
����������
�������

Citation: He, W.; Zhang, Y.; Li, Y.

Fast, Searchable, Symmetric

Encryption Scheme Supporting

Ranked Search. Symmetry 2022, 14,

1029. https://doi.org/10.3390/

sym14051029

Academic Editor: Yu-Chi Chen

Received: 19 April 2022

Accepted: 15 May 2022

Published: 18 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Fast, Searchable, Symmetric Encryption Scheme Supporting
Ranked Search
Wei He 1, Yu Zhang 1,* and Yin Li 2

1 School of Computer and Information Technology, Xinyang Normal University, Xinyang 464000, China;
weihe@xynu.edu.cn

2 School of Cyberspace Security, Dongguan University of Technology, Dongguan 523820, China;
liyin@dgut.edu.cn

* Correspondence: willow1223@126.com or zhangyu86@xynu.edu.cn; Tel.: +86-136-6729-0954

Abstract: Searchable encryption (SE) is one of the effective techniques for searching encrypted data
without decrypting it. This technique can provide a secure indexing mechanism for encrypted
data and utilize a secure trapdoor to search for the encrypted data directly, thus realizing a secure
ciphertext retrieval function. Existing schemes usually build a secure index directly on the whole
dataset and implement the retrieval of encrypted data by implementing a secure search algorithm on
the index. However, this approach requires testing many non-relevant documents, which diminishes
the query efficiency. In this paper, we adopt a clustering method to preclassify the dataset, which
can filter out quite a portion of irrelevant documents, thus improving the query. Concretely, we first
partition the dataset into multiple document clusters using the k-means clustering algorithm; then,
we design index building and searching algorithms for these document clusters; finally, by using the
asymmetric scalar-product-preserving encryption (ASPE) scheme to encrypt the indexes and queries,
we propose a fast searchable symmetric encryption scheme that supports ranked search. Detailed
security analysis demonstrates that the proposed scheme can guarantee the data and query security
of the search process. In addition, theoretical and experimental analysis indicates that our scheme
outperforms other similar schemes in terms of query efficiency.

Keywords: searchable symmetric encryption; searchable encryption; keyword search; ranked search;
search over encrypted data

1. Introduction

With the rapid growth of cloud computing, more and more people and businesses
are willing to outsource their data to the cloud. Using cloud computing, cloud service
providers can provide online data storage and analysis services to different types of cus-
tomers, which greatly reduces the cost of data storage and computing for users. As a
result, data outsourcing techniques in the cloud environment have become widely popular.
However, although data outsourcing brings convenience to data users, it also inevitably
faces the risk of data leakage. To ensure data security, we can encrypt the data before
uploading. However, encryption makes ciphertext no longer support retrieval operations
as plaintext does. Driven by the demand for searching over encrypted data, a large num-
ber of searchable encryption schemes emerged [1–6]. According to different encryption
mechanisms, searchable encryption schemes can be divided into two categories: searchable
symmetric encryption (SSE) [1–3] and searchable public key encryption (SPE) [4–6]. SPE
scheme can provide secure search service for multiple data owners, but public key opera-
tion has high computing cost and is not suitable for large-scale data application scenarios.
On the contrary, symmetric encryption in the SSE scheme has simple operation and low
cost, which is more suitable for the current big data environment.

The SSE scheme can solve the problem of finding documents most related to the query
keywords in the corpus according to a given metric mechanism. Earlier SSE schemes only

Symmetry 2022, 14, 1029. https://doi.org/10.3390/sym14051029 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051029
https://doi.org/10.3390/sym14051029
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8261-0627
https://doi.org/10.3390/sym14051029
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051029?type=check_update&version=1

Symmetry 2022, 14, 1029 2 of 18

return documents containing all the query keywords and did not return documents based
on how closely they relate to the query keywords. To improve query accuracy, Cao et
al. proposed an SSE scheme supporting ranked search using the term frequency-inverse
document frequency (TF-IDF) model [7]. However, due to the use of the forward index
structure, the search time is linear with the number of documents, which is not practical
in the big-data environment. To improve the search efficiency, by using a binary balanced
tree structure, Xia et al. proposed an SSE scheme with a sublinear search complexity [8].
Subsequently, Guo et al. used bloom filter technology to compress the vector dimension of
internal tree nodes [9], further improving the query efficiency of the SSE scheme.

Although these two schemes have achieved ranked search on encrypted data, there is
still a room for improvement. As the number of documents increases, the number of nodes
in the index tree increases dramatically, resulting in high time cost to search the index tree.
In order to improve the query efficiency, in this paper, we propose a more efficient SSE
scheme compared with previous schemes with similar functions. To implement our scheme,
we first transform the documents into the corresponding semantic vectors using a keyword
conversion method. Then, the document set is divided into multiple document clusters
using the k-means clustering algorithm with document semantic vectors, and index trees
are built for each document cluster. Finally, we exploit the ASPE scheme to encrypt these
index trees and user queries to achieve a secure ranked search. To sum up, the contribution
of this paper comprises the following parts.

(1) A clustering algorithm is adopted to cluster the document set into multiple document
clusters, and a secure index tree is constructed on each cluster. By utilizing this
approach, the time complexity of index tree retrieval can be reduced because the
height of the index tree is decreased.

(2) We optimize the search method to reduce the number of index trees to be retrieved
and further improve the query efficiency of our scheme without sacrificing query
accuracy too much.

(3) By utilizing the ASPE scheme [10] to encrypt the index and the query, we propose
a fast SSE scheme support ranked search (F-SSE-RS). Moreover, we also design a
dynamic update method so that the index in our scheme can support safe document
update operations.

In addition, we give a detailed analysis to prove the security of F-SSE-RS and imple-
ment it on a widely used data collection. The experiment results demonstrate that our
scheme is feasible in practice.

Related Work: Searchable encryption, as an attractive technique in data security
and privacy protection, has received much attention in recent years. According to its
different cryptographic prototypes, there are two main categories: searchable symmetric
key encryption (SSE) and searchable public key encryption (SPE).

In the SSE scheme, the data owner and the data user share the secret key. Song et al.
proposed the first SSE scheme that supports only a single keyword search [1]. To realize
multi-keywords search, Goh designed an SSE scheme that supports conjunctive keyword
search using a technique called the bloom filter [11]. Subsequently, to support more flexible
query conditions, researchers proposed some SSE schemes that support complex query
conditions such as range search [12,13], fuzzy search [14,15], and semantical search [2,16].
However, since these schemes fail to measure the relevance of documents to queries, many
low-relevance documents will be returned, thus resulting in a large computational and
communication overhead. To solve this problem, Wang et al. proposed an SSE scheme that
supports ranked search in [17]. This scheme can compute the relevance between documents
and queries in the encrypted state and sort the query results. Since the scheme proposed
in [17] only supports a single keyword search, Cao et al. proposed a ranked search scheme
that supports multiple keywords search [7]. However, this scheme adopts a forward index
structure in which each document has an individual index, so its search time is linear in the
number of documents. The search efficiency of this scheme is impractical in the current big
data scenario. To improve the search efficiency, by using a tree–index structure, Xia et al.

Symmetry 2022, 14, 1029 3 of 18

proposed a similar SSE scheme [8]. The search efficiency of this scheme is sublinear with the
number of documents. Subsequently, Guo et al. further improved the scheme to reduce the
index building time [9]. However, we find that there is still room for decreasing the search
time of these schemes, so we will propose a new scheme to improve the query efficiency in
this paper. Besides, many recent SSE schemes are dedicated to supporting more complex
query conditions, such as fuzzy query [18], spatial data query [19], and phrase query [20].
These schemes can better meet the user’s query intent.

