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Abstract: In this paper, we introduce some new versions based on the locating vectors named
locating indices. In particular, Hyper locating indices, Randić locating index, and Sambor locating
index. The exact formulae for these indices of some well-known families of graphs and for the
Helm graph are derived. Moreover, we determine the importance of these locating indices for 11
benzenoid hydrocarbons. Furthermore, we show that these new versions of locating indices have a
reasonable correlation using linear regression with physicochemical characteristics such as molar
entropy, acentric factor, boiling point, complexity, octanol–water partition coefficient, and Kovats
retention index. The cases in which good correlations were obtained suggested the validity of the
calculated topological indices to be further used to predict the physicochemical properties of much
more complicated chemical compounds.

Keywords: Hyper locating indices; Randić locating index; Sombor locating index; Helm graph; QSPR
analysis

1. Introduction

A molecular structure [1] is a graph whose edges correspond to the bonds and vertices
of the atoms. Such invariants and indices in graphs have gained increasing interest over
time, since they allow scientists to make new classifications for the graphs being studied.
One of its many examples is the QSPR or quantitative structure–property relationship
(see, for example [2–5]) levels of the alkanes (see [6,7]). This index was named after
him as the Wiener index. Since the introduction of the Wiener index, around 200 other
indices have been defined and studied, such as those presented by Wazzan et al. (see, for
example, [8–10]), Gutman (see, for example, [11,12]), and Çevik (see, for example, [13,14]).
Some of these indices have been used indirectly or directly in the applications of chemistry,
physics, or pharmacology. Since indices have been found to have many applications, many
graph theorist still aim to find similar indices and their applications in graph theory. Among
the successful attempts are the Sombor SO(ς) and Omega indices Ω(ς) (see [15,16]) in
which the coinvestigator has partaken in these graph invariants studies. Wazzan et al.
in [17] introduced two novel topological indices named the first and second locating
indices, and in [18] multiplicative locating indices are calculated for families of graphs.
In addition, the QSPR of hexane and its isomers is investigated by the locating indices.
We show that locating indices have positive correlation with at least one property, have
structural interpretation, preferably contradistinguish. They can also be generalizable to
more advanced analogues, be elementary, not be established based on properties, not be
trivially related to other descriptors, be possible to compute effectively, and be based on
organizable structure. These reasons motivated us to introduce new versions of these
indices, we called them first and second Hyper locating indices, Randić locating index and
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Sombor locating index. In 2013, Shirdel et al. [19] introduced a new distance-based group

of Zagreb indices named Hyper–Zagreb indices, as HM1(ς) = ∑
vivj∈E(ς)

(
dvi + dvj

)2
and

HM2(ς) = ∑
vivj∈E(ς)

(
dvi · dvj

)2
. The Randić index of a graph ς introduced by Randić [20]

is the most important and widely applied, it is defined as R(ς) = ∑
vivj∈E(ς)

1√
dvi · dvj

. The

Sombor index of a graph ς, which is a novel vertex-degree-based molecular structure

descriptor proposed by Gutman [21] is defined as SO(ς) = ∑
vivj∈E(ς)

√
(dvi )

2 +
(

dvj

)2
. We

keep in mind the definition of first and second locating indices given in [17], in order to
grasp the importance of this paper. Since this paper is a continuation of our work in [17,22],
let us recall the basic facts regarding these indices: let ς = (V, E) be a connected graph
with the vertex set V = {v1, v2, . . . , vn} with at least two edges a locating function of ς
denoted by F (ς) is a function F (ς) : V(ς) → An where A is the set of all non-negative
integers such that F (vi) = −→vi = 〈d(v1, vi), d(v2, vi), · · · , d(vn, vi)〉, where d

(
vi, vj

)
is the

distance between the vertices vi and vj in ς. The vector F (vi) is called the locating vector
corresponding to the vertex vi, where−→vi · −→vj is the dot product of the vectors−→vi and−→vj and
−→vi +

−→vj is the sum of vectors −→vi and −→vj in the integers space An such that vi is adjacent to

vj. For any vector −→v = 〈x1, x2, . . . , xn〉 the magnitude of −→v is |−→v | =
√

x2
1 + x2

2 + · · ·+ x2
n.

