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Abstract: As a key step to endow the neural network with nonlinear factors, the activation function
is crucial to the performance of the network. This paper proposes an Efficient Asymmetric Nonlinear
Activation Function (EANAF) for deep neural networks. Compared with existing activation functions,
the proposed EANAF requires less computational effort, and it is self-regularized, asymmetric and
non-monotonic. These desired characteristics facilitate the outstanding performance of the proposed
EANAF. To demonstrate the effectiveness of this function in the field of object detection, the proposed
activation function is compared with several state-of-the-art activation functions on the typical
backbone networks such as ResNet and DSPDarkNet. The experimental results demonstrate the
superior performance of the proposed EANAF.

Keywords: the neural network; the activation function; asymmetry; self-regular; non-monotonic;
backbone network

1. Introduction

Deep neural networks have been widely used in many applications, e.g., handwritten
digit recognition [1], style transfer [2], speech recognition [3], etc. As one of the most
fundamental but important building blocks, the activation function plays an important role
for deep neural network models [4].

One illustrative example is shown in Figure 1. Each neuron in the neural network
generates a weighted summation of the outputs of previous neurons. The weighted
summation is then added with the offset as defined in Equation (1), where xi is the input
from the i-th neuron of the previous layer, wi is the corresponding weight, and b is the bias.
Then, a non-linear activation function, e.g., the Sigmoid function [5] defined in Equation (2),
is often applied to derive the output of this neuron. This output value will be then used
as the input of the next layer. The quality of the activation function will determine the
performance of the neural network.

f (x) = ∑m
i=1 wixi + b (1)

g(x) = Sigmoid(x) =
1

1 + e−x (2)

The most commonly used activation functions are discussed in [6]. And a possible
taxonomy is proposed to separate the trainable activation functions into two main cate-
gories: fixed shape and trainable shape. The authors of [7] evaluated the commonly used
additive functions, such as Swish, Rectified Linear Unit (ReLU) and Sigmoid. The particular
formula application recommendations of the activation functions are summarized based
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on their properties. The authors of [8] proposed a technique for automatically designing
novel, high-performing, parametric activation functions, PANGAEA, with the ability to
discover general activation functions that perform well across architectures, and specialized
functions that take advantage of a particular architecture.
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In this work, we propose an Efficient Asymmetric Nonlinear Activation Function
(EANAF) that combines the characteristics that activation functions should have, which
are smoothness, asymmetry, soft saturation on the left, non-saturation on the right, non-
monotonicity and self-regularization. As shown later in Section 3, by integrating these
four desired characteristics into one activation function, the proposed EANAF could better
capture the characteristics of input features and hence boost the classification performance
of deep neural network.

To evaluate the proposed EANAF, we integrate it with several state-of-the-art deep
convolutional neural networks for object detection, e.g., the ResNet [9], the backbone of
RetinaNet [10], and the CSPDarkNet [11], the backbone of YOLO v4 [11]. We compared
it with several state-of-the-art activation functions for object detection tasks on the large
benchmark dataset, MS COCO [12]. The proposed EANAF consistently and significantly
outperforms all the compared activation functions.

2. Related Work

Many activation functions have been developed in literature. Among them, the
Sigmoid function [5], Tanh function [13] and Softsign function [14] were the first to be
widely used. These functions are smooth and centrosymmetric. However, they suffer
from vanishing gradients and monotonicity, which may lead to poor efficiency for deep
convolutional neural networks. Subsequently, researchers developed the piecewise function
ReLU [15,16], which has a strong generalization ability with fast convergence. However, it
still has the problem of vanishing gradients. The ReLU6 function is a variant of the ReLU
function with a restricted maximum value [17]. It remains as a piecewise linear function
and has the advantage of less computational cost and the disadvantage of non-smoothness.
This function was originally proposed in the MobileNet v1 network. Its main application
scenario is the mobile platform under low-precision situations. It is shown that ReLU6
function could help improve neural networks’ numerical resolution [17].