In the SPE scheme, the data owner uses the public key to build an encrypted index,
while the data user uses the private key to perform ciphertext retrieval. Thus, SPE naturally
supports many-to-one query scenarios. Boneh et al. introduced the first SPE scheme, called
public key encryption with keyword search (PEKS) [4]. However, it supports only single
keyword retrieval. Subsequently, researchers have proposed various SPE schemes that
support multiple keywords queries, such as conjunctive keyword search [21], disjunctive
keyword search [22], and Boolean keyword search [23]. In recent years, in addition to the
research on multi-keyword search, many studies have targeted the security, precision, and
efficiency of SPE. For example, access control [24], fast query [25], and semantic search [26].
All these works have greatly improved the usefulness of SPE.

Organization: The rest of this paper is organized as follows. In Section 2, we define
the system model and the threat model of the scheme and give the design objectives of
our scheme. Section 3 focuses on the index building and search method of the proposed
scheme. Section 4 gives the construction process of the F-SSE-RS scheme and also gives
the updated algorithm of the scheme as well as the security analysis. The theoretical and
experimental analysis of the proposed scheme is presented in Section 5. The conclusion is
given in Section 6.

2. Problem Formulation

This section first presents the system model of the F-SSE-RS scheme. Then, based on
this model, we introduce two threat models commonly considered in SSE schemes. Finally,
we propose the design goal of our scheme. For clarity, the main notations utilized in this
paper are listed in Table 1.

Table 1. Description of the main notations in the F-SSE-RS scheme.

F A document set { f1, f2, . . . , fd}.

d The number of documents in F.

DIC = {w1, w2, . . . , wN} The dictionary of a dataset.

N The number of keywords in the dictionary.

Wi = {wi1, wi2, . . . , wini} The keyword set for the document, fi, where i ∈ [1, d].

ni The number of keywords in Wi, where i ∈ [1, d].

wij The j-th keyword in Wi, where i ∈ [1, d], j ∈ [1, ni].
−→
Wi The vector representation for Wi.

Q = {q1, q2, . . . , qm} A keyword query.

qi A keyword in Q, where i ∈ [1, m].
−→
Q The vector representation of the query Q.

TQ The trapdoor of Q.

C = {c1, c2, . . . , ck} k document clusters divided from F.

ci = { fi1, fi2, . . . , fiφ} The document set in ci.

fij The j-th document in the cluster, ci, where i ∈ [1, k], j ∈ [1, φ].
−→
Wij The vector representation of fij.

Symmetry 2022, 14, 1029 4 of 18

Table 1. Cont.

k The number of clusters for dataset clustering.

φ The number of documents in each cluster.

Ti An index tree for the cluster, ci, where i ∈ [1, k].

ri The root node for Ti, where i ∈ [1, k].

u A node in an index tree.

~u The vector representation of the node u.

Ind = {r1, r2, . . . , rk} The index for F.

EInd = {ET1 , ET2 , . . . , ETk} The encrypted index for F.

ETi The encrypted index tree for the cluster, ci, where i ∈ [1, k].

t The number of index trees needed to be search.

θ The number of documents needed to be returned.

2.1. System Model

Data owner (DO), data user (DU), and cloud server (CS) are three different roles in the
system model of F-SSE-RS. To further illustrate the relationships among these three roles,
we present an architectural diagram of the system model in Figure 1. As shown in Figure 1,
DO encrypts a collection of documents and builds a safe index before sending them to DU.
Then, DO sends these encrypted documents to CS together with the encrypted index. Once
DU wishes to run a query, Q, it computes and transmits a search trapdoor, TQ, of Q to CS.
After getting the trapdoor, CS checks the encrypted index using TQ and sends the most
relevant documents to DU.

云

 Secret keys

Data Owners Data Users
Cloud Server

Encrypted documents
and index

Encrypted traodoor

Search Results

Figure 1. System model of F-SSE-RS.

To clarify the system model, the specific duties for each role are formally described
as follows.

(1) Data owner (DO): DO owns a large number of sensitive documents F = { f1, f2, . . . , fd}.
DO utilizes a symmetric key encryption scheme, e.g., AES, to encrypt the document
set F, and adopts the F-SSE-RS scheme to build the secure searchable index. After
these operations, DO uploads encrypted documents and secure index to CS. Finally,
DO delivers the secret key to the data users who have been granted access to the data.

(2) Data user (DU): An authorized DU can make a secure query over encrypted data.
Given a query Q, DU creates a trapdoor with the secret key and Q and sends it to
CS. When DU gets search results from CS, DU can use the secret key to decode the
encrypted contents.

(3) Cloud server (CS): DO’s encrypted index and documents are stored in CS. Once the
trapdoor, TQ, is obtained from DU, CS executes the query over the index and returns
the most relevant encrypted documents related to Q. In addition, CS runs update
operations over the encrypted index after obtaining updated information from DO.

2.2. Threat Model

In reality, most cloud servers are not completely trustworthy, which means they might
be snooping on information they should not have access to. Here, we suppose that the

Symmetry 2022, 14, 1029 5 of 18

cloud server is an “honest-but-curious” model, adopted by many SE schemes [7–9]. In the
honest-but-curious model, CS performs algorithms of the F-SSE-RS scheme in terms of
the desired computational process, but CS infers the user’s privacy information curiously.
Under the honest-but-curious model, based on the extent of information known to CS, our
scheme adopts the following two threat models proposed by Cao et al. [7].

- Known ciphertext model: In this model, CS only knows encrypted documents and
the secure index, which are stored on the server.

- Known background model: CS can access more information in this model than the
aforementioned model. This information involves the relationship between a trapdoor
and the dataset, and the statistics related to the dataset. For example, CS might exploit
the dataset’s term frequency (TF)-inverse document frequency (IDF) knowledge to
perform the statistical attack.

2.3. Design Goals

To make the ranked search execute efficiently and securely, our scheme should concur-
rently satisfy the following goals under the aforementioned model.

(1) Multi-keyword ranked search: Each document, fi, in F is associated with a keyword
set, Wi = {wi1, wi2, . . . , wini}, in which ni is the number of keywords in Wi. The
multi-keyword query, Q, is Q = {q1, q2, . . . , qm}. The F-SSE-RS scheme’s search result
is sorted, which means that F-SSE-RS returns documents whose keyword set, Wi,
is highly relevant to the query, Q. Furthermore, the F-SSE-RS scheme can enable
efficiently dynamic activities, such as document insertion and deletion.

(2) Efficiency: The F-SSE-RS scheme can achieve sublinear search efficiency. Furthermore,
the time cost of keyword search is substantially lower than existing similar schemes.

(3) Privacy preserving: The F-SSE-RS scheme, like some previous schemes, prevents
CS from deducing more private information from ciphertexts, secure indexes, and
trapdoors. Privacy requirements that our scheme focuses on are listed as follows.

- Document and index privacy: Document privacy is usually protected by tradi-
tional symmetric-key encryption schemes, e.g., AES, DES, and six-face cubical
key encryption [27]. For index privacy, the F-SSE-RS scheme prevents CS from
learning what is hidden in the index.

- Trapdoor unlinkability: The trapdoor generation algorithm needs to be proba-
bilistic rather than deterministic, which means that the same keyword query will
generate different trapdoors.

- Keyword privacy: Although the trapdoor can be protected using cryptographic
techniques, search results can be adopted to infer query keywords. Thus, our
scheme needs to prevent CS from learning query keywords from trapdoors by
search results and statistics of documents.

