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Abstract: For the analysis of square contingency tables, the primary objective is to estimate an
unknown distribution from presented data. To achieve this objective, we generally use a statistical
model that fits the presented data well and has a parsimony. The recently proposed quasi local odds
symmetry (QLOS) model was compared to various models that represent the structure of symmetry
or asymmetry, and it provided the best fit performance compared with other models for real data.
However, the QLOS model has many parameters, that is, the QLOS model is not the parsimonious
model. To address this issue, this study proposes a new model that is more parsimonious than the
QLOS model. The proposed model is identical to the QLOS model under the specified condition; it is
the asymmetry model based on the QLOS model.Moreover, we compare the proposed model with
the existing models, including the QLOS model, and show that the proposed model provides better
fit performance than the existing models for real datasets.

Keywords: local odds ratio; model selection; parsimony; quasi symmetry

1. Introduction

For analyzing two-way contingency tables, the independence model is generally
used. However, for the analysis of square contingency tables with the same row and
column classifications, the independence model does not generally hold. This is because
many observations tend to fall in (or near) the main diagonal cells of the table. For this
reason, we are interested in whether the row variable is symmetric or asymmetric with the
column variable.

Consider an r× r square contingency table that has the same row and column classifi-
cations with ordinal categories. Let πij denote the cell probability that an observation will
fall in the i-th row and j-th column of the table (i = 1, . . . , r; j = 1, . . . , r). For the analysis of
square contingency tables, the primary objective is to estimate an unknown distribution
from presented data. To achieve this objective, analysts generally use a statistical model
that fits the presented data well and has a parsimony.

The symmetry (S) model proposed by Bowker [1] is defined by

πij = ψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = ψji for i < j. The S model has the symmetric structure with respect to the
main-diagonal cells of the table, and is the base model for analyzing square contingency
tables. We consider the following log-linear model:

log πij = λ + λ1(i) + λ2(j) + λ12(ij) for i = 1, . . . , r; j = 1, . . . , r. (1)

The S model can be expressed as Equation (1) with λ1(i) = λ2(i) and λ12(ij) = λ12(ji)
for i = 1, . . . , r; j = 1, . . . , r; see Bishop et al. [2] (p. 282).

Thereafter, various models having the symmetric or asymmetric structure have been
proposed, see Tahata and Tomizawa [3]. Among them, the marginal homogeneity (MH)
model [4] and the quasi-symmetry (QS) model [5] are very famous, as well as the S model.
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As the marginal asymmetry models based on the MH model, for example, Tahata and
Tomizawa [6] proposed the m-additional parameters marginal homogeneity (MH(m))
model, and Kurakami et al. [7] proposed the m-th generalized marginal cumulative
logistic (L(m)) model, for a fixed m (m = 1, . . . , r− 1). The MH(1) and MH(2) models are
identical to the extended marginal homogeneity model [8] and the generalized marginal
homogeneity model [9], respectively. The L(1) and L(2) models are identical to the
marginal cumulative logistic model [10] (p. 442) and the extended marginal cumulative
logistic model [11], respectively. For the details of these marginal asymmetry models, see
Tahata and Tomizawa [3].

This study deals with the models associated with the QS model proposed by
Caussinus [5]. The QS is defined by

πij = αiβ jψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = ψji for i < j. The QS model can be expressed as Equation (1) with λ12(ij) =
λ12(ji) for i = 1, . . . , r; j = 1, . . . , r. The QS model with {αi = βi} is identical to the S
model. The QS model with {αi = αi} and {β j = βj} is identical to the linear diagonals-
parameter symmetry (LDPS) model proposed by Agresti [12]. Thus, the LDPS model is
more parsimonious than the QS model.

For a fixed k (k = 1, . . . , r− 1), Tahata and Tomizawa [13] considered the k-th linear
asymmetry (LAk) model. The LAk model is defined by

πij =

(
k

∏
l=1

αil
l β

jl

l

)
ψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = ψji for i < j. The LAk can be expressed as various models that are more
parsimonious than the QS model. This is because the LAr−1 and LA1 models are identical
to the QS and LDPS models, respectively. We point out that the LAk model is the asymmetry
model based on the QS model.

As an extension of the QS model, Tomizawa [8] proposed the extended quasi-symmetry
(EQS) model defined by

πij = αiβ jψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = δψji for i < j. The EQS model with δ = 1 is identical to the QS model. The
EQS model with {αi = αi} and {β j = βj} is identical to the two ratio parameter symmetry
(TRPS) model proposed by Tomizawa [14]. The TRPS model with δ = 1 is identical to the
LDPS model. In line with the relation between the QS and LDPS models, the TRPS model
is more parsimonious than the EQS model.