Some existing work tries to assign the negative part of ReLU to a function with a non-
zero slope, such as the Leaky Rectified Linear Unit (LeakyReLU) function [18], in which
the concept of “learning rate” is designed to solve the problem when the weights cannot
be updated. The key idea of the ReLU function and its variants could be summarized
as finding a suitable “learning rate” during the network training phase. The essence of
this operation is to multiply the linear function in the negative direction of x with a non-
zero slope. The “learning rate” in the LeakyReLU function is manually assigned by prior
knowledge. Similarly, the “learning rate” in Parametric Rectified Linear Unit (PreLU) [19]
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is changed according to the training data, but the learning rate in the Randomized Rectified
Linear Unit (RReLU) function [20] is a value randomly generated by Gaussian distribution
during the network training process. This value is averaged in the test phase as the new
“learning rate” [20]. This function solves the problem of vanishing gradients in the negative
direction, but it still has the problem of non-smoothness. The authors of [21] proposed
a new activation function named the Parametric Rectified Nonlinear Unit (PRenu). This
function is similar to ReLU. It solves the problem of vanishing gradients in the positive
direction, but still has the problem of non-smooth and monotonicity.

To tackle the non-smoothness problem, many approaches have been developed. One
of them is to combine the ReLU function and the Sigmoid function [5] to obtain the
Exponential Linear Unit (ELU) function [22]. Numerous variants of the ELU function have
been developed. ELU’s variants are optimized in terms of independent variables and
function parameters. For example, the Continuously Differentiable Exponential Linear Unit
(CELU) function [23] replaces the x argument in the ELU function with x/a. To increase the
convergence speed, the SELU function [24] is multiplied to the function value of the ELU
function by the standardized parameter scale. The Gaussian Error Linear Unit, GELU [25],
developed in 2016, breaks through the traditional way to optimize the activation function,
i.e., to improve the ReLU function, people could also resort to improving the generalization
ability. Common techniques include the dropout and the zone-out. The GELU function
is equivalent to a combination of the ReLU, the dropout and the zone-out. Both ReLU
and dropout would return the output of a neuron by zero. The difference is that ReLU
would deterministically multiply the input by zero or one, while the dropout randomly
multiplies the input by zero. The GELU function is asymmetric, which has been mostly
used in the transformer model in recent years. In 2019, a symmetrical GELU function,
Scaled Exponential Linear Unit (SGELU) [26] was developed. This function incorporates
symmetry into GELU. As a result, the SGELU function not only has the advantages of
the GELU function but also has the property of bi-directional convergence. The GELU
function is a piecewise function. The softplus function [27] is combined with an exponential
logarithmic function to obtain a continuous function expression. This idea retains the
advantage of non-saturation on the right side of the function. By combining the logarithmic
function to reduce the gradient, the problem of overfitting can be minimized.

More recently, Prajit Ramachandran et al. [28] developed an activation function called
Searching for Activation Functions (Swish) based on the Sigmoid function [5]. The function
is demonstrated to have a high degree of fitness. To further improve the fitness, Digita Misra
et al. [29] developed the Mish activation function based on the Tanh function [13]. They
claimed that this function can achieve a better fitness compared with the Swish function.
However, the Mish function is computationally intensive. Andrew Howard et al. [30]
developed the h-swish function in the lightweight neural network MobileNet V2. This
function comes with less computational effort than the Swish function. However, h-swish
function is not smooth, which may result in a poor classification performance.

3. Proposed EANAF
3.1. Formulation

To tackle the challenges of existing activation functions, we develop an Efficient
Asymmetric Non-linear Activation Function (EANAF). The proposed EANAF is computa-
tionally efficient and preserves the contribution to accuracy in the target detection domain.
Mathematically, it is defined as the following:

EANAF(x) = x ∗ g(h(x)) (3)

where h(x) = log(1 + ex) is the Softplus function, and g(x) = tanh(x/2) = ex/2−e−x/2

ex/2+e−x/2 = ex−1
ex+1

is the tanh function. The proposed EANAF function can be further simplified as,

EANAF(x) =
xex

ex + 2
(4)
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We can see that the proposed EANAF looks like a combination of several activation
functions, e.g., Softplus [27], tanh [13] and Swish function [28]. Indeed, the proposed
EANAF inherits the advantages of these activation functions. In terms of mathematical
properties, EANAF is similar to Swish, with approximately the same amount of compu-
tation. But EANAF has better fitness and contributes more to the network in terms of
training efficiency compared with Swish. Figure 2 illustrates the EANAF function, the
ReLU function and the Swish function with the corresponding first-order derivative curves.
Although these three functions look similar at the first glance in Figure 2a, the proposed
EANAF produces a larger response for the first-order derivative as shown in Figure 2b.
Intuitively, the proposed EANAF could better handle the problem of gradient vanishing.
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Compared with typical activation functions in recent years, the proposed EANAF
has the desired characteristics of excellent activation functions such as smoothness, asym-
metry, soft saturation on the left, non-saturation on the right, non-monotonicity and self-
regularization. In the next subsection, these desired properties will be illustrated in detail,
along with how they may help the proposed EANAF achieve better performance.

