.
Output: Category of prediction.
1. Initialize grayscale image data set X̂;
2. for row 1, 2, . . . , n do
3. Select the r row of the data set and convert it into gray image matrix X through
F2I model;
4. Add X to X̂;
5. Will X̂ The training set and test set are exchanged according to 7:3;
6. for Epoch = 1, 2, . . . , T do
7. Training Caps3MC model with training set;
8. Using Caps3MC_Loss calculation model training loss update model parameters;
9. Validate the model using a test set;
10. Compare the probability of each category and output the prediction results.

4. Experimental Analysis

In this section, Intestinal epithelial cell permeability (Caco-2), cytochrome P450 (CYP)
3A4 subtype (CYP3A4), human ether-a-go-go related gene (hERG), human oral bioavail-
ability (HOB) and micronucleus test were used (micronucleus, MN) five ADMET properties
are used to experimentally verify the model Caps3MC. The specific ADMET property
information is listed in Table 1. In order to better show the performance of Caps3MC
model, this paper compares the experimental results of Caps3MC model with decision
tree classification model, support vector machine classification model, logistic regression
classification model, k-nearest neighbor classification model, Bayesian classification model,
and Fisher linear discrimination model The classification model is analyzed, and the experi-
mental results of six ML models and CNN model are compared and analyzed. This section
may be divided by subheadings. It should provide a concise and precise description of
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the experimental results, their interpretation, and the experimental conclusions that can
be drawn.

Table 1. Description of ADMET.

ADMET Property Name
ADMET
Property

Abbreviation
ADMET Property Description

Permeability of small
intestinal epithelial cells Caco-2 It can measure the ability of compounds to

be absorbed by the human body

Cytochrome P450 enzyme
(Cytochrome P450, CYP) 3A4

Subtype
CYP3A4

The main metabolic enzymes in the human
body can measure the metabolic stability

of compounds

Cardiac safety evaluation of
compounds hERG Cardiotoxicity of measurable compounds

Human oral bioavailability HOB
It can measure the proportion of drugs

absorbed into the human blood circulation
after entering the human body

Micronucleus test MN Is to detect whether the compound
has genotoxicity

4.1. Data set

In this section, we used the bioactive data of compounds targeting breast cancer
treatment targets Erα to achieve intestinal permeability (Caco-2), Cytochrome P450 (CYP)
3A4 subtype (CYP3A4), and compound cardiac safety assessment (human Ether-a-go-go
Related Gene, P450). Human oral bioavailability (HOB) and micronucleus test (MN) are
five categories of ADMET properties. The meanings represented by each category label are
listed in Table 2.

In this paper, the data set is divided into a training set and a test set using the cross
validation method. The training set is used to train the model, and the test set is used to
test and verify the model.

Table 2. Description of ADMET classification.

ADMET Properties Label Label Content

Caco-2
0 Indicates that the permeability of small intestinal

epithelial cells of the compound is poor

1 Indicates that the permeability of small intestinal
epithelial cells of the compound is good

CYP3A4 0 Indicates that the compound cannot be metabolized
by CYP3A4

1 Indicates that the compound can be metabolized
by CYP3A4

hERG 0 Indicates that the compound has no cardiotoxicity
1 Indicates that the compound has cardiotoxicity

HOB 0 Indicates that the oral bioavailability of the
compound is poor

1 Indicates that the oral bioavailability of the
compound is good

MN 0 Indicates that the compound is not genotoxic
1 Indicates that the compound is genotoxic
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4.2. Experimental Evaluation Index

In medicine, Positive and Negative are usually used for dichotomous problems that
stand for two categories. Positive means that a symptom exists and negative means that
a symptom does not exist. Disease diagnosis is a dichotomous problem of positive and
negative judgment. There are only two possible positive or negative categories for a sample.
Therefore, there are four decision results: True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN).

Calculate the Precision rate, Recall rate, and the F1 value of model classification ac-
cording to the decision results.

Precision rate: Among all the samples predicted as positive examples, the proportion
of samples as positive examples is defined as

Precision =
TP

TP + FP

Recall rate: Among all the samples that are actually positive examples, the proportion
predicted as positive examples is defined as

Recall =
TP

TP + FN

F1 value: The Precision rate and Recall rate are a pair of contradictory measures.
Generally speaking, when the Precision rate is high, the Recall rate is often low, while when
the Recall rate is high, the Precision rate is often low. Therefore, F1 harmonic mean value is
adopted, which is defined as

F1 =
1

1
2

(
1

Precision + 1
Recall

) =
2

TP+FP
TP + TP+FN

TP

=
2TP

2TP + FP + FN

In addition to the above indicators, the Area Under Curve(AUC) value is used as
the indicator of the measurement model. The AUC value is the area below the receiver
operating characteristic curve(ROC). The AUC value is usually between (0.5, 1]. The larger
the value, the better the model is.

4.3. Analysis of Experimental Results

In this section, the analysis of experimental results is divided into two parts: the first
part is the analysis of the performance results of Caps3MC model for the classification
of five ADMET properties; The second part is the comparative experimental results of
Caps3MC model with other six ML classification models and CNN model. When using
CNN model for training, for the sake of fairness, CNN adopts the same parameters as
Caps3MC for training.