For a fixed k (k = 1, . . . , r − 1), Tahata et al. [15] proposed the extended k-th linear
asymmetry (ELAk) defined by

πij =

(
k

∏
l=1

αil
l β

jl

l

)
ψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = δψji for i < j. The ELAk model with δ = 1 is identical to the LAk model. The
ELAr−1 and ELA1 models are identical to the EQS and TRPS models, respectively. We point
out that the ELAk model is the asymmetry model based on the EQS model.

As an extension of the EQS model, Altun [16] recently proposed the quasi local odds
symmetry (QLOS) defined by

πij = αiβ jψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = δωi+jψji for i < j. The QLOS model can also be expressed as

πikπjl

πilπjk
=

πkiπl j

πliπkj
for 1 ≤ i < j < k < l ≤ r.
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The QLOS model has a structure of the equality of the local odds ratio between one
side of the main diagonal and the corresponding other side in square contingency tables.
The QLOS model was compared to various models that have the symmetric or asymmetric
structure, and it provided best fit performance compared with other models for two real
datasets; see Altun [16]. However, the QLOS model has many parameters (r(r + 3)/2), that
is, the QLOS model is not the parsimonious model. Thus, the QLOS model may not have a
parsimony, although the QLOS model may fit the presented data. Moreover, when r = 4,
the QLOS model can also be expressed as

π13π24

π14π23
=

π31π42

π41π32
.

Therefore, the QLOS model is saturated on the (1, 2)th, (3, 4)th, (2, 1)th and (4, 3)th
cells as well as the main diagonal of the 4× 4 table. To address these issues, this study
proposes a new model that is more parsimonious than the QLOS model.

The rest of this paper is organized as follows. Section 2 describes the details of a new
model for square contingency tables. Section 3 introduces the goodness-of-fit test for the
proposed model and the methods for choosing the best fitting model among the applied
models. Section 4 shows the utility of the proposed model using real datasets. We close
with concluding remarks in Section 5.

2. Proposed Model

We propose the generalized 1-th linear asymmetry (GLA1) model, that is, the QLOS
model with {αi = αi} and {β j = βj}. The GLA1 model is defined by

πij = αi
1β

j
1ψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = δωi+jψji for i < j. The GLA1 model can be expressed as

πij

πji
= θ

j−i
1 δωi+j for i < j,

where θ1 = β1/α1. The GLA1 models with ω = 1 and δ = ω = 1 are identical to the TRPS
and LDPS models, respectively. It must be noted that the GLA1 model is saturated on only
the main diagonal of the r× r table.

Denote the row and column variables by X and Y, respectively. Under the GLA1
model, (1) if the δ > 1, θ1 > 1 and ω > 1, then Pr(X ≤ i) > Pr(Y ≤ i) for every
i = 1, . . . , r − 1, and (2) if the δ < 1, θ1 < 1 and ω < 1, then Pr(X ≤ i) < Pr(Y ≤ i)
for every i = 1, . . . , r− 1. Thus, the parameters of the GLA1 model would be useful for
making inferences, such as that X is stochastically less than Y or vice versa.

For a fixed k (k = 1, . . . , r − 1), we propose the generalized k-th linear asymmetry
(GLAk) model. The GLAk model is defined by

πij =

(
k

∏
l=1

αil
l β

jl

l

)
ψij for i = 1, . . . , r; j = 1, . . . , r,

where ψij = δωi+jψji for i < j. The GLAk models with ω = 1 and δ = ω = 1 are identical
to the ELAk and LAk models, respectively.

In line with the GLA1, for a fixed k (k = 1, . . . , r − 1), the GLAk model can be
expressed as:

πij

πji
=

(
k

∏
l=1

θ
jl−ii

l

)
δωi+j for i < j,

where θl = βl/αl . Moreover, the GLAk model can be expressed as
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πij

πji
=

 k

∏
l=0

θ
jl

l

θil
l

δωi+j for i < j.

Here, we discuss the relation between the QLOS and GLAr−1 models. The QLOS
model can be expressed as

πij

πji
=

γj

γi
δωi+j for i < j,

where γi = βi/αi and γj = β j/αj. On the other hand, the GLAr−1 model can be expressed as

πij

πji
=

r−1

∏
l=0

θ
jl

l

θil
l

δωi+j (i < j).