3.2. Analysis of Proposed EANAF
3.2.1. Smoothness

A function is smooth if it is continuously derivable of infinite order in its domain.
The smoothness property can bring many advantages to an activation function. Firstly,
smoothness can ensure that there is no step change in the activated value of the activation
function, which could help convergence. Secondly, the smooth function is often nonlinear,
and it could fit better to complex patterns. Most importantly, the smooth function ensures
that the function can be continuously derived, which facilitates the calculation and update
of the gradient. Finally, smoothness can help specify more flexible gradient update rules
to speed up model training. In literature, the Sigmoid function [5], Tanh function [13],
Softsign function [14], ELU function [22], Softplus function [27] and Swish function [28]
are all smooth functions. The ReLU function [15,16], ReLU6 function [17], LeakyReLU
function [18] and h-swish function are all non-smooth functions.

The proposed EANAF has a smoothness property. It can be continuously differentiable,
and its first-order derivative is shown in Equation (4).

EANAF(x)′ =
(ex)2 + 2(x + 1)ex

(ex + 2)2 (5)
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3.2.2. Asymmetry

A function is asymmetric if it is neither odd nor even symmetric. The asymmetric
activation function has the advantage of soft saturation on the left and unsaturation on the
right, which can help separate positive and negative samples more effectively [5]. If an
activation function is a symmetric function, the function is either an odd function or an
even function, i.e., f(−x) = −f(x) or f(−x) = f(x). Such a function would cause the weights in
the neural network to be updated in only one direction. The activation function also needs
soft saturation on the left side to improve robustness. Therefore, most activation functions
are designed to be almost symmetric near the origin, but not completely centrosymmetric.
For example, the Sigmoid function [5], Tanh function [13] and softsign function [14] are all
centrosymmetric functions. The ReLU function [15,16] and its variants [17,18,22,25], ELU
function [22], GELU function [25], Softplus function [27], Swish function [28] and h-swish
function [30] are all asymmetric functions.

The non-centrosymmetric EANAF is reflected by the soft saturation on the negative
interval of x and thus contributes more to the robustness of the neural network. This
feature can help the neural network with the EANAF separate positive and negative
samples more effectively.

3.2.3. Unsaturation

If an activation function f(x) satisfies lim
n→+∞

h′(x) = 0, we call it a right saturation func-

tion. In contrast, when an activation function f(x) satisfies lim
n→−∞

h′(x) = 0, we call it a left

saturation function. In particular, when an activation function f(x) satisfies lim
n→+∞

h′(x)→ 0 ,

we call it the right-hand soft saturation function and if an activation function f(x) satisfies
lim

n→−∞
h′(x)→ 0 , we call it the left-side soft saturation function. A function is a saturated

function if it is both right-saturated and left-saturated. And a function is an unsaturated
function if it is unsaturated on both sides, or one side is unsaturated.

Since the unsaturated function does not have a derivative of zero, this type of function
does not have the problem of vanishing gradients during the training phase. The left-side
soft-packet sum will be robust to noise for negative samples. Typical saturation functions
include the Sigmoid function [5], Tanh function [13], ReLU6 function [17], and Softsign
function [14] while typical non-saturating functions include the ReLU function [15,16], ELU
function [22], GELU function [25], Softplus function [27], Swish function [28] and h-swish
function [30].

The EANAF function is a right-hand unsaturated function. It solves the problem of
vanishing gradients during the training stage. At the same time, EANAF also belongs to
the left soft saturation function. Therefore, when extracting features for negative samples,
it is highly robust to noise in the dataset.