3. Methods for Index Building and Searching

In this section, we give the method for creating the plaintext index as well as the
search method over this index. Before presenting these methods, we first devise a keyword
conversion method to transform documents and queries into vector representations. Then,
we introduce the index building method, which mainly consists of two steps: splitting
the corpus into several document sets and building an index tree for each document set.
After these two steps, the index tree of each document set is combined to construct the
index of the entire corpus. Finally, we give a recursive method for searching the index. The
following subsections provide a concrete discussion of these approaches.

3.1. Keyword Conversion Method

In our scheme, we need to convert documents and queries into vectors. We adopt the
famous TF−IDF word weighting algorithm to create vectors for documents and queries.
The information of term frequency (TF) is applied to create vector representations of

Symmetry 2022, 14, 1029 6 of 18

documents, and the inverse document frequency (IDF) knowledge is utilized to construct
vector representations of queries. We give the concrete conversion approach as follows.

(1) The method extracts keywords in the dataset, and builds a dictionary DIC = {w1, w2,
. . . , wN}, where wt is an unique keyword in DIC and t ∈ [1, N].

(2) For each document, fi, associated with a keyword set, Wi = {wi1, wi2, . . . , wini}, the

method first creates a TF−vector
−→
Wi = {xi1, xi2, . . . , xiN} for fi. Based on Equation

(1), the method then sets xit = TFwij when wij = wt, where t ∈ [1, N], i ∈ [1, d] and
j ∈ [1, ni].

TFwij =
1 + ln(rwij)√

∑wij∈Wi
(1 + ln(rwij))

2
(1)

The number of repetitions of wij in the document, fi, is denoted by rwij in Equation (1).

(3) For a query, Q = {q1, q2, . . . , qm}, the method first constructs a IDF−vector
−→
Q =

{v1, v2, . . . , vN}. After this, based on Equation (2), the method sets vt = IDFqj when
qj = wt, where t ∈ [1, N] and j ∈ [1, m].

IDFqj = ln(1 +
n

nqj

) (2)

In Equation (2), nqj is the number of documents that contain the keyword qj in
the dataset.

Based on the TF−vector,
−→
Wi and the IDF vector

−→
Q , the relevance score between fi and

Q can be calculated by the following Equation (3):

Score(fi, Q) =
−→
Wi ·
−→
Q . (3)

We can obtain the most relevant documents based on relevance scores between docu-
ments and queries.

3.2. Approach for Index Building

For building the index, we first utilize the k-means clustering algorithm to divide the
entire corpus into several document sets. Then, we provide a tree-building algorithm to
produce an index tree for each document set. Finally, all index trees are merged to create
the corpus’s plaintext index. The detailed algorithms for these steps are given as follows.

3.2.1. Dataset Division Method

By using the keyword conversion method, each document, fi, in F corresponds to a
vector

−→
Wi. Given the vector set

−→
W1,
−→
W2, . . . ,

−→
Wd, we apply a well-known clustering algorithm

k−means to split the dataset F. The concrete division method is given in Algorithm 1.
Algorithm 1 first applies the k−means algorithm to partition the dataset into k doc-

ument clusters C = {c′1, c′2, . . . , c′k}, where the documents in each cluster are semantically
relevant. Since the number of documents in each cluster is distinct, for the sake of se-
curity, Algorithm 1 then appends some fake documents to each cluster to ensure that
each cluster has the same number of documents. Finally, Algorithm 1 outputs k clusters
C = {c1, c2, . . . , ck}, where ci = { fi1, fi2, . . . , fiφ}, fij is a document in ci and φ is the number
of documents in each cluster. We build the index of the dataset F based on the partition
result C.

Symmetry 2022, 14, 1029 7 of 18

Algorithm 1 Dataset division method.

Input: A vector set
−→
W1,
−→
W2, . . . ,

−→
Wd for the dataset F, the number of document clusters (k)

that users want to produce.
Output: k document clusters C = {c1, c2, . . . , ck}.

1: Inputs
−→
W1,
−→
W2, . . . ,

−→
Wd to the k − means algorithm, and obtains k document clusters

C′ = {c′1, c′2, . . . , c′k};
2: Let MaxLen be the maximum value of |c′1|, |c′2|, . . . , |c′k|, where |c′i| is the number of

documents in the cluster c′i and i ∈ [1, k];
3: for each i ∈ [1, k] do
4: Computes GapLen = MaxLen− |c′i|.
5: if GapLen > 0 then
6: Constructs GapLen fake documents whose TF vector is set to be zero vector;
7: Combines these GapLen fake documents and c′i to create a new cluster, ci;
8: end if
9: end for

10: return C = {c1, c2, . . . , ck};

3.2.2. Method for Building the Plaintext Index

Like some previous SSE schemes [8,9], we take advantage of the binary balanced
tree as the index structure. For the sake of clarity, we define the data structure of the
tree node u as: u =< ID,−→u , Pl , Pr, FID >, where ID is the identity of u; −→u is the vector
representation of u; Pl and Pr are two pointers which point to u’s left and right children,
respectively; and FID is the identity of a document if u is a leaf node. According to this
formal definition, we propose the method for building the plaintext index. For each cluster,
ci, in C, to create the index tree, Ti, of ci, we first convert the documents of the cluster, ci, to
leaf nodes. Specifically, for each document fij in ci, we set uij.ID = GenID(), uij.

−→u =
−→
Wij,

uij.Pl = uij.Pr = NULL, uij.FID be the identifier of fij, where GenID() is a function that can

generate an unique ID for the tree node, and
−→
Wij is the TF vector for documents fij, i ∈ [1, k],

and j ∈ [1, φ]. After conversion, we can obtain a leaf node set, li = {ui1, ui2, . . . , uiφ}, for
the cluster, ci.

Based on the leaf node set, li, of the cluster, ci, we propose the index tree building
algorithm for ci in Algorithm 2.

From Algorithm 2, li initially contains all the leaf nodes of the cluster, ci. We need to
construct internal nodes of the index tree in a bottom–up manner based on li. Let |li| be
the number of nodes in li. If li contains only one node, this means that this node is the root
node of the index tree of ci. Otherwise, we should use two nodes in li to create a parent
node. More specifically, let li[t] and li[t + 1] be two nodes in li, a parent node u of these two
nodes is built as follows.

The ID of u is generated by running GenID(). The two pointers of u are pointing to

li[t] and li[t + 1], respectively. For the vector of −→u , −→u [j] is the maximum of
−→
li[t][j] and

−−−−→
li[t + 1][j], where −→u [j],

−→
li[t][j], and

−−−−→
li[t + 1][j] represent values of j-th dimension of −→u ,

−→
li[t],

and
−−−−→
li[t + 1], respectively. By calling the function BuildTree(li) recursively, the plaintext

index tree, Ti, for the cluster, ci, can be constructed.
After building the index tree for each cluster, we use all the index trees as the index

for the entire dataset. The index for the entire dataset is denoted by Ind = {r1, r2, . . . rk},
where ri is the root node of Ti and i ∈ [1, k]. For the sake of clarity, we give an example to
illustrate the process of index building.

Symmetry 2022, 14, 1029 8 of 18

Algorithm 2 The algorithm for building index tree for the cluster, ci, declared by BuildTree(li)
Input: The leaf node set li of the cluster, ci.
Output: The plaintext index tree, Ti, for the cluster, ci.

if |li| == 1 then
return li;
\\This is the root node of the tree.

end if
Initializes an empty set TempNodeSet;
Sets s = |li|, t = 0;
while t < s do

if t + 1 < s then
Creates a parent node u for two nodes li[t] and li[t + 1], where u.ID = GenID(),

u.Pl = li[t], u.Pr = li[t + 1], u.FID = NULL and −→u [j] = Max(
−→
li[t][j],

−−−−→
li[t + 1][j]).