4.3.1. Analysis of Experimental Results of Caps3MC Model

The number of iterations of epochs used in the training model is 1000, and 5 categories
are trained, respectively. The training process is shown in Figure 6.

The Precision rate, Recall rate, F1 value, and AUC value are calculated according
to the number of four decision results. In order to make the evaluation indexes of the
experimental data more referential, this experiment weighted the average Precision rate,
Recall rate, and F1 value, and calculated the cumulative sum of the proportion of a certain
category of samples in the overall sample and the product of the corresponding Precision
rate, Recall rate, and F1 value to obtain the weighted Precision rate, weighted Recall rate,
and the weighted F1 value. The experimental evaluation results are listed in Table 3.
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From the analysis of the data presented in Table 3 and Figure 7, the weighted Precision
rate, weighted Recall rate, and weighted F1 value predicted by Caps3MC model for Caco-2,
CY P3A4, HERG, HOB and MN are more than 90%. Among them, Caps3MC has the
highest accuracy of CYP3A4 prediction, reaching 95.16%. The AUC predicted by Caps3MC
model for five ADMET property categories is up to 0.93, and the average value is close
to 0.90.

（a）Caco-2

（e）MN

（b）CYP3A4 （c）hERG

（d）HOB

Training Accuracy

Test Accuracy

Training Loss

Test Loss

Figure 6. Training progress of the Caps3MC model. (a) Training progress of Caco-2. (b) Training
progress of CYP3A4. (c) Training progress of hERG. (d) Training progress of HOB. (e) Training
progress of MN.

Table 3. Description of ADMET classification.

ADMET
Properties F1 Precision Recall AUC

Caco-2 90.14% 90.17% 90.13% 0.9
CYP3A4 95.17% 95.16% 95.19% 0.93

hERG 90.85% 90.94% 90.89% 0.91
HOB 83.08% 83.55% 82.78% 0.8
MN 94.39% 94.37% 94.43% 0.92

Average 1 90.73% 90.84% 90.68% 0.89
1 The last row of the table represents the average value of the five ADMET property evaluation indicators.

Figure 7. Statistics of different evaluation indexes of Caps3MC model under five categories.
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4.3.2. Analysis of Comparative Experimental Results

In order to demonstrate the performance of the model, six ML classification models
and CNN model are selected for comparison. The ML model includes the DT, SVM, KNN,
LR, LDA, and GNB classification model. Comparison experimental results are listed in
Table 4,bold results in the table are the best results. According to the data analysis in Table 4
and Figure 8, among the predicted evaluation indexes of Caco-2, weighted Precision rate,
weighted Recall rate, weighted F1 value, and AUC value corresponding to the other six ML
classification models and the CNN model are the highest. Compared with the evaluation
results of Caps3MC model, it can be observed that the four evaluation indexes of the model
are about 4% higher than those of the other six ML classification models and about 2%
of the CNN model. The three evaluation indexes of the corresponding ML classification
model for CYP3A4 prediction are higher than about 3%, and the AUC value is higher than
about 5%. Four indexes of the DL model are higher than about 2%. The corresponding
four evaluation indexes of the ML classification model predicted by HERG are higher
than about 1%. Four evaluation indexes of CNN model are higher than about 2%. Three
evaluation indexes of the corresponding ML classification model for HOB prediction are
higher than about 1%, and the Recall rate of Caps3MC model is lower than that of the LDA
classification model by about 1%; The three indexes of the DL model are higher than about
1%, and the Recall rate of Caps3MC model is lower than that of the CNN model by about
1%. The three indexes of the ML classification model predicted by MN are higher than
about 3%, and the AUC value is higher than about 6%; The three evaluation indexes of
CNN model are higher than about 2%, and the AUC value is higher than about 1%.

Table 4. omparative experimental evaluation results of seven algorithms for the Caps3MC model.

Dataset Evaluation
Index DT SVM KNN LR LDA GNB CNN Caps3MC

Caco-2

F1 85.36% 86.69% 86.14% 85.91% 84.75% 84.82% 88.29% 90.14%
Precision 85.32% 86.58% 86.08% 85.82% 84.81% 82.03% 88.24% 90.17%

Recall 85.33% 86.62% 86.10% 85.86% 84.77% 82.27% 88.27% 90.13%
AUC 0.8462 0.8614 0.8548 0.8527 0.8371 0.8391 0.8848 0.9

CYP3A4

F1 89.37% 92.04% 90.00% 90.49% 91.30% 88.82% 93.26% 95.17%
Precision 89.37% 92.15% 90.13% 90.63% 91.39% 86.08% 93.44% 95.16%

Recall 89.37% 92.00% 90.05% 90.52% 91.34% 86.67% 93.29% 95.19%
AUC 0.8621 0.8809 0.8641 0.8675 0.8821 0.8775 0.9124 0.93

hERG

F1 84.84% 88.15% 86.45% 85.52% 89.12% 85.40% 88.35% 90.85%
Precision 84.56% 88.10% 86.33% 85.32% 89.11% 85.32% 88.35% 90.94%