3.2.4. Non-Monotonicity and Self-Regularity

The monotonicity of a function is also called the increase or decrease of a function. This
property can qualitatively describe the relationship between the change of a function value
and the change of an independent variable within a specified interval. When the value of the
function increases continuously with the increase in the independent variable or the value
of the function continues to decrease with the increase in the independent variable, we call
the function monotonic. If the independent variable and the function value do not follow
such relationships, we call the function non-monotonic. Meanwhile, the complex variable
function that is differentiable everywhere in the domain is called the regular function.
Functions with non-monotonicity do not have the problem of single directional weights.
Non-monotonicity may increase the expressiveness of the function and hence improve
the gradient flow. This desired property can also provide some robustness to different
initializations and learning rates. The significance of self-regularity for activation functions
is particularly important. Activation functions often face two major problems. One is
underfitting, which is also called high bias. For example, in the case of f (x) = θ0 + θ1x, the
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value of θ0 (bias) is high, and hence the fitness is low. It commonly exists in linear activation
functions. To solve the underfit problem, nonlinear activation functions are developed.
But this may also introduce another type of problem, which is overfit, also known as high
variance. For example, in the case of f (x) = θ0 + θ1x + θ2x2 + θ3x3 + θ4x4 · · · , the function
has a high fitness. But the values of high-order coefficients are sensitive to the noise in the
data. To avoid overfitting, it is often desired to constrain the number of model parameters.
Generally speaking, there are two approaches for addressing the overfitting problem,
artificially reducing the number of variables and regularization. Among them, artificial
reduction of variables may delete some effective variables and result in an unsatisfactory
model. Therefore, the self-regularity of the activation function is favored since it can reduce
the magnitude of feature variables while preserving them. L2-regularization is often used
as shown in Equation (5), where hθ

(
x(i)
)

represents a polynomial with respect to x. It

is used to fit the corresponding true value y(i). m represents the number of fitted terms.
λ ∑n

i=1 θ2
j is the regularization term. λ is the regularization coefficient and it is used to

balance fitting the training objective and keeping the parameter values small.

J(θ) =
1

2m

[
m

∑
i=1

(hθ

(
x(i)
)
− y(i))

2
+ λ

n

∑
i=1

θ2
j

]
(6)

As shown in Figure 2a, the proposed EANAF has the property of non-monotonicity.
The non-monotonicity ensures the non-uniformity of the direction of the network with
EANAF when the weights are updated in the training phase. From Equation (6), it can be
seen that the proposed EANAF is a function that can be differentiated everywhere in its
domain. Therefore, the proposed EANAF has self-regularity, which can help prevent the
overfitting problem.

d(EANAF(x))
dx

=
(ex)2 + 2(x + 1)ex

(ex + 2)2 . (7)

3.3. Discussions

Among them, the ReLU function [15,16] has some desired properties such as being
less computationally intensive. Therefore, the ReLU function [15,16] is often used as the
activation function in many neural networks. But the ReLU function has the problem of
vanishing gradient when the input is negative [28]. Therefore, researchers developed the
Swish function [28] to address this problem. In this work, we use the ReLU [15,16] and
the Swish [28] as two benchmark activation functions for comparisons. We summarize the
characteristics of commonly used activation functions in Table 1. The proposed EANAF
is among the very few that have all the four desired properties: smoothness, asymmetry,
unsaturation and non-monotonicity and self-regularity. Firstly, the proposed EANAF
can be continuously derived. Therefore, there is no step change in the function, which
can guarantee a good convergence during training. Secondly, the proposed EANAF uses
an exponential function combined with a logarithmic function, which has a high fit for
complex problems. The asymmetry of EANAF further helps to separate positive and
negative samples efficiently. Thirdly, because of the non-saturation and non-monotonicity
properties, the proposed EANAF solves the problem of vanishing gradient. Finally, the self-
regularity of EANAF helps alleviate the problem of overfitting. One apparent drawback
of the proposed EANAF is that its computational load is slightly higher than the ReLU
function [15,16]. But it is comparable to the Swish function [28].
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Table 1. The characteristics of common activation functions. Tick means the activation function satisfies certain property while cross means the opposite.