By setting γs to ∏r−1
l=0 θsl

l for s = 1, 2, . . . , r, the relation between {γ1, γ2, . . . , γr} and
{θ0, θ1, . . . , θr−1} is one-to-one. Therefore, the GLAr−1 model is identical to the QLOS model.
We point out that the GLAk model is the asymmetry model based on the QLOS model.

3. Goodness-of-Fit Test and Model Selection

Let nij denote the observed frequency in the i-th row and j-th column of the r × r
square contingency table (i = 1, . . . , r; j = 1, . . . , r), with n = ∑ ∑ nij. The maximum
likelihood estimates (MLEs) of expected frequencies under the model can be obtained by
using, for example, the Newton–Raphson method in the log-likelihood equation or the
non-standard log-linear model approach by Lawal [17,18].

For example, to obtain MLEs of the expected frequencies under the GLAk model, we
must maximize the Lagrangian:

L =
r

∑
i=1

r

∑
j=1

nij log πij − φ

(
r

∑
i=1

r

∑
j=1

πij − 1

)
−

r−1

∑
i=1

r

∑
j=i+1

ϕij

(
πij − πji

(
k

∏
l=1

θ
jl−ii

l

)
δωi+j

)
,

with respect to {πij}, φ, {ϕij}, {θl} δ, and ω.
Each model can be tested for goodness-of-fit by, for example, the likelihood ratio

chi-square statistic G2 with the corresponding degrees of freedom (df). The G2 of model M
is given by

G2(M) = 2
r

∑
i=1

r

∑
j=1

nij log

(
nij

m̂ij

)
,

where m̂ij is the MLE of expected frequency mij under model M. The number of df of the
S, LAk, ELAk, and GLAk models are r(r− 1)/2, r(r− 1)/2− k, r(r− 1)/2− (k + 1), and
r(r− 1)/2− (k + 2), respectively.

Convenient methods for choosing the best-fitting model among models are to use the
Akaike information criterion (AIC) and Bayesian information criterion (BIC), which are
defined as

AIC = −2× (the maximum log likelihood) + 2× (the number of parameters),

BIC = −2× (the maximum log likelihood) + log n× (the number of parameters),

for each model, see Akaike [19] and Schwarz [20]. The AIC and BIC give the best-fitting
model as the one with the minimum AIC and minimum BIC, respectively. While most of
the time, both AIC and BIC agree, it is not uncommon that AIC and BIC provide different
results in choosing the best model selection for the log-linear model. The common under-
standing is that AIC presents the danger of overfitting and BIC, of underfitting. Bedrick and
Crandall [21] provided simulation findings for model selection criteria for log-linear models.
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For the analysis of contingency tables using a log-linear model or Poisson count regression,
it is good to report both AIC and BIC and related indices (see [21,22]).

Since only the difference between AICs is required when two models are compared,
it is possible to ignore the common constant of AIC, and we may use a modified AIC
defined as

AIC+ = G2 − 2× (the number of df).

Similarly, we may use a modified BIC defined as

BIC+ = G2 − log n× (the number of df).

Thus, for the data, the model with the minimum AIC+ (i.e., the minimum AIC) and
the minimum BIC+ (i.e., the minimum BIC) is the best-fitting model.

4. Application to Real Data

Table 1, taken directly from Tominaga [23] (p. 130), presents the cross-classification
of the academic backgrounds of a Japanese father and his son, as examined in 1955. Note
that the categories are (1) elementary school, (2) junior high school, (3) high school, and (4)
university.

Table 1. Cross-classification of the academic backgrounds of a Japanese father and his son; taken
from Tominaga [23] (p. 130). The two values in parentheses are the maximum likelihood estimates of
expected frequencies under the GLA1 and GLA3 (i.e., QLOS) models, respectively.

Father’s Son’s Educational Level
Total

Educational Level (1) (2) (3) (4)

(1) 374 602 170 64 1210
(374) (599.21) (169.32) (64.58)
(374) (602) (169.15) (64.85)

(2) 18 255 139 71 483
(20.80) (255) (145.27) (70.53)

(18) (255) (139.85) (70.15)
(3) 4 23 42 55 124

(4.68) (16.73) (42) (52.10)
(4.85) (22.15) (42) (55)

(4) 2 6 17 53 78
(1.42) (6.47) (19.90) (53)
(1.15) (6.85) (17) (53)

Total 398 886 368 243 1895

Table 2 gives the values of the G2, AIC+, and BIC+ for the models applied to this
dataset. From Table 2, the GLA1 model is the best-fitting model. This is because the GLA1
model has the minimum AIC+ and the minimum BIC+ among the models applied to this
dataset. Table 1 also shows the MLEs of expected frequencies under the GLA1and GLA3
(i.e., QLOS) models. We observe that the QLOS model is saturated on the (1, 2)th, (3, 4)th,
(2, 1)th and (4, 3)th cells as well as the main diagonal of the 4× 4 table (see MLEs of the
expected frequencies for the QLOS model in Table 1). Therefore, the GLA1 model may be
preferred over the QLOS model when all observations on the off-diagonal cells must be
used.