Recall 84.40% 88.05% 86.24% 85.19% 89.09% 85.34% 88.36% 90.89%
AUC 0.8368 0.8762 0.8568 0.8454 0.8877 0.853 0.8815 0.9

HOB

F1 82.48% 80.31% 73.39% 78.15% 83.52% 74.05% 82.64% 83.08%
Precision 82.53% 80.76% 74.94% 79.24% 83.29% 58.48% 82.48% 83.55%

Recall 82.50% 80.50% 73.93% 78.45% 83.39% 60.82% 83.13% 82.78%
AUC 0.7704 0.7361 0.6393 0.6971 0.7883 0.6498 0.7542 0.8

MN

F1 89.17% 91.47% 84.56% 82.35% 89.74% 83.68% 91.20% 94.39%
Precision 89.37% 91.65% 85.32% 83.29% 89.87% 72.41% 92.11% 94.37%

Recall 89.24% 91.49% 84.49% 82.54% 89.79% 74.53% 90.89% 94.43%
AUC 0.8399 0.8661 0.7491 0.7284 0.8507 0.7823 0.9128 0.92

Average
of Five
Categories

F1 86.24% 87.73% 84.10% 84.48% 87.68% 83.35% 88.75% 90.73%
Precision 86.23% 87.85% 84.50% 84.80% 87.69% 76.86% 88.92% 90.84%

Recall 86.17% 87.73% 84.16% 84.51% 87.67% 77.92% 88.79% 90.68%
AUC 0.8311 0.8441 0.7928 0.7982 0.8491 0.8003 0.86914 0.892
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(a) Evaluation indexes of Caco-2 (b) Evaluation indexes of CYP3A4

(c) Evaluation indexes of hERG (d) Evaluation indexes of HOB

(e) Evaluation indexes of MN (f) Evaluation indexes of average of 5 categories

Figure 8. Statistical evaluation indexes of different models under five categories.

Figure 9 clearly shows the evaluation index results and trends of the average values
of Caco-2, CYP3A4, hERG, HOB, MN, and average of five categories under Caps3MC,
four evaluation indexes of six machine learning models and CNN deep learning model.
Different color curves represent different evaluation indexes.

As can be seen from the evaluation index trends of different classification models
in Figure 9 compared with the evaluation index trends under five ADMET properties,
the prediction results of the Caps3MC model are more accurate and very close to the
real data classification. Comparing the evaluation trend under the average value of five
categories, the evaluation effect of Caps3MC model is much higher than that of the other
seven models, and has better comprehensive classification performance and classification
accuracy.

Through comparison and comprehensive consideration of the comparison between
Caps3MC model and six classification models and CNN model, it can be possible to
conclude that the Caps3MC model has significant advantages.
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(a) Evaluation index trend of different prediction models under Caco-2 (b)  Evaluation index trend of different prediction models under CYP3A4

(c) Evaluation index trend of different prediction models under HERG (d) Evaluation index trend of different prediction models under HOB

(e) Evaluation index trend of different prediction models under MN (f) Evaluation index trend of different prediction models under average of five categories

Figure 9. The evaluation index values of different classification models are obtained.

5. Conclusions

In this paper, Caps3MC model is proposed to better predict the ADMET properties
of compounds. The model consists of three parts. Firstly, the Caps3MC model uses the
F2I module to convert the feature vector of each instance in the structured data into a
gray image matrix, which is input into low-level feature extraction layer after matrix
transformation. Secondly, the Caps3MC model uses the gray image generated by low-level
feature extraction layer to realize the preliminary feature extraction. After being processed
by the low-level feature extraction layer, the output feature mapping is used as the input of
the high-level feature extraction layer. Finally, the Caps3MC model uses high-level feature
extraction layer to further extract the features from the feature map output by low-level
feature extraction layer. We use the cognitive reasoning mechanism to realize low-level
capsule and activate high-level capsule, so as to further quantify and extract the feature
correlation. Finally, the active high-level capsule is compressed into a probability capsule
between [0, 1] through the extrusion function, the probability of each category is compared,
the prediction category is output, and finally the category prediction is realized. Compared
with DT, SVM, KNN, LR, LDA, NB and CNN model, the Caps3MC model has higher
accuracy and significant classification performance.

At the same time, this study has some defects. Firstly, when facing the data set
with a small amount of feature data, the F2I conversion module converts it into a very
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small picture, which greatly reduces the classification effect of the model, but on the
contrary, the data set with a large number of features will show excellent performance and
effect. In the future, we will consider solving this problem by combining the algorithm or
introducing the feature scaling algorithm. Secondly, in the case of corner missing filling,
the problem of “feature disappearance” will occur when the corner missing is serious,
but in most cases, there is no serious corner missing. In the future, attention mechanism
will be introduced to eliminate the problem of “feature disappearance”, so as to make the
robustness of the model stronger.

Finally, in the field of medicine, there are a large number of multimodal data in
candidate drug prediction, not only pure index data, but also text, image and other data,
which brings challenges to the research and will be the key direction of drug prediction in
the future.
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