Inserts u to TempNodeSet;
else

Inserts li[t] to TempNodeSet;
end if
i = i + 2;

end while
li = BuildTree(TempNodeSet);
\\recursively calls BuildTree.
return li;

Example 1. An example of building the index for a document set F = { f1, f2, . . . , f12} is illus-
trated in Figure 2. From Figure 2, after using clustering algorithm, we suppose that F is divided
into three clusters c1 = { f1, f4, f7, f11}, c2 = { f2, f3, f8, f12}, and c3 = { f5, f6, f9, f10}. For each
cluster, ci, we first convert each document in ci into a leaf node. Then, based on these leaf nodes, we
construct the internal nodes in a bottom–up manner using Algorithm 2. Finally, we combine these
three index tree as the plaintext index of the document set F.

Dataset

!"
!#
!$
!%
!&
!'(
!''
!')

!'
!)
!*
!+

Keyword Conversion

,"
,#
,$
,%
,&
,'(
,''
,')

,'
,)
,*
,+

Algorithm 1

TF-vectors

,$,''

,' ,+

,% ,')

,) ,*

,& ,'(

," ,#

Clusters

-.

-/

-0

Algorithm 2

,$,'',' ,+

1'' 1')
1'

,% ,'),) ,*

1)' 1))
1)

,& ,'(," ,#

1*' 1*)
1*

Index Trees

2.

2/

20

345 = 1', 1), 1*

Figure 2. An example of the index building process.

3.3. Approach for Index Search

For a keyword query, Q, we adopt the keyword conversion method to transform Q
into an IDF vector

−→
Q . Given the index Ind = {r1, r2, . . . rk} of the dataset, for each ri, we

will compute the relevant score between
−→
Q and −→ri , according to Equation (3), where −→ri is

the vector for the root node ri and i ∈ [1, k]. We choose t root nodes with high correlation
scores and search the index trees associated with these root nodes, where t is set by data
users. Suppose that the selected root nodes are {r′1, r′2, . . . , r′t}, the search algorithm for each
index tree with the root, r′i , is described as follows, where i ∈ [1, t].

Symmetry 2022, 14, 1029 9 of 18

By running Algorithm 3, we can obtain a new document set DS = Rlist1 ∪ Rlist2 ∪
. . . ∪ Rlistt, where Rlisti is the search result of querying the index tree r′i , where i ∈ [1, t].
We find θ documents with the highest correlation score from DS as query results.

Algorithm 3 The algorithm for search the index tree, declared by SearchIndexTree(~Q, u, RList)

Input: An IDF vector
−→
Q of the query Q, an index tree of the root node r′i and an empty

result list RList.
Output: RList containing documents with θ maximum relevant scores.

1: if u is an internal node then
2: SearchIndexTree(

−→
Q , u.Pl , RList);

3: SearchIndexTree(
−→
Q , u.Pr, RList);

4: else
5: if −→u · −→Q >θ-th score then
6: Deletes the element holding the smallest relevance score in RList;
7: Inserts a new element < Score(u, Q), u.FID > in the Rlist, and updates the θ-th

score;
8: end if
9: end if

Example 2. In this example, we assume that the search aim is to find the documents with the top
two relevance scores. From Figure 3, the entire search process consists of three parts. Firstly, we
transform the query, Q, into an IDF vector

−→
Q , and then calculate the relevance score between the

query, Q, and the three index tree roots, {r1, r2, r3}. Suppose that we retrieve only two index trees
whose root nodes are most relevant to the query, Q. According to the calculation results, index
tree 1 and tree 3 are chosen as our retrieval targets. Secondly, we apply Algorithm 3 to perform
the retrieval operation on the index tree and obtain f1, f7 and f6, f10 as the result of the query on
index trees 1 and 3, respectively. Thirdly, we combine the query results of index tree 1 and tree 3
and return the two documents f1, f10 with the highest correlation scores as the final query results.

Keyword Conversion

!" !##!# !$

%## %#&
%#

!' !#&!& !(

%&# %&&
%&

!) !#*!+ !,

%(# %(&
%(

Index Trees

-.

-/

RList1= 1#, 1"

-3

4 4 4 5 %&

Query IDF-vector

4 5
% #

4 5 %(

Algorithm 3

Algorithm 3

RList3= 1,, 1#*

1#, 1#*

Result List

Choose Top-2 Files

Figure 3. An example of the search process.

4. Proposed Scheme

In the last section, we introduced the construction and retrieval methods for the
plaintext index. In this section, we utilize the ASPE scheme to encrypt the index and give
the concrete construction method of our F-SSE-RS scheme. After this, the dynamic update
approach and the security analysis for our scheme are also presented.

Symmetry 2022, 14, 1029 10 of 18

4.1. Construction of F-SSE-RS

According to the system model introduced in Section 2.1, the F-SSE-RS scheme con-
sists of four algorithms: KeyGen, IndexBuild, TrapdoorGen, and search. The KeyGen and
IndexBuild algorithms are executed by the data owner to generate the secrete key and
create the encrypted index, respectively. The data user performs the TrapdoorGen algorithm
to generate the encrypted trapdoor and transmits it to the cloud server. When catching
the trapdoor, the cloud server runs the search algorithm to make the keyword query and
returns the search result to the data user. The detailed construction of F-SSE-RS is given
as follows.

• KeyGen (γ): Taking a security parameter, γ, as an input, this algorithm chooses two
random invertible matrices, M1, M2, whose dimension are (N + L)× (N + L), and a
vector, S, whose dimension is N + L. Then, it sets the secret key sk as {M1, M2, S} and
outputs the sk to authorized data users.

• IndexBuild (sk, F): Given a document set F, this algorithm first partitions F into k
document subsets {c1, c2, . . . , ck} using the data division method. For each document
set, cj, this algorithm adopts Algorithm 2 to generate an index tree Tj for cj, where
j ∈ [1, k]. Then, this algorithm encrypts the index tree, Tj. The encryption process
starts from the root node, and each node is encrypted using a sequential traversal
method. More precisely, for a node u =< ID,−→u , Pl , Pr, FID >, the algorithm extends
the N-dimension vector −→u into a (N + L)-dimension vector −→uE, in which the value
of −→uE[i] is set to be −→u [i] when i ∈ [1, N], and the value of −→uE[i] is set as a random
number, εi, when i ∈ [N + 1, N + L]. After the extension process, two random vectors,
{−→uE

′
,−→uE

′′}, of −→uE can be created by using the following equations.{ −→uE
′
[i] +−→uE

′′
[i] = −→uE[i], i f S[i] = 0;

−→uE
′
[i] = −→uE

′′
[i] = −→uE[i], i f S[i] = 1.

}
i ∈ [1, N + L].

After encrypting each node in the index tree Tj, the algorithm generates the en-
crypted index tree ETj , where each encrypted node Eu of u can be expressed as

Eu =< ID, MT
1
−→uE
′
, MT

2
−→uE
′′
, Pl , Pr, FID > Finally, after encrypting all the index trees,

the algorithm outputs the encrypted index EInd = {ET1 , ET2 , . . . , ETk}.
• TrapdoorGen (sk,Q): Given a query, Q, the algorithm first transforms Q into an IDF

vector
−→
Q using the keyword conversion method given in Section 3.1. Then, this

algorithm extends the N-dimension vector
−→
Q into a (N + L)-dimension vector

−→
QE,

where each
−→
QE[i] is set to be

−→
Q [i] when i ∈ [1, N] and each

−→
QE[i] is set to be 0 or 1

randomly when i ∈ [N + 1, N + L]. After this, this algorithm generates two random
vectors, {−→QE

′
,
−→
QE

′′}, according to the following equations.{ −→
QE

′
[i] +

−→
QE

′′
[i] =

−→
QE[i], i f S[i] = 1;

−→
QE

′
[i] =

−→
QE

′′
[i] =

−→
QE[i], i f S[i] = 0.