In this paper we consider a connected graph ς = (V, E) with an edge set E(ς) [has at least
two edges] and vertex set V = {v1, v2, · · · , vr}, we introduce the following locating indices:

The first Hyper locating index:

HML1 (ς) = ∑
vivj∈E(ς)

|−→vi +
−→vj |2 . (1)

Second Hyper locating index:

HML2 (ς) = ∑
vivj∈E(ς)

(−→vi · −→vj
)2 . (2)

The Randić locating index:

RL(ς) = ∑
vivj∈E(ς)

1√−→vi · −→vj

. (3)

The Sombor locating index:

SOL(ς) = ∑
vivj∈E(ς)

√
|−→vi |2 + |−→vj |2. (4)

The topological indices with a high positive correlation factor play a crucial role in
quantitative structure–property relationships (QSPR) and quantitative structure–activity
relationships (QSAR) analysis. In order to predict the validity of these new versions
of locating indices we consider one branch of Benzene which is the polycyclic aromatic
hydrocarbons. For the two other kinds the linear and branched hydrocarbons, whose
properties can also be described by these kind of indices, according to the result obtained in
this report, we can predict the validities of the new version of locating indices in the other
two kind of hydrocarbons. Hence, we leave this investigation for future work. Benzene
(C6H6) is an organic chemical compound composed of six carbon atoms joined in a planar
ring with one hydrogen atom attached to each ring. Benzene is classified as a hydrocarbon
because it contains only hydrogen and carbon atoms. Benzene is a natural ingredient of
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crude oil and is one of the basic petrochemicals. It is described as an aromatic hydrocarbon
due to the cyclic connected pi bonds between the carbon atoms. The abbreviation of it
is PhH. Benzene is a colorless and highly flammable liquid. It is used as a precursor
to the synthesis of more complex chemical structure, such as cumene and ethylbenzene.
The toxicity of benzene limits its use in consumer items despite its popularity as a major
industrial chemical [23].

To test the predictive ability of these new indices, we discuss the linear regression
analysis of 11 benzenoid hydrocarbons, which are used many times to approach the
efficiency of any topological descriptor in quantitative structure property relationships. We
inspect the following physicochemical properties: boiling point (BP), molar entropy (S),
acentric factor (v), octanol–water partition coefficient (logP), complexity (C), and Kovats
retention index (RI).

2. New Versions of Locating Indices for Some Known Graphs

In this section, by considering new versions of locating indices, we will determine
their values for some special graphs such as complete graph, complete bipartite graph, and
cycle, wheel and path graph.

Lemma 1. Let ς be the complete graph with three or more vertices r. Then

1. HML1 (ς) = 2r(r− 1)3.

2. HML2 (ς) =
r(r− 1)(r− 2)2

2
.

3. RL(ς) =
r(r− 1)
2
√

r− 2
.

4. SOL(ς) =
r
√
(r− 1)3

√
2

.

Proof.

1. Let ς be the complete graph with number of vertices r ≥ 3 for each vertex vi ∈ V(ς)
let −→vi is the locating vector associated with it. Then −→vi = 〈a1, a2, · · · , ar〉 such that
ai = 0 and all the other components equal to 1. Hence |−→vi +

−→vj |2 = [2 + 2(r− 2)]2 =

4(r− 1)2. However, the total number of edges in ς is
r(r− 1)

2
and so HML1 (ς) =

2r(r− 1)3.
2. For any arbitrary locating vectors −→vi and −→vj , where i 6= j, we gain −→vi · −→vj = r − 2.

Therefore HML2 (ς) =
r(r− 1)(r− 2)2

2
.