Property ReLU [15,16] LeakyReLU [18] ReLU6 [17] ELU [22] GELU [25] Sigmoid [5] Tanh [13] Softsign [14] Softplus [27] Swish [28] h-Swish [30] EANAF

Smoothness × × × √ √ √ √ √ √ √ × √

Asymmetry
√ √ × √ √ × × × √ √ √ √

Unsaturation
√ √ × √ √ × × × × √ √ √

Non-monotonicity
and self-regularity

√ √ × √ × × × × √ √ √ √
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4. Experimental Results

Comparison experiments were carried out for the target detection on the MS COCO
data set [12], which contains a rich set of object types and object sizes. We adopt the
controlled variable method to conduct the following three sets of experiments. The input
images are all resized to 608 × 608 pixels.

4.1. Experimental Settings

We selected RetinaNet [10] and YOLO-v4 [11] as two representative networks, with
the backbone as ResNet [9] and the CSPDarkNet [11], respectively. More precisely, the
backbone of the RetinaNet [10], ResNet [9], can be further divided into two parts. The
first part consists of the convolution operation, standard layer, activation function and
maximum pooling layer while the second part of the consists of four groups of the “Conv
Block” and the “Identity Block” with different operation times. Figure 3 illustrates the
backbone structure of ResNet (with the activation highlighted).

1 
 

 

Figure 3 Figure 3. The structure diagram of the ResNet [9].

Figure 4 illustrates the structure diagram of CSPDarknet [11] (with the activation
highlighted). It can be further divided into two parts. The first part sequentially performs
convolution processing, normalization processing and activation function processing on the
input image while the second part is composed of five groups of the “Resblock” modules
with different layers. The three-layer output of YOLO v4 [11] is the feature layer processed
by the deep “Resblock” module.
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Figure 4 Figure 4. The structure diagram of the CSPDarknet [11].

We choose ReLU [15,16] and Swish [28] as two benchmark activation functions for
comparison. Compared with the LeakyReLU function [18] and the ReLU6 function [17],
ReLU [15,16] not only has less computation, but also satisfies the right-side non-saturation
and stronger negative sample robustness. Compared with functions such as the ELU
function [22] and GELU [25], the lower computational complexity of ReLU function [15,16]
is a big advantage. The Sigmoid function [5], Tanh function [13] and Softsign function [14]
are not suitable for the convolutional neural networks. The Swish function [28] is cho-
sen because it has all the four desired properties for activation functions, while the non-
smoothness of the h-swish function [30] makes it only suitable for light networks. Figure 5a
shows the validation accuracy of the ReLU function, the Swish function and the proposed
EANAF during the training phase and Figure 5b shows the validation accuracy of the ReLU
function, the Swish function and the proposed EANAF during the testing phase. It can be
easily seen that the proposed EANAF outperforms ReLU and Swish in both training and
testing phases.
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We conducted two sets of comparative experiments. The proposed EANAF is com-
pared with ReLU [15,16] and Swish [28] on the ResNet [9], the backbone of RetinaNet [10],
and the CSPDarknet [11], the backbone of YOLO v4 [11]. The evaluation metric is reflected
by the detection accuracy of the model. In this work, we use mAP, AP50 and AP75 as
our evaluation metrics. mAP represents the mean Average Precision (AP) across all object
classes in MS COCO dataset. The formula for AP is shown in Equation (8), where ri and pi
are the precision and recall at i-th threshold, n is the number of the threshold. Precision is
the fraction of relevant instances among the retrieved instances, while recall is the fraction
of relevant instances among the retrieved instances. AP50 represents the average detection
accuracy when the overlap ratio is 0.5 while AP75 represents the average detection accuracy
when the overlap ratio is 0.75.

AP =
n−1

∑
i=1

(ri+1 − ri)pi (8)

4.2. Comparison Experiments on ResNet

RetinaNet [10] has been widely used for object detection [9]. It uses the ResNet [9]
network as the backbone. The network architecture of ResNet [9] is shown in Figure 3.
We conduct comparison experiments for different activation functions, the ReLU func-
tion [15,16], Swish function [28] and the proposed EANAF. The other components of the
network remain unchanged while only the activation functions are different. The detection
accuracy on 24,868 images of the MS COCO dataset [12] is reported in Table 2. It can be
seen that the proposed EANAF achieves the best performance. By utilizing the proposed
EANAF activation function, the mAP increases from 35.7% to 37.1% compared with the
second-best activation function, Swish on the backbone of RetinaNet [10], ResNet. The
performance gain is most notable for AP50, where the proposed EANAF significantly
outperforms Swish [28] by 6.9% and outperforms ReLU [15,16] by 9.1%. We can see that
the proposed activation function can bring a significant and consistent performance gain
over other state-of-the-art activation functions on the ResNet [9].