}
i ∈ [1, N + L].

Finally, this algorithm outputs TQ = {M−1
1
−→
QE

′
, M−1

2
−→
QE

′′} as the trapdoor for Q.
• Search (TQ, EInd): Given the trapdoor, TQ, for each encrypted tree, ETi , this algo-

rithm computes the relevant score, rsi, between the encrypted root node ri of ETi
and TQ, where i ∈ [1, k]. Suppose that {rsρ1, rsρ2, . . . , rsρt} are the top-t correlation
scores, the search algorithm performs the traversal search on these encrypted trees
{ETρ1 , ETρ2 , . . . , ETρt}, where {ρ1, ρ2, . . . , ρt} ⊂ {1, 2, . . . , k}. For each j ∈ [1, t], this
algorithm searches the encrypted tree ETρj according to Algorithm 3. In the search

Symmetry 2022, 14, 1029 11 of 18

process, for an encrypted tree node Eu =< ID, MT
1
−→uE
′
, MT

2
−→uE
′′
, Pl , Pr, FID > and the

trapdoor TQ = {M−1
1
−→
QE

′
, M−1

2
−→
QE

′′}, this algorithm can compute:

(MT
1
−→uE
′ ·M−1

1
−→
QE

′
) + (MT

2
−→uE
′′ ·M−1

2
−→
QE

′′
) = −→uE

′ · −→QE
′
+−→uE

′′ · −→QE
′′

= −→uE ·
−→
QE

= Score(u, Q)

(4)

According to Equation (4), the computation result between Eu and TQ is the same
as that between the plaintext u and Q. Therefore, the search algorithm can employ
Algorithm 3 to perform the sorting search in the encrypted state. After finishing
the query on the encrypted tree ETρj , a result set RListρj on ETρj can be obtained.
Finally, this algorithm figures out the θ documents with the highest scores from
RListρ1 ∪ RListρ2 ∪ . . . ∪ RListρt and return them to the user as query results.

4.2. Dynamic Update Operations

In general, in addition to the above search requirement, our scheme also needs to
satisfy the user’s requirements for adding, deleting, and modifying documents. Therefore,
we require three additional approaches to the scheme to support the above dynamic update
operations. Since the encrypted index of the scheme is based on the balanced binary tree,
we can implement these update operations by dynamically adding and deleting tree nodes.
Inspired by the methods given in [8,9], the three dynamic update methods on F-SSE-RS are
as follows.

- Deletion: When DO wants to delete the document f from the index, DO first deter-
mines which tree in the index f exists in. Then, DO locates the position information
about the leaf node of f in that index tree. Finally, DO sends the location informa-
tion to CS, which can null the node based on the location information to achieve the
deletion operation.

- Addition: When DO wants to add a document f to the index, DO first transforms f ’s
keywords into a TF vector using the keyword conversion method and constructs a
leaf node about f with its TF vector. Subsequently, using the TF vector, DO finds the
index tree whose root node is the most semantic similar to f in the index, and locates
a leaf node marked as invalid in that tree. Then, DO replaces this invalid node with a
leaf node of f and updates the vector of all internal nodes on the path from the root of
the tree to this leaf node. Finally, DO encrypts all the changed nodes and sends them
to CS together with their corresponding position information. When CS receives these
nodes, CS replaces the relevant nodes based on the position information to implement
the insertion operation. In addition, if there are no leaf nodes marked as invalid in
the index tree, DO can add multiple invalid nodes to the index tree and update the
index tree. After that, DO encrypts the modified tree nodes and sends their location
information to CS. According to this location information, CS updates the index tree
to realize the file addition operation.

- Modification: If DO wants to modify a file, then DO first locates the leaf node cor-
responding to that file and replaces the semantic vector for the leaf node with the
newer vector. Then, DO updates all the nodes on the path from the root of the tree to
that leaf node based on the modified vector of the leaf node. Finally, DO encrypts the
contents of all nodes to be changed and sends their location information together to
CS. When CS receives these nodes, it replaces the old nodes according to the location
information to perform the update operation.

Note that the above dynamic operations all require that DO has a plaintext index
stored locally. The advantage of this is that by updating the plaintext index locally, DO can
obtain the information about the location and content of index updates faster. In addition,
during the update process, DO encrypts the content information to be updated in the
index and sends the corresponding location information to CS in plaintext, so that CS can

Symmetry 2022, 14, 1029 12 of 18

finish modifying the index without understanding the updated content. Although the
local storage method has additional space overhead, it improves the update efficiency and
security of the scheme.

4.3. Security Analysis

In this subsection, we analyze the security of the proposed F-SSE-RS scheme based on
the privacy requirements introduced in Section 2.3.

- Document and index privacy: In the F-SSE-RS scheme, the confidentiality of the document
content is guaranteed by a traditional symmetric secret key encryption scheme, such as
AES. The index in the F-SSE-RS scheme is a combination of multiple index trees, and
the content of each node in the index tree is cryptographically protected using the ASPE
scheme. Because AES and ASPE are provably secure under known ciphertext models,
the plaintext contents hidden in the documents and indices cannot be inferred by an
attacker. So, we argue that the privacy of documents and indices is protected well.

- Trapdoor unlinkability: The trapdoor-generation algorithm of the proposed scheme
is probabilistic, which is manifested in the following two aspects. (1) The semantic
vector

−→
Q of the query Q is enlarged into an extension vector

−→
QE before generating

the trapdoor, and even the same two queries can be enlarged into different extension
vectors; (2) in the “ TrapdoorGen” algorithm, the query vector

−→
QE is partitioned into

two parts randomly. Based on the above two points, we can conclude that the same
two queries can be encrypted into different trapdoors, so the proposed scheme can
satisfy the requirement of trapdoor unlinkability.

- Keyword privacy: Under the known ciphertext model, the attacker cannot infer the key-
word information from the index and trapdoor since the F-SSE-RS scheme utilizes the
ASPE scheme to encrypt the index and trapdoor. However, in the known background
model, CS can use the document–word frequency to perform statistical attacks and
then infer the keywords embedded in the index and trapdoors. For the statistical
attack in the known background model, our scheme extends the keyword vectors
−→u and

−→
Q in the index and trapdoor into −→uE and

−→
QE, respectively. Specifically, for

each extended dimension of −→uE, the scheme randomly selects a number εi, while for
each extended dimension of

−→
QE, the scheme randomly selects a number 0 or 1. This

approach allows the query results to be masked by the randomness of ∑ εi. Since the
number of extended dimensions is L, the probability that two ∑ εi have the same value
is only 1

2L . Therefore, when L increases, the query results will be more influenced by
∑ εi, bringing the result that the privacy of keywords increases but the search accuracy
decreases. Therefore, by adjusting L, we can make a tradeoff between precision and
privacy in practical applications. The analysis of the tradeoff between precision and
privacy can be found in [8].