3. For any arbitrary locating vectors −→vi and −→vj , where i 6= j, we gain −→vi · −→vj = r − 2.

Therefore
1√−→vi · −→vj

=
1√

r− 2
hence RL(ς) =

r(r− 1)
2
√

r− 2
of the summation over all

edges.

4. For each −→vi = 〈a1, a2, · · · , ar〉 we have|−→vi |2 = r − 1 and hence
√
|−→vi |2 + |−→vj |2 =

√
2(r− 1). Therefore SOL(ς) =

r
√
(r− 1)3

√
2

.

Theorem 1. Let ς be the complete bipartite graph Kr,s, where 1 < r ≤ s. Then

1. HML1 (ς) = rs(9(r + s− 2) + 2) .
2. HML2 (ς) = 4rs(r + s− 2)2.

3. RL(ς) =
rs√

2(r + s− 2)
.
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4. SOL(ς) = rs
√

5(r + s)− 8.

Proof. Let ς be the complete bipartite graph Kr,s, where 1 < r ≤ s, with two bipartite sets R and
S such that |R| = r and |S| = s, by labelling the vertices of ς as V(ς) = {v1, . . . , vr, u1, . . . , us}.
It is clear that the corresponding locating −→vi of the vertex vi has one zero value in the ith
position, (r− 1) components of value 2, and s components of value 1 for all i = 1, 2, . . . , r
and the locating vector −→uj correspond to the vertex uj for all j = 1, 2, . . . , s has one zero
value in the jth position, (s − 1) components of value 2, and r components of value 1.
Therefore

1. For any two adjacent vertices vi and uj where i = 1, 2, . . . , r and j = 1, 2, . . . , s the
locating vector −→vi +

−→uj has (r− 1) components of value three, (s− 1) components of
value three, and two components of value one. Hence, |−→vi +

−→uj |2 = 9(r− 1) + 9(s−
1) + 2 = 9(r + s− 2) + 2 for any two adjacent vertices in the two partition sets R and
S. Hence, HML1 (ς) = rs(9(r + s− 2) + 2).

2. For any two locating vertices −→vi and −→uj corresponding two the adjacent vertices vi

and uj in Kr,s we have −→vi · −→uj = 2(r + s− 2) Hence HML2 (ς) = 4rs(r + s− 2)2.

3. By part 2 we deduce that RL(ς) =
rs√

2(r + s− 2)
.

4. For any i = 1, 2, . . . , r we have |−→vi |2 = 4(r− 1) + s and |−→uj |2 = 4(s− 1) + r for all
j = 1, 2, . . . , s hence|−→vi |2 + |−→uj |2 = 5r + 5s− 8. Hence SOL(ς) = rs

√
5(r + s)− 8.

Theorem 2. Let ς be wheel graph Wr with r + 1 vertices such that (r ≥ 4). Then

1. HML1 (ς) = r(4r− 6)2 + 9r(r− 1)2.
2. HML2 (ς) = r[(4r− 11)2 + (2r− 4)2].

3. RL(ς) =
√

2r
(4r− 11)(2r− 4)

.

4. SOL(ς) = r
√

17r2 − 72r + 81− 9
√

2r + 4
√

2r2.

Proof. Let ς ∼= Wr with r + 1 vertices. Suppose that the vertices v1, v2, · · · , vr, vr+1 ∈ V(ς)
are labeling in the counterclockwise direction and the center of the wheel is labeled vr+1.
Hence the locating vector −→vi for each vertex vi where i = 1, 2, . . . , r has 0 component in the
ith position, three components of value one, and (r− 3) components of value two. Where

the locating vector −−→vr+1 that corresponds to the vertex vr+1 is equal to (

r times︷ ︸︸ ︷
1, 1, · · · , 1, 0). It

is straightforward to notice that the permutation components in each vector −→vi where
i = 1, 2, · · · , r, is 1, 0, 1 . Therefore