Under the GLA1 model, the MLEs of θ1, δ and ω are θ̂1 =2.29, δ̂ =76.18 and ω̂ =0.55,
respectively. The values of θ̂

j−i
1 δ̂ω̂i+j for all i < j are greater than one. Therefore, we can

infer that the son’s education level is higher than that of his father.
Next, we consider Table 3. Table 3, taken directly from Stuart [24], presents the cross-

classification of the unaided distance vision of women aged 30–39 employed in Royal
Ordnance factories in British from 1943 to 1946. Note that category is (1) best, (2) second,
(3) third, and (4) worst.
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Table 2. Values of the likelihood ratio chi-square statistic (G2), the modified Akaike information
criterion (AIC+), and the modified Bayesian information criterion (BIC+) for the models applied to
Table 1.

Models df G2 AIC+ BIC+

S 6 1151.23 ∗ 1139.23 1105.95
LA1 (i.e., LDPS) 5 81.62 ∗ 71.62 43.89
LA2 4 16.33 ∗ 8.33 −13.86
LA3 (i.e., QS) 3 11.82 ∗ 5.82 −10.82
ELA1 (i.e., TRPS) 4 53.89 ∗ 45.89 23.70
ELA2 3 6.28 0.28 −16.36
ELA3 (i.e., EQS) 2 3.22 −0.78 −11.87
GLA1

† 3 3.75 −2.25 −18.89
GLA2

† 2 3.74 −0.26 −11.35
GLA3 (i.e., QLOS) 1 0.85 −1.25 −6.70

The symbol ∗ implies significance at the 5% level. The symbol † indicates the proposed models.

Table 3. Cross-classification of the unaided distance vision of women aged 30–39 employed in
Royal Ordnance factories in British from 1943 to 1946; taken from Stuart [24]. The two values in
parentheses are the maximum likelihood estimates of expected frequencies under the LA1 and GLA1

models, respectively.

Right Left Eye Grade
Total

Eye Grade (1) (2) (3) (4)

(1) 1520 266 124 66 1976
(1520) (263.37) (133.35) (59.12)
(1520) (266.48) (131.89) (57.27)

(2) 234 1,512 432 78 2256
(236.63) (1,512) (418.23) (88.53)
(233.52) (1,512) (423.15) (87.56)

(3) 117 362 1772 205 2456
(107.65) (375.77) (1772) (202.27)
(109.11) (370.85) (1772) (204.64)

(4) 36 82 179 492 789
(42.88) (71.47) (181.73) (492)
(44.73) (72.44) (179.36) (492)

Total 1907 2222 2507 841 7477

Table 4 gives the values of the G2, AIC+, and BIC+ for the models applied to the dataset
of Table 3. From Table 4, the LA1 model is the best-fitting model. This is because the LA1
model has the minimum AIC+ and the minimum BIC+ among the models applied to this
dataset. Moreover, the QLOS model does not fit this dataset, although the GLA1 model fits.
Table 3 also shows the MLEs of expected frequencies under the LA1and GLA1 models.

Table 4. Values of the likelihood ratio chi-square statistic (G2), the modified Akaike information
criterion (AIC+), and the modified Bayesian information criterion (BIC+) for the models applied to
Table 3.

Models df G2 AIC+ BIC+

S 6 19.249 ∗ 7.249 −34.269
LA1 (i.e., LDPS) 5 7.280 −2.720 −37.318
LA2 4 7.277 −0.723 −28.401
LA3 (i.e., QS) 3 7.271 1.271 −19.488
ELA1 (i.e., TRPS) 4 6.825 −1.175 −28.853
ELA2 3 6.823 0.823 −19.936
ELA3 (i.e., EQS) 2 6.823 ∗ 2.823 −11.016
GLA1

† 3 6.825 0.825 −19.934
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Table 4. Cont.

Models df G2 AIC+ BIC+

GLA2
† 2 6.793 ∗ 2.793 −11.046

GLA3 (i.e., QLOS) 1 6.793 ∗ 4.793 −2.127
The symbol ∗ implies significance at the 5% level. The symbol † indicates the proposed models.