5. Performance Evaluation

In this section, we evaluate the proposed F-SSE-RS scheme theoretically and experi-
mentally and give a detailed experiment to quantify the space–time efficiency of the scheme.
We implemented the proposed scheme in Python and tested it on a real dataset, i.e., Enron
e-mail datasets [28]. In addition, our experimental runtime environment includes an In-
tel(R) Core(TM) i7 CPU whose frequency is 2.90 GHz and 16 GB of RAM. To illustrate the
advantages of the proposed scheme, we compare it with two similar previous schemes in
terms of the time complexity of index construction, trapdoor generation and searching, and
the space complexity of indexes and trapdoors. For convenience, we denote the schemes
proposed in [8,9] as Xia16 and Guo19, respectively. In addition, we also conduct experi-
ments on the accuracy of these schemes to demonstrate the merits of the proposed schemes
more comprehensively.

Symmetry 2022, 14, 1029 13 of 18

5.1. Efficiency of Index Building

In the index-building phase, the proposed scheme splits d documents into k document
clusters, each of which contains nearly d/k documents on average. For each document
cluster, we construct an index tree that contains 2d/k nodes. Since each node contains
a TF vector of length N + L, the time cost of encrypting a node is O(d(N + L)2), where
the encryption operation mainly considers two multiplication operations between the
(N + L)× (N + L)-invertible matrix and the N + L-dimensional TF vector. Considering
that the k index trees contain a total of 2d tree nodes, it can be deduced that the index
building time of the proposed scheme is O(d(N + L)2). Moreover, since the index of the
proposed scheme contains a total of 2D nodes and each node contains a TF vector of length
N + L, the index storage consumption of the proposed scheme is O(d(N + L)). For Xia16,
since its index also contains 2D tree nodes, the index building time of Xia16 is O(d(N + L)2)
and the storage space is also O(d(N + L)). For Guo19, its leaf nodes are constructed in the
same way as Xia16, but the vectors of the internal nodes of its index tree are compressed
using the bloom filter technique. Thus, its index building time is O(d(N + L)2) +O(d(α)2),
where α is the length of the bloom filter and α << N. Because the index of Guo19 contains
two different storage methods, the storage space of its scheme is O(d(N + L)) + O(dα).
Since the index of Guo19 exists in two different vector forms, the storage space of its scheme
is O(d(N + L)) + O(dα).

As shown in Figures 4 and 5, the index building time of Xia16, Guo19, and F-SSE-RS
schemes are all squared with N (Figure 4) and linear with d (Figure 5). Specifically, when
d = 1000 and N = 10,000, the index building times for Xia16, Guo19, and the proposed
scheme are 886 s, 444 s, and 902 s, respectively. It is observed that the index generation time
for Guo19 is half of that for Xia16 and the proposed scheme. The reason why the index
building time of Guo19 is smaller than the other two schemes is that the vector dimension
of its internal node is shorter. In additional, the index building time of the proposed scheme
is slightly longer than that of Xia16. The reason that the index building time of the proposed
scheme is longer than that of Xia16 is that our scheme has one more step of clustering
operation. All the above experimental results are consistent with the theoretical analysis.

5.2. Efficiency of Trapdoor Generation

In the trapdoor-generation phase, the proposed scheme first converts the query Q into
an IDF vector of dimension N + L, and then encrypts this vector using the ASPE scheme.
Therefore, the trapdoor generation time of the proposed scheme is O((N + L)2). For Xia16,
its trapdoor generation method is the same as our scheme, so the trapdoor generation time
of Xia16 is also O((N + L)2). According to the above analysis, it is clear that the trapdoor
storage costs of both the proposed scheme and xia16 are O(N + L). For Guo19, since the
internal nodes and leaf nodes are constructed by using the bloom filter vector and TF
vector, respectively, its trapdoor can be seen as a binary tuple (BFQ, TFQ), where BFQ and
TFQ are used to query the internal nodes and leaf nodes, respectively. Based on the above
analysis, the trapdoor generation time of Guo19 is O(N + L) + O(α), and the trapdoor
storage consumption is also O(N + L) + O(α).

As shown in Figure 4, the index generation time of Xia16, Guo19, and F-SSE-RS
schemes are all squared with N. In particular, when d = 1000 and N = 10,000, the trapdoor
generation times for Xia16, Guo19, and the proposed scheme are 440 ms, 455 ms, and
438 ms, respectively. It can be seen that the trapdoor generation time of Guo19 is more than
the other two schemes. The trapdoor generation time of Guo19 is larger than the other
two schemes since it has to encrypt two vectors, one for querying internal nodes and one
for querying leaf nodes. Besides, the trapdoor generation time of Xia16 is the same as the
trapdoor generation time of F-SSE-RS. All the above experimental results are consistent
with the theoretical analysis.

Symmetry 2022, 14, 1029 14 of 18

2000 4000 6000 8000 10,000

0
50

10
0

15
0

20
0

a

of keywords

tim
e

co
st

 o
f s

et
up

 (1
03
m
s)

Scheme Name
Xia16
Guo19
OURS

2000 4000 6000 8000 10,000

0
20
0

40
0

60
0

80
0

b

of keywords

tim
e

co
st

 o
f i

nd
ex

 b
ui

ld
in

g
(1
03
m
s)

2000 4000 6000 8000 10,000

0
10
0

20
0

30
0

40
0

50
0

c

of keywords

tim
e

co
st

 o
f t

ra
pd

oo
r g

en
er

at
io

n
(m
s)

2000 4000 6000 8000 10,000

0
50

15
0

25
0

d

of keywords

tim
e

co
st

 o
f s

ea
rc

h
(m
s)

Figure 4. Impact of N on the time cost of setup (a), index building (b), trapdoor generation (c) and
search (d) (N = {2000; 4000; 6000; 8000; 10,000}; d = 1000; k = 5).

200 400 600 800 1000

0
20
0

40
0

60
0

80
0

10
00

a

of documents

tim
e

co
st

 o
f i

nd
ex

 b
ui

ld
in

g
(1
03
m
s)

Scheme Name
Xia16
Guo19
OURS

200 400 600 800 1000

0
50

10
0

15
0

20
0

25
0

30
0

b

of documents

tim
e

co
st

 o
f s

ea
rc

h
(m
s)

Figure 5. Impact of d on the time cost of index building (a) and search (b) (d = {200; 400; 600; 800;
1000}; N = 10,000; k = 5).

Symmetry 2022, 14, 1029 15 of 18

5.3. Efficiency of Search

In the search phase, because the index of the proposed scheme contains k index
trees and the height of each index tree is log2d/k, the search time of each index tree is
O(log2d/k(N + L)), where N + L is the length of the vector contained in the internal node.
In addition, when the search operation reaches the leaf nodes, the similarity calculation
will be performed. The time consumption of similarity calculation for each index tree is
O(N + L) since the dimension of the TF−vector is N + L. Based on the above analysis,
assuming that we select t most relevant index trees for querying, the search time of the
proposed scheme is O(tlog2d/k(N + L)) + O(N + L). For Xia16, it has to search the index
tree with height log2d. Its query time is O(log2d(N + L)) +O(N + L). For Guo19, its query
time is O(log2dα) + O(N + L) since the vector length of the internal node is α.

As shown in Figures 4 and 5, the query times of the Xia16, Guo19, and F-SSE-RS
schemes are linear with N and sublinear with d. Concretely, when d = 1000 and N = 10,000,
the search times for Xia16, Guo 19, and F-SSE-RS are 98 ms, 162 ms, and 193 ms, respectively.
Based on the experiment result, the search time for the proposed scheme is two-thirds
of that for Guo19 and half of that for Xia16. The proposed scheme has the highest query
efficiency due to the lower depth of the index tree and the smaller number of queried nodes,
which is consistent with the theoretical analysis.