1. For any two adjacent vertices vi + vj where i, j ∈ {1, 2, . . . , r},
(−→vi +

−→vj
)

vector has
two components of value one, two components of value three, one component of
value two, and r− 4 components of value four. For any vertex vi, where i = 1, . . . , r
we have −→vi +

−−→vr+1 is a vector contains two components of value one, two components
of value two, and (r− 3) components of value three. So

|−→vi +
−→vj |2 =

{
(4r−6)2 for i,j∈{1,2,...,r}
9(r−1)2 for i∈{1,2,...,r} j=r+1

Hence HML1 (ς) = r(4r− 6)2 + 9r(r− 1)2.
2. Keeping in mind the permutation of components 1, 0, 1 in each vector−→vi where i = 1, . . . , r.

It is clear that for vi and vj any two adjacent vertices where i, j ∈ {1, 2, . . . , r}, hence(−→vi · −→vj
)2

= (4r− 11)2 and
(−→vi · −−→vr+1

)2
= (2r− 4)2. Therefore

HML2 (ς) = ∑
vivj∈E(ς)

(4r− 11)2 + ∑
vivr+1∈E(ς)

(2r− 4)2 = r[(4r− 11)2 + (2r− 4)2].
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3. From part 2 we deduce that RL(ς) =
√

2r
(4r− 11)(2r− 4)

.

4. |−→vi |2 = (4r− 9)2 for each corresponding locating vector −→vi with the vertex vi
(i = 1,2,. . . ,r) and |−−→vr+1|2 = r2 . Hence

SOL(ς) = ∑
vivj∈E(ς)

√
2(4r− 9)2 + ∑

vivr+1∈E(ς)

√
r2 + (4r− 9)2

= r(
√

2(4r− 9) +
√

r2 + (4r− 9)2) = r
√

17r2 − 72r + 81− 9
√

2r + 4
√

2r2.

Hence the result.

Theorem 3. For any path Pr where (r ≥ 3). Then

1. HML1 (ς) =
1
3 r(r− 1)

(
2r2 − 2r− 1

)
.

2. HML2 (ς) =
1

15 r(r− 1)(r− 2)(r + 1)
(
r2 − r− 1

)
.

3. RL(ς) =
r−1
∑

i=1

√
3√

3i2r− 3ir2 + r3 − r
.

4. SOL(ς) = ∑r−1
i=1

√
r−i
∑

k=1
k2 +

i
∑

k=1
(k− 1)2 +

r−i−1
∑

k=1
k2 +

i+1
∑

k=1
(k− 1)2.

Proof. Assume that Pr is the path with vertices (r ≥ 3). Suppose that the locating func-
tion is constructed by identify the vertices as v1, v2, · · · , vr from left to right. Hence the
corresponding vector for each vertex vi ∈ V(ς) (i = 1, · · · , r) are given as in the following:

−→v1 = 〈0, 1, 2, 3, · · · , r− 1〉, −→v2 = 〈1, 0, 1, 2, · · · , r− 2〉
−−→vr−1 = 〈r− 2, r− 3, · · · , 0, 1〉, −→vr = 〈r− 1, r− 2, r− 3, · · · , 0〉.

By notice the symmetry between the components of the vectors −→v1 and −→vr and −→v2 and
−−→vr−1,. . . .so on. Hence

1. For any two adjacent vertices vi and vi+1 we have |−→vi +
−−→vi+1|2 =

r−i
∑

k=1
(2k− 1)2 +

i
∑

k=1

(2k− 1)2 where i = 2, . . . , r− 1. Hence

HML1 (ς) =
r−1

∑
i=1

r−i

∑
k=1

(2k− 1)2 +
r−1

∑
i=1

i

∑
k=1

(2k− 1)2 =
2r4 − 4r3 + r2 + r

3
.