Table 2. The comparison of activation functions on the MS COCO [12] using ResNet [9] as the backbone.

Activation Function mAP AP50 AP75

ReLU [15,16] 32.5% 50.9% 34.8%

Swish [28] 35.7% 53.1% 36.8%

Proposed EANAF 37.1% 60.0% 37.4%
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Figures 6–8 show the visualization results of three different activation functions when
using ResNet [9] as the backbone network. Among them, Figure 6 shows the visual results
when there are many types of objects in the image, and the occlusion between objects is
serious. It can be seen that some objects are not detectable when using the ReLU function
and the Swish function. Compared with the other two functions, more objects can be
successfully detected when using the proposed EANAF. For instance, in the first image,
only one “chair” is detected using the ReLU function. Although various objects are detected
using the Swish function, some objects are not correctly detected (e.g.,“dining-table” is
mistakenly detected as “clock”). In contrast, all the objects are correctly detected when
using the proposed EANAF. In the second image, only six “person” can be detected using
the ReLU function. All seven “person” are detected when using the Swish function and
EANAF. However, the higher confidence level is obtained by using the proposed EANAF.
In the third image, three “person”, two “car” and one “bicycle” are detected using the ReLU
function and eight “person”, three “car” and one “bicycle” are detected using the Swish
function. All objects (ten “person”, three “car” and one “bicycle”) are correctly detected
when using the proposed EANAF.
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ReLU. (b) The visual results of using Swish. (c) The visual results of using EANAF.
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Figure 7. The visual comparisons of using the ReLU function [15,16], the Swish function [28] and the
proposed EANAF respectively as the activation function for ResNet [9] backbone of RetinaNet [10]
for small-object detection in a complex environment. (a) The visual results of using ReLU. (b) The
visual results of using Swish. (c) The visual results of using EANAF.

Figure 7 shows the detection results when the illumination variation in the image may
have a great influence on the detection results. It can be seen that the positive and negative
samples are not well detected using both the ReLU function and the Swish function. As a
result, no objects are correctly detected when using ReLU or Swish. The proposed EANAF
shows a relatively robust performance, and all objects are correctly detected. Consequently,
the proposed EANAF can help improve the feature extraction and effectively detect objects.

Figure 8 shows the detection results when the small objects are in a complex environ-
ment. We can see that there are some false detections and missed detections when using
the ReLU function and the Swish function. In contrast, the proposed EANAF can detect
more objects with a better accuracy. It can be seen that the proposed EANAF works well
for small-object detection compared with ReLU and Swish.



Symmetry 2022, 14, 1027 13 of 18

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 18 
 

 

(b) 

   

(c) 

Figure 7. The visual comparisons of using the ReLU function [15,16], the Swish function [28] and 

the proposed EANAF respectively as the activation function for ResNet [9] backbone of RetinaNet 

[10] for small-object detection in a complex environment. (a) The visual results of using ReLU. (b) 

The visual results of using Swish. (c) The visual results of using EANAF. 

Figure 8 shows the detection results when the small objects are in a complex envi-

ronment. We can see that there are some false detections and missed detections when 

using the ReLU function and the Swish function. In contrast, the proposed EANAF can 

detect more objects with a better accuracy. It can be seen that the proposed EANAF 

works well for small-object detection compared with ReLU and Swish. 

   

(a) 

   

(b) 

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 18 
 

 

   

(c) 

Figure 8. The visual comparisons of using the ReLU function [15,16], the Swish function [28] and 

the proposed EANAF respectively as the activation function for ResNet [9] backbone of RetinaNet 

[10] for small-object detection in a complex environment. (a) The visual results of using the ReLU 

function. (b) The visual results of using the Swish function. (c) The visual results of using the EA-

NAF function. 

4.3. Experimental Results on CSPDarknet 

YOLO v4 [11] achieves state-of-the-art performance for various object detection 

tasks [9]. It utilizes the CSPDarkNet [11] as the backbone network. We conduct compari-

son experiments using ReLU function [15,16], Swish function [28] and the proposed 

EANAF as the activation function for CSPDarkNet [11]. Other components of the net-

work remain unchanged. The detection results on the 24,868 images of the MS-COCO 

dataset are summarized in Table 3.  