5.4. Accuracy

Our scheme selects only a few of the most relevant index trees for querying, which
will affect the accuracy of the search results. To quantify this impact, we use the “precision
definition” proposed in [7] to measure the impact of accuracy. The “precision definition” is
depicted as p = θ/θ′, where θ′ is the number of real top-θ files returned by CS. For clarity,
we design an experiment to test the relationship between search time and query accuracy of
F-SSE-RS. Concretely, we construct an index consisting of 5 index trees and select the most
relevant t index trees for querying, where t ∈ {1, 2, 3, 4, 5}. Figure 6 shows the comparison
results among the proposed scheme, Guo19, and Xia16. From Figure 6, we can find that the
query accuracy of F-SSE-RS is decreasing as t reduces, but the search time is also decreasing
substantially. Specifically, for every loss of approximately 10% query accuracy, there is a
reduction of approximately 20% search time. In summary, according to Figure 6, compared
with Xia16, F-SSE-RS improves search efficiency while not compromising query accuracy
as much as possible. Compared to Guo19, the proposed scheme guarantees similar query
accuracy while using less search time.

94

151

217

270
290

182

219

0

50

100

150

200

250

300

t=1 t=2 t=3 t=4 t=5 Guo19 Xia16

Se
ar
ch

Ti
m
e
(m

s)

Scheme Name

64

85

95 98 100

82

100

0

10

20

30

40

50

60

70

80

90

100

t=1 t=2 t=3 t=4 t=5 Guo19 Xia16

Q
ue
ry
Ac
cu
ry
ac
y
(%
)

Scheme Name

Figure 6. Impact of t on the search time and query accuracy (t = {1, 2, 3, 4, 5}; d = 1000; N = 10,000;
k = 5).

5.5. Discussion

Based on the above theoretical analysis and experimental results, we can find that
the proposed scheme has good flexibility compared to Xia16. Specifically, we can adjust
the value of t to make a certain compromise between query accuracy and search time.
Furthermore, compared with Guo19, our scheme has better query accuracy and search
time, except for the longer index-building time. In real-time applications, users generally
care more about search time and query accuracy, so our scheme will be more practical.

Symmetry 2022, 14, 1029 16 of 18

In addition, the index of the proposed scheme consists of multiple index trees, so
we can accelerate the query process using parallel computing methods. Whenever DU
performs a keyword search, DU sends a query trapdoor to CS. Then, CS will utilize the
trapdoor to execute the search operation on multiple index trees in parallel. Each task
independently performs a keyword search and adds the results to the final result set.
Finally, CS returns the result set to DU. By adopting this method, the search efficiency can
be significantly improved. Since the cloud platform has powerful computing power, we
believe that the parallel strategy is very suitable for the proposed scheme.

The proposed scheme can be applied to cloud-based communication systems, such as
wireless IoT systems [29], E-Healthcare systems [30], and personalized search systems [2].
Taking the personalized search system as an example, the users can use their terminal
devices to send their encrypted query information to the cloud, and the cloud server can
find the points of interest near the users and related to their queries through secure retrieval
and mark them on their cloud devices. This kind of application is characterized by the
real-time nature of user queries, and the fast query capability of this solution can better
serve such users. In addition, the present solution has good flexibility between real-time
use and accuracy. Specifically, the user can dynamically adjust the parameter t and can
choose whether real-time use or accuracy is the priority. This customization setting can
allow users to have a superior query experience.

6. Conclusions

In this paper, we utilize a clustering algorithm to divide the document set into multiple
document clusters and index each document cluster using a binary balanced tree. When a
keyword query is performed, the search algorithm retrieves only the index tree that is most
semantically related to the query keyword, which effectively improves the query efficiency.
By adopting an ASPE scheme to encrypt the index and query, we propose an F-SSE-RS
scheme. This scheme can support ranked search on encrypted data and is secure under the
known background model.

Furthermore, we give a detailed theoretical and experimental analysis. This analysis
indicates that the query efficiency of the proposed scheme is sublinearly with the number
of documents. In addition, our scheme has better query efficiency without compromising
too much query accuracy and has better flexibility than other typical similar schemes. Thus,
we believe that the proposed scheme has high practicality. Although this paper improves
the query efficiency by eliminating some irrelevant documents through clustering methods,
it still loses some query precision. Therefore, the future work of this paper is to further
improve query accuracy while ensuring query efficiency. In addition, the proposed scheme
currently supports only textual queries, while many existing cloud-based applications
need to support both spatial and textual queries. Therefore, another extension work of this
paper is to construct efficient searchable symmetric encryption schemes supporting spatial
data queries.

Author Contributions: Conceptualization, W.H. and Y.Z.; data curation, Y.Z. and Y.L.; formal analy-
sis, W.H. and Y.Z.; funding acquisition, W.H. and Y.Z.; methodology, W.H. and Y.Z.; software, Y.Z.;
validation, W.H. and Y.Z.; writing—original draft preparation, W.H. and Y.Z.; writing—review &
editing, W.H. and Y.L. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 61972090, 31872704), by Natural Science Foundation of Henan (Grant No. 202300410339), and by
the Science and Technology Project of Henan Province (Grant No. 212102310993).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study is available from
the website, “URL: http://www.cs.cmu.edu/~./enron/” (accessed on 19 April 2022).

Conflicts of Interest: The authors declare no conflict of interest.

http://www.cs.cmu.edu/~./enron/

Symmetry 2022, 14, 1029 17 of 18

Abbreviations
The following abbreviations are used in this manuscript:

SE Searchable encryption.
ASPE Asymmetric scalar-product-preserving encryption.
SSE Searchable symmetric key encryption.
SPE Searchable public key encryption.
TF-IDF Term frequency-inverse document frequency.
PEKS encryption with keyword search.
DO Data owner.
DU Data user.
CS Cloud server.

References
1. Song, D.; Wagner, D.; Perrig, A. Practical techniques for searching on encrypted data. In Proceedings of the IEEE Symposium on

Research in Security and Privacy, Berkeley, CA, USA, 14–17 May 2000 ; pp. 44–55.
2. Fu, Z.; Ren, K.; Shu, J.; Sun, X.; Huang, F. Enabling personalized search over encrypted outsourced data with efficiency

improvement. IEEE Trans. Parallel Distrib. Syst. 2015, 27, 2546–2559. [CrossRef]
3. Sun, W.; Liu, X.; Lou, W.; Hou, Y.T.; Li, H. Catch you if you lie to me: Efficient verifiable conjunctive keyword search over large

dynamic encrypted cloud data. In Proceedings of the 2015 IEEE Conference on Computer Communications (INFOCOM), Hong
Kong, China, 26 April–1 May 2015; pp. 2110–2118.

4. Boneh, D.; Di Crescenzo, G.; Ostrovsky, R.; Persiano, G. Public key encryption with keyword search. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic Techniques, Interlaken, Switzerland, 2–6 May 2004;
pp. 506–522.