2. For the other case HML2 (ς) we have −→v i · −→v i+1 =
r−i
∑

k=1
k(k− 1) +

i
∑

k=1
k(k− 1), hence

HML2 (ς) =
r−1

∑
i=1

(−→v i · −→v i+1
)2

=
r−1

∑
i=1

r−i

∑
k=1

[k(k− 1)]2 +
r−1

∑
i=1

i

∑
k=1

[k(k− 1)]2

=
1
6

r3 − 1
30

r2 − 1
15

r− 1
10

r5 +
1
30

r6 − 1
30

r(r− 1)(r + 1)(r− 2)
(
−r2 + r + 1

)
=

1
15

r(r− 1)(r− 2)(r + 1)
(
−r + r2 − 1

)
.

Therefore, HML2 (ς) is obtained as required in the statement of theorem.
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3. From part 2, we have

RL(ς) =
r−1

∑
i=1

1√
r−i
∑

k=1
k(k− 1) +

i
∑

k=1
k(k− 1)

=
r−1

∑
i=1

1√
3ri2 − 3r2i + r3 − r

3

=
r−1

∑
i=1

√
3√

3i2r− 3ir2 + r3 − r
.

4. With some calculation we conclude that |−→vi |2 =
r−i
∑

k=1
k2 +

i
∑

k=1
(k− 1)2 and |−−→vi+1|2 =

r−i−1
∑

k=1
k2 +

i+1
∑

k=1
(k− 1)2. Hence

SOL(ς) =
r−1

∑
i=1

√√√√ r−i

∑
k=1

k2 +
i

∑
k=1

(k− 1)2 +
r−i−1

∑
k=1

k2 +
i+1

∑
k=1

(k− 1)2.

Which is the required result.

Theorem 4. For an even integer r ≥ 4, let ς ∼= Cr. Then

1. HML1 (ς) =
(
r2 − 1

)(
r2 + 1

)
3

.

2. HML2 (ς) =
r
(
r3 − 4r

)2

144
.

3. RL(ς) = 2r

√
r3 − 4r√

3
.

4. SOL(ς) = r
√

1
3 r + 1

6 r3.

Proof. By identifying the vertices of the cycle Cr as {v1, v2, · · · , vr} in the counterclockwise
direction. Then the locating vector −→vi correspond to the vertex vi has zero component in
the position i, one component of value r

2 − 1, two components of values of value 1, two
components of value 2, and two components of value 3. Hence, for any two adjacent
vertices vi and vi+1 where i = 1, 2, . . . , r− 1

1. For any two adjacent vertices vi and vi+1 we have |−→vi +
−−→vi+1|2 = 2

r
2
∑

k=1
(2k− 1)2.

Therefore

HML1 (ς) = 2r

r
2

∑
k=1

(2k− 1)2 =
r
(
r3 − r

)
3

=
r4 − r3

3
=

(
r2 − 1

)(
r2 + 1

)
3

.

2. we have−→vi ·−−→vi+1 = 2
r
2
∑

i=2
i(i− 1) = 1

12 r3− 1
3 r. Therefore HML2 (ς) = r

(
2

r
2
∑

i=2
i(i− 1)

)2

=
r
(
r3 − 4r

)2

144
.

3. By part 2, RL(ς) =
r(

2
r
2
∑

i=2
i(i− 1)

) 1
2
= 2r

√
r3 − 4r√

3
.
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4. We can see that each −→vi has equivalent components but in different location, hence
each |−→vi |2 has the same sum as the form of

|−→vi |2 =
r(r + 1)(r + 2)− 3r2

12
.

Hence

SOL(ς) = ∑
vivj∈E(ς)

√
|−→vi |2 + |−→vj |2

= r

√
r(r + 1)(r + 2)− 3r2

12
+

r(r + 1)(r + 2)− 3r2

12

= r

√
1
3

r +
1
6

r3.

Theorem 5. For an odd integer r ≥ 3, let ς ∼= Cr. Then

1. HML1 (ς) =
r
(
2r3 − 3r2 − 2r + 15

)
6

.

2. HML2 (ς) =
1

12 (r + 3)(r− 1)(r− 2).