First of all, we can see that the performance on the YOLO v4 [11] using CSPDark-

Net [11] as the backbone consistently outperforms the performance on the RetinaNet 

[10] using ResNet [9] as the backbone. Indeed, YOLO v4 [11] has achieved state-of-the-

art performance on the MS-COCO dataset for object detection. Secondly, the proposed 

EANAF significantly outperforms the second-best activation function, Swish [28], by 2%, 

1.9% and 2.0% in terms of mAP, AP50 and AP75, respectively. The consistent perfor-

mance gain demonstrates the superiority of the proposed EANAF. Lastly, on both Res-

Net [9] and CSPDarkNet [11], which are the backbones for popular object detection 

models, RetinaNet [10] and YOLO v4 [11], respectively, the proposed EANAF consist-

ently and significantly outperforms all the compared state-of-the-art activation func-

tions, which demonstrates the effectiveness of the proposed EANAF. 

Table 3. The comparison of activation functions on the MS COCO [12] using CSPDarkNet [11] as 

the backbone of YOLO v4 [11]. 

Activation Function mAP AP50 AP75 

ReLU [15,16] 39.6% 58.6% 42.3% 

Swish [28] 41.2% 63.8% 45.3% 

Proposed EANAF 43.2% 65.7% 47.3% 

The visual results of various activation functions using the CSPDarknet [11] as the 

backbone of the YOLO v4 model [11] are shown in Figures 9–11. Again, we can observe 

that some objects are not detected by other activation functions, or previously not by 

RetinaNet [10], but now can be well detected by YOLO v4 [11] using the proposed EA-

NAF as the activation function. Figure 9 shows the visual results when there are many 

types of objects in the image. Although the overall structure of the CSPDarknet network 

has been improved with a better detection accuracy, the proposed EANAF still outper-

forms ReLU and Swish in terms of the number of the detected objects and the detection 

accuracy. For example, in the first image, only two objects are detected using the ReLU 

function. Six “person”, two “diningtable”, four “chair” and one “pottedplant” are de-

Figure 8. The visual comparisons of using the ReLU function [15,16], the Swish function [28] and the
proposed EANAF respectively as the activation function for ResNet [9] backbone of RetinaNet [10]
for small-object detection in a complex environment. (a) The visual results of using the ReLU function.
(b) The visual results of using the Swish function. (c) The visual results of using the EANAF function.

4.3. Experimental Results on CSPDarknet

YOLO v4 [11] achieves state-of-the-art performance for various object detection
tasks [9]. It utilizes the CSPDarkNet [11] as the backbone network. We conduct com-
parison experiments using ReLU function [15,16], Swish function [28] and the proposed
EANAF as the activation function for CSPDarkNet [11]. Other components of the network
remain unchanged. The detection results on the 24,868 images of the MS-COCO dataset are
summarized in Table 3.

First of all, we can see that the performance on the YOLO v4 [11] using CSPDark-
Net [11] as the backbone consistently outperforms the performance on the RetinaNet [10]
using ResNet [9] as the backbone. Indeed, YOLO v4 [11] has achieved state-of-the-art
performance on the MS-COCO dataset for object detection. Secondly, the proposed EANAF
significantly outperforms the second-best activation function, Swish [28], by 2%, 1.9% and
2.0% in terms of mAP, AP50 and AP75, respectively. The consistent performance gain
demonstrates the superiority of the proposed EANAF. Lastly, on both ResNet [9] and CSP-
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DarkNet [11], which are the backbones for popular object detection models, RetinaNet [10]
and YOLO v4 [11], respectively, the proposed EANAF consistently and significantly out-
performs all the compared state-of-the-art activation functions, which demonstrates the
effectiveness of the proposed EANAF.

Table 3. The comparison of activation functions on the MS COCO [12] using CSPDarkNet [11] as the
backbone of YOLO v4 [11].