5. Zhang, Y.; Li, Y.; Wang, Y. Secure and Efficient Searchable Public Key Encryption for Resource Constrained Environment Based
on Pairings under Prime Order Group. Secur. Commun. Netw. 2019, 2019, 1–14. [CrossRef]

6. Miao, Y.; Tong, Q.; Deng, R.; Choo, K.K.R.; Liu, X.; Li, H. Verifiable searchable encryption framework against insider keyword-
guessing attack in cloud storage. IEEE Trans. Cloud Comput. 2020, 1–14. [CrossRef]

7. Cao, N.; Wang, C.; Li, M.; Ren, K.; Lou, W. Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE
Trans. Parallel Distrib. Syst. 2013, 25, 222–233. [CrossRef]

8. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A Secure and Dynamic Multi-Keyword Ranked Search Scheme over Encrypted Cloud Data.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352. [CrossRef]

9. Guo, C.; Zhuang, R.; Chang, C.C.; Yuan, Q. Dynamic multi-keyword ranked search based on bloom filter over encrypted cloud
data. IEEE Access 2019, 7, 35826–35837. [CrossRef]

10. Wong, W.K.; Cheung, D.W.; Kao, B.; Mamoulis, N. Secure kNN computation on encrypted databases. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, Providence, RI, USA, 29 June–2 July 2009; pp. 139–152.

11. Goh, E.J. Secure indexes. IACR Cryptol. EPrint Arch. 2003, 2003, 216.
12. Wang, B.; Li, M.; Wang, H. Geometric range search on encrypted spatial data. IEEE Trans. Inf. Forensics Secur. 2015, 11, 704–719.

[CrossRef]
13. Xu, G.; Li, H.; Dai, Y.; Yang, K.; Lin, X. Enabling efficient and geometric range query with access control over encrypted spatial

data. IEEE Trans. Inf. Forensics Secur. 2018, 14, 870–885. [CrossRef]
14. Fu, Z.; Wu, X.; Guan, C.; Sun, X.; Ren, K. Toward Efficient Multi-Keyword Fuzzy Search Over Encrypted Outsourced Data With

Accuracy Improvement. IEEE Trans. Inf. Forensics Secur. 2017, 11, 2706–2716. [CrossRef]
15. Kuzu, M.; Islam, M.S.; Kantarcioglu, M. Efficient similarity search over encrypted data. In Proceedings of the 2012 IEEE 28th

International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 1156–1167.
16. Zhang, Y.; Li, Y.; Wang, Y. Efficient Searchable Symmetric Encryption Supporting Dynamic Multikeyword Ranked Search. Secur.

Commun. Netw. 2020, 2020, 1–16. [CrossRef]
17. Wang, C.; Cao, N.; Ren, K.; Lou, W. Enabling Secure and Efficient Ranked Keyword Search over Outsourced Cloud Data. IEEE

Trans. Parallel Distrib. Syst. 2012, 23, 1467–1479. [CrossRef]
18. Shao, J.; Lu, R.; Guan, Y.; Wei, G. Achieve Efficient and Verifiable Conjunctive and Fuzzy Queries over Encrypted Data in Cloud.

IEEE Trans. Serv. Comput. 2020, 15, 124–137. [CrossRef]
19. Wang, X.; Ma, J.; Liu, X.; Deng, R.H.; Miao, Y.; Zhu, D.; Ma, Z. Search me in the dark: Privacy-preserving boolean range query over

encrypted spatial data. In Proceedings of the IEEE INFOCOM 2020-IEEE Conference on Computer Communications, Toronto,
ON, Canada, 6–9 July 2020; pp. 2253–2262.

20. Guo, C.; Chen, X.; Jie, Y.; Fu, Z.; Li, M.; Feng, B. Dynamic multi-phrase ranked search over encrypted data with symmetric
searchable encryption. IEEE Trans. Serv. Comput. 2020, 13, 1034–1044. [CrossRef]

21. Park, D.J.; Kim, K.; Lee, P.J. Public key encryption with conjunctive field keyword search. In Proceedings of the International
Workshop on Information Security Applications, Jeju Island, Korea, 23–25 August 2004; pp. 73–86.

http://doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1155/2019/5280806
http://dx.doi.org/10.1109/TCC.2020.2989296
http://dx.doi.org/10.1109/TPDS.2013.45
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1109/ACCESS.2019.2904763
http://dx.doi.org/10.1109/TIFS.2015.2506145
http://dx.doi.org/10.1109/TIFS.2018.2868162
http://dx.doi.org/10.1109/TIFS.2016.2596138
http://dx.doi.org/10.1155/2020/7298518
http://dx.doi.org/10.1109/TPDS.2011.282
http://dx.doi.org/10.1109/TSC.2019.2924372
http://dx.doi.org/10.1109/TSC.2017.2768045

Symmetry 2022, 14, 1029 18 of 18

22. Katz, J.; Sahai, A.; Waters, B. Predicate encryption supporting disjunctions, polynomial equations, and inner products. In
Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, Istanbul,
Turkey, 13–17 April 2008; pp. 146–162.

23. Xu, P.; Tang, S.; Xu, P.; Wu, Q.; Hu, H.; Susilo, W. Practical multi-keyword and boolean search over encrypted e-mail in cloud
server. IEEE Trans. Serv. Comput. 2019, 14, 1877–1889. [CrossRef]

24. Miao, Y.; Liu, X.; Choo, K.K.R.; Deng, R.H.; Li, J.; Li, H.; Ma, J. Privacy-preserving attribute-based keyword search in shared
multi-owner setting. IEEE Trans. Dependable Secur. Comput. 2021, 18, 1080–1094. [CrossRef]

25. Xu, P.; He, S.; Wang, W.; Susilo, W.; Jin, H. Lightweight searchable public-key encryption for cloud-assisted wireless sensor
networks. IEEE Trans. Ind. Inform. 2017, 14, 3712–3723. [CrossRef]

26. Zhang, Y.; Wang, Y.; Li, Y. Searchable Public Key Encryption Supporting Semantic Multi-Keywords Search. IEEE Access 2019, 7,
122078–122090. [CrossRef]

27. Dhandabani, R.; Periyasamy, S.S.; Padma, T.; Sangaiah, A.K. Six-face cubical key encryption and decryption based on product
cipher using hybridisation and Rubik’s cubes. IET Netw. 2018, 7, 313–320. [CrossRef]

28. Cohen, W.W. Enron E-Mail Dataset. Available online: Http://www.cs.cmu.edu/~./enron/ (accessed on 19 April 2022).
29. Sangaiah, A.K.; Javadpour, A.; Ja’fari, F.; Pinto, P.; Ahmadi, H.; Zhang, W. CL-MLSP: The design of detection mechanism for

sinkhole attacks in smart cities. Microprocess. Microsyst. 2022, 90, 104504. [CrossRef]
30. Zhang, J.; Liang, X.; Zhou, F.; Li, B.; Li, Y. TYLER, a fast method that accurately predicts cyclin-dependent proteins by using

computation-based motifs and sequence-derived features. Math. Biosci. Eng. 2021, 18, 6410–6429. [PubMed]

http://dx.doi.org/10.1109/TSC.2019.2903502
http://dx.doi.org/10.1109/TDSC.2019.2897675
http://dx.doi.org/10.1109/TII.2017.2784395
http://dx.doi.org/10.1109/ACCESS.2019.2937846
http://dx.doi.org/10.1049/iet-net.2017.0196
Http://www.cs.cmu.edu/~./enron/
http://dx.doi.org/10.1016/j.micpro.2022.104504
http://www.ncbi.nlm.nih.gov/pubmed/34517538

	Introduction
	Problem Formulation
	System Model
	Threat Model
	Design Goals

	Methods for Index Building and Searching
	Keyword Conversion Method
	Approach for Index Building
	Dataset Division Method
	Method for Building the Plaintext Index

	Approach for Index Search

	Proposed Scheme
	Construction of F-SSE-RS
	Dynamic Update Operations
	Security Analysis

	Performance Evaluation
	Efficiency of Index Building
	Efficiency of Trapdoor Generation
	Efficiency of Search
	Accuracy
	Discussion

	Conclusions
	References