3. RL(ς) =
2
√

3r√
(r− 1)(r− 2)(r + 3)

.

4. SOL(ς) = r
√

1
6 r(r2 − 1).

Proof. We notice the following vectors in the cycle Cr

−→v1 =

〈
0, 1, 2, 3, · · · ,

r− 1
2

,
r− 1

2
− 1,

r− 1
2
− 2, · · · , 1

〉
,

−→v2 =

〈
1, 0, 1, 2, · · · ,

r− 1
2
− 1,

r− 1
2

,
r− 1

2
− 1, · · · , 2

〉
,

−→v3 =

〈
2, 1, 0, 1, · · · ,

r− 1
2
− 2,

r− 1
2
− 1,

r− 1
2

, · · · , 3
〉

,

...
...

−→vr =

〈
1, 2, 3, · · · ,

r− 1
2

,
r− 1

2
− 1,

r− 1
2
− 2, · · · , 0

〉
.

with some calculation we obtain

1. For any two adjacent vertices vi and vi+1 we have |−→vi +
−−→vi+1|2 = 2

r−1
2
∑

k=1
(2k− 1)2

+ 2
(

r− 1
2

)2
= 1

3 r3 − 1
2 r2 − 1

3 r + 1
2 , hence

HML1 (ς) =
r
(
2r3 − 3r2 − 2r + 15

)
6

.
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2. Additionally,

−→vi · −−→vi+1 = 2

r−1
2

∑
i=1

i(i− 1) +
(r− 1)2

4

=

2
r−1

2

(
r−1

2 + 1
)(

2 r−1
2 + 1

)
6

− 1−

2
r−1

2

(
r−1

2 + 1
)

2
− 1

+
(r− 1)2

4

=
1
12

r3 − 7
12

r +
1
2

=
1
12

(r + 3)(r− 1)(r− 2).

Hence HML2 (ς) =
1

12 (r + 3)(r− 1)(r− 2) as required.

3. By part 2, RL(ς) =
2
√

3r√
(r− 1)(r− 2)(r + 3)

.

4. For SOL(ς) we have|−→vi |2 = 2
r−1

2
∑

i=1
i2 =

r
(
r2 − 1

)
12

which implies

SOL(ς) = r

√
r
(
r2 − 1

)
12

+
r
(
r2 − 1

)
12

= r

√
1
6

r(r2 − 1).

3. New Versions of Locating Indices and Helm Graph

In this Section we will compute the exact value of new versions of locating indices
of the Helm graph. Recall that [24] Helm graph (Hr) is a simple graph obtained from the
r-wheel Wm graph next to the edge of the pendant at each vertex of the Cr cycle.

Theorem 6. Given that Hr be a helm graph with r ≥ 3. Then

1. HML1 (ς) = r(212r− 431)2 .
2. HML2 (ς) = r(15r− 49)2 + r(18r− 36)2 + r(8r− 14)2.

3. RL(ς) =
r√

(15r− 49) + (18r− 36) + 8r− 14
.

4. SOL(ς) =
√

2r(13r− 27) + r
√
(13r− 27)2 + (15r− 14)2 + r

√
(13r− 27)2 + 25r2.

Proof. Let Hr be the Helm graph obtained by attaching a pendant edge at each vertex of
the cycle. Let V(Hr) = {v0} ∪ {v1, v2,···, vr} ∪ {vr+1, vr+2,···, v2r} where v′is are the vertices
of cycles taken in cyclic order and v′r+is are pendant vertices such that each vivr+i is a
pendant edge and v0 is the center of the cycle. Therefore, we obtain the corresponding
vectors −→vi for each vertex vi ∈ V(Hr) where i = 1, 2, . . . , r as follows:

−→v1 =

〈
0, 1,

r−3︷ ︸︸ ︷
2, . . . , 2, 1, 1, 2,

r−3︷ ︸︸ ︷
3, . . . , 3, 2, 1

〉
, −→v2 =

〈
1, 0, 1,

r−2︷ ︸︸ ︷
2, . . . , 2, 1, 2,

r−3︷ ︸︸ ︷
3, . . . , 3, 1

〉
,

, . . . ,−→vr =

〈
1,

r−3︷ ︸︸ ︷
2, . . . , 2, 1, 0, 2,

r−3︷ ︸︸ ︷
3, . . . , 3, 2, 1, 1

〉

Hence, each −→vi =

〈ith position︷︸︸︷
0 ,

r−1︷ ︸︸ ︷
2, . . . , 2,

4−times︷ ︸︸ ︷
1, . . . , 1,

r−3︷ ︸︸ ︷
3, . . . , 3

〉
, more clearly has 0 component

in ith position, (r− 1) components of value two, (r− 3) components of value three, and
four comonents of value one. Moreover, the corresponding vectors −−→vr+i for each vertex
vr+i ∈ V(Hr) where i = 1, 2, . . . , r as follows:
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−−→vr+1 =

〈
1, 2,

r−3︷ ︸︸ ︷
3 . . . , 3, 2,

(r+1) position︷︸︸︷
0 , 3,

r−3︷ ︸︸ ︷
4, . . . 4, 3, 2

〉
, −−→vr+2 =

〈
2, 1, 2,

r−2︷ ︸︸ ︷
3, . . . , 3,

(r+2) position︷︸︸︷
0 , 3,

r−3︷ ︸︸ ︷
4, . . . 4, 2

〉
,

, . . . ,−→v2r =

〈
2,

r−3︷ ︸︸ ︷
3 . . . , 3, 2, 1, 3,

r−3︷ ︸︸ ︷
4, . . . 4, 3,

2r position︷︸︸︷
0 , 2

〉

Hence, each −−→vr+i =

〈(r+i)th position︷︸︸︷
0 ,

3 times︷ ︸︸ ︷
2, . . . , 2,

rth position︷︸︸︷
1 ,

r−1︷ ︸︸ ︷
3, . . . , 3,

r−3︷ ︸︸ ︷
4, . . . , 4

〉
, more clearly has 0

component in (r + i)th position, (r− 1) components of value three, (r− 3) components of
value four, and three competent of value two. Finally the corresponding vectors −→v0 for each

vertex v0 ∈ V(Hr) is −→v0 =

〈 r times︷ ︸︸ ︷
1, . . . , 1,

r times︷ ︸︸ ︷
2, . . . , 2, 0

〉
. Now let A, B, C ⊂ V(Hr) such that

A = {v1, v2, ···, vr}, B = {vr+1, vr+2, ···, v2r}, and C = {v0}.