Activation Function mAP AP50 AP75

ReLU [15,16] 39.6% 58.6% 42.3%

Swish [28] 41.2% 63.8% 45.3%

Proposed EANAF 43.2% 65.7% 47.3%

The visual results of various activation functions using the CSPDarknet [11] as the
backbone of the YOLO v4 model [11] are shown in Figures 9–11. Again, we can observe
that some objects are not detected by other activation functions, or previously not by
RetinaNet [10], but now can be well detected by YOLO v4 [11] using the proposed EANAF
as the activation function. Figure 9 shows the visual results when there are many types
of objects in the image. Although the overall structure of the CSPDarknet network has
been improved with a better detection accuracy, the proposed EANAF still outperforms
ReLU and Swish in terms of the number of the detected objects and the detection accuracy.
For example, in the first image, only two objects are detected using the ReLU function.
Six “person”, two “diningtable”, four “chair” and one “pottedplant” are detected using
the Swish function. In contrast, seven “person”, six “diningtable”, nine “chair” and two
“pottedplant” are detected using the proposed EANAF.
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Figure 9. The visual comparison of using the ReLU function [15,16], the Swish function [28] and the
proposed EANAF as the activation function for the CSPDarknet [11] backbone of YOLO v4 [11] when
there are many types of objects, and the occlusion is serious. (a) The visual results of using ReLU.
(b) The visual results of using Swish. (c) The visual results of using EANAF.
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Figure 10. The visual comparisons of using the ReLU function [15,16], the Swish function [28] and
the proposed EANAF as the activation function for the CSPDarknet [11] backbone of YOLO v4 [11]
when the illumination variation has a great influence on detecting objects in the image. (a) The visual
results of using ReLU. (b) The visual results of using Swish. (c) The visual results of using EANAF.
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Figure 11. The visual results of using the ReLU function [15,16], the Swish function [28] and the
proposed EANAF as the activation function for the CSPDarknet [11] backbone of YOLO v4 [11] for
small-object detection in a complex environment. (a) The visual results of using ReLU. (b) The visual
results of using Swish. (c) The visual results of using EANAF.

Figure 10 shows the detection results when the illumination variation in the image
has a great influence on the detection results. Compared with the previous experiments on
ResNet, some objects can be detected using the Swish function, but the confidence level is
low. Our proposed EANAF can obtain a better detection accuracy with a higher confidence
level. Figure 11 shows the detection of small objects in the complex background. We can
clearly see that the objects detected by the proposed EANAF are more comprehensive.

4.4. Comparisons of Efficiency

Experiments were conducted to compare the computational impact of the activation
functions on the target detection models. Table 4 shows the comparison of the forward and
reverse transfer runtimes of ReLU [15,16], Swish [28] and the proposed EANAF activation
functions for floating-point 32 data. ReLU [15,16] has the least runtimes, but it does not
have all the desired properties of the activation functions, and it does not work very well
as demonstrated previously. Compared with Swish, the proposed EANAF utilizes similar
runtimes, but achieves a better detection performance, as demonstrated previously in
Tables 2 and 3.

Table 4. The forward and reverse transfer run-time of various activation functions.

Activation Data Type Forward Pass Backward Pass

ReLU Fp32 224.2 µs ± 621.8 ns 419.3 µs ± 1.238 µs
Swish Fp32 342.7 µs ± 1.026 µs 497.3 µs ± 1.357 µs

EANAF Fp32 372.0 µs ± 1.852 µs 529.1 µs ± 1.882 µs
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5. Conclusions

In this work, we propose the Efficient Asymmetric Nonlinear Activation Function
(EANAF) for deep neural networks. The proposed EANAF has many desired properties
such as smoothness, asymmetry, soft saturation on the left, non-saturation on the right, non-
monotonicity and self-regularization. Because of smoothness, it is differentiable everywhere.
Asymmetrical design makes it a better fit for a complex problem. The non-saturation
and non-monotonicity, address the problem of vanishing gradient. Lastly, the proposed
EANAF is self-regularized to minimize the risk of overfitting. Comparative experiments are
conducted on two typical backbone networks, ResNet and DSPDarkNet, for object detection
on the MS COCO dataset. The computational results demonstrate the superior performance
of the proposed EANAF, compared with other state-of-the-art activation functions.

Subsequent work will be conducted with more detailed analysis and experiments
on the proposed activation function in other image processing tasks. The combination of
multiple activation functions will be another direction to be further explored. In future, our
proposed activation function will be applied to more computer vision tasks such as object
recognition and instance segmentation.
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