Last, we consider Table 5. Table 5, taken directly from Bishop et al. [2] (p. 100),
presents the cross-classification of the occupational status of a British father and his son.
Note that the categories are (1) lowest status and (5) highest status.

Table 5. Cross-classification of the occupational status of a British father and his son; taken from
Bishop et al. [2] (p. 100). The two values in parentheses are the maximum likelihood estimates of
expected frequencies under the GLA1 and GLA3 models, respectively.

Father’s Son’s Occupational Status
Total

Occupational Status (1) (2) (3) (4) (5)

(1) 50 45 8 18 8 129
(50) (37.51) (9.92) (16.96) (5.92)
(50) (43.24) (10.58) (17.16) (6.46)

(2) 28 174 84 154 55 495
(35.49) (174) (86.60) (164.96) (53.41)
(29.76) (174) (86.52) (156.14) (54.84)

(3) 11 78 110 223 96 518
(9.08) (75.40) (110) (226.54) (94.62)
(8.42) (75.49) (110) (216.81) (97.90)

(4) 14 150 185 714 447 1510
(15.04) (139.04) (181.47) (714) (441.57)
(14.84) (147.86) (191.19) (714) (448.36)

(5) 3 42 72 320 411 848
(5.08) (43.59) (73.38) (325.43) (411)
(4.54) (42.16) (70.10) (318.64) (411)

Total 106 489 459 1429 1017 3500

Table 6 gives the values of the G2, AIC+, and BIC+ for the models applied to the
dataset of Table 5. From Table 6, the ELA3 model has the minimum AIC+ among the
models applied to this dataset, and the LA1 model has the minimum BIC+ among the
models applied to this dataset. From this results, we see that the BIC presents underfitting.
This is because, the LA1 model does not fit this dataset. Moreover, the GLA1 and GLA3
models are better-fitting models than the QLOS model.

Table 6. Values of the likelihood ratio chi-square statistic (G2), the modified Akaike information
criterion (AIC+), and the modified Bayesian information criterion (BIC+) for the models applied to
Table 5.

Models df G2 AIC+ BIC+

S 10 37.46 ∗ 17.46 −44.15
LA1 (i.e., LDPS) 9 17.13 ∗ −0.87 −56.31
LA2 8 11.14 −4.86 −54.14
LA3 7 5.70 −8.30 −51.42
LA4 (i.e., QS) 6 4.66 −7.34 −44.30
ELA1 (i.e., TRPS) 8 10.02 −5.98 −55.26
ELA2 7 7.60 −6.40 −49.52
ELA3 6 3.48 −8.52 −45.48
ELA4 (i.e., EQS) 5 2.70 −7.30 −38.10
GLA1

† 7 7.87 −6.13 −49.25
GLA2

† 6 7.60 −4.40 −41.36
GLA3

† 5 3.29 −6.71 −37.51
GLA4 (i.e., QLOS) 4 2.60 −5.40 −30.04

The symbol ∗ implies significance at the 5% level. The symbol † indicates the proposed models.
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5. Concluding Remarks

This study proposed the GLA1 model, that is, the QLOS model with {αi = αi} and
{β j = βj}. Moreover, in line with the relation between the QS (or EQS) and LAk (or ELAk)
models, this study proposed the GLAk model. Thus, the GLAr−1 model is identical to the
QLOS model.

We compared the proposed and existing models, and showed that the GLA1 model
provided a better fit than the existing models for real dataset in Table 1. Under the GLA1
model, we obtained the interpretation for applied to real dataset.

We observed that the QLOS model was saturated on the (1, 2)th, (3, 4)th, (2, 1)th and
(4, 3)th cells as well as the main diagonal of the 4× 4 table (see MLEs of the expected
frequencies for the QLOS model in Table 1). Therefore, the GLA1 model may be preferred
over the QLOS model when all observations on the off-diagonal cells must be used.
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Abbreviations
The following abbreviations are used in this manuscript:

S Symmetry
MH Marginal homogeneity
QS Quasi-symmetry
MH(m) m-additional parameters marginal homogeneity
L(m) m-th generalized marginal cumulative logistic
LDPS Linear diagonals-parameter symmetry
LAk k-th linear asymmetry
EQS Extended quasi-symmetry
TRPS Two ratio parameter symmetry
ELAk Extended k-th linear asymmetry
QLOS Quasi local odds symmetry
GLAk Generalized k-th linear asymmetry
MLE Maximum likelihood estimate
df degrees of freedom
AIC Akaike information criterion
BIC Bayesian information criterion
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