Hence,

1. HML1 (ς) =

(1)︷ ︸︸ ︷
∑

vi ,vi+1∈A
vi∼vi+1

|−→vi +
−−→vi+1|2 +

(2)︷ ︸︸ ︷
∑

vi ,∈A, vr+i∈B
vi∼vr+i

|−→vi +
−−→vr+i|2 +

(3)︷ ︸︸ ︷
∑

vi∈A,v0∈C
vi∼v0

|−→vi +
−→v0 |2 . For

the summation (1), we have

−→v1 +−→v2 =

〈
1, 1, 3,

r−4︷ ︸︸ ︷
4, . . . , 4, 3, 3, 3, 5,

r−4︷ ︸︸ ︷
6, . . . , 6, 5, 2

〉
, −→v2 +−→v3 =

〈
3, 1, 1, 3,

r−4︷ ︸︸ ︷
4, . . . , 4, 5, 3, 3, 5,

r−4︷ ︸︸ ︷
6, . . . , 6, 2

〉

, . . . ,−−→vr−1 +
−→vr =

〈
3,

r−4︷ ︸︸ ︷
4, . . . , 4, 3, 1, 1, 5,

r−4︷ ︸︸ ︷
6, . . . , 6, 5, 3, 3, 2

〉

−→v1 +−→vr =

〈
1, 3,

r−4︷ ︸︸ ︷
4, . . . , 4, 3, 1, 2, 5,

r−4︷ ︸︸ ︷
6, . . . , 6, 5, 3, 2

〉

Hence,each−→vi +
−−→vi+1 =

〈2−times︷︸︸︷
1 ,

1−times︷︸︸︷
2 ,

4−times︷ ︸︸ ︷
3, . . . , 3,

r−4︷ ︸︸ ︷
4, . . . , 4,

2−times︷︸︸︷
5 ,

r−4︷ ︸︸ ︷
6, . . . , 6

〉
, more clearly

has 1 two times, 2 one time, 3 four times, (r− 4) components of value four, (r− 4)
components of value six, and 5 two times. Also −→v1 + −→vr =〈2−times︷︸︸︷

1 ,

2−times︷︸︸︷
2 ,

3−times︷ ︸︸ ︷
3, . . . , 3,

r−4︷ ︸︸ ︷
4, . . . , 4,

2−times︷︸︸︷
5 ,

r−4︷ ︸︸ ︷
6, . . . , 6

〉
, more clearly has 1 two times, 2 two

times, 3 three times, (r− 4) components of value four, (r− 4) components of value
six, and 5 two times. Therefore

∑
vi ,vi+1∈A
vi∼vi+1

|−→vi +
−−→vi+1|2 = ∑

vi ,vi+1∈A
vi∼vi+1

(179 + 104r− 416)2 = r(104r− 237)2.

For summation in (2), we have
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−→v1 +−−→vr+1 =

〈
1, 3,

r−2︷ ︸︸ ︷
5, . . . , 5, 3, 1, 5,

r−3︷ ︸︸ ︷
7, . . . , 7, 5, 3

〉
, −→v2 +−−→vr+2 =

〈
3, 1, 3,

r−2︷ ︸︸ ︷
5, . . . , 5, 15,

r−3︷ ︸︸ ︷
7, . . . , 7, 3

〉

, . . . ,−→vr +
−→v2r =

〈
3,

r−3︷ ︸︸ ︷
5, . . . , 5, 3, 1, 5,

r−3︷ ︸︸ ︷
7, . . . , 7, 5, 1, 3

〉

Hence each−→vi +
−−→vr+i =

〈2−times︷︸︸︷
1 ,

3−times︷ ︸︸ ︷
3, . . . , 3,

r−1︷︸︸︷
5 ,

r−3︷ ︸︸ ︷
7, . . . , 7

〉
, more clearly has 1 two times,

3 three times, (r− 1) components of value five, and (r− 3) competent of value seven.
Therefore

∑
vi ,∈A, vr+i∈B

vi∼vr+i

|−→vi +
−−→vr+i|2 = ∑

vi ,∈A, vr+i∈B
vi∼vr+i

(74r− 143)2 = r(74r− 143)2.

For summation in (3)

−→v1 +−→v0 =

〈
1, 2,

r−1︷ ︸︸ ︷
3, . . . , 3, 2, 3, 4,

r−3︷ ︸︸ ︷
5, . . . , 5, 4, 1

〉
,−→v2 +−→v0 =

〈
1, 2,

r−1︷ ︸︸ ︷
3, . . . , 3, 2, 3, 4,

r−3︷ ︸︸ ︷
5, . . . , 5, 4, 1

〉

, . . . ,−→vr +
−→v0 =

〈
2,

r−1︷ ︸︸ ︷
3, . . . , 3, 2, 1, 4,

r−3︷ ︸︸ ︷
5, . . . , 5, 4, 3, 1

〉

Hence, each −→vi +
−→v0 =

〈2−times︷︸︸︷
1 ,

2−times︷︸︸︷
2 ,

r−2︷ ︸︸ ︷
3, . . . , 3,

2−times︷︸︸︷
4 ,

r−3︷ ︸︸ ︷
5, . . . , 5

〉
, more clearly has 1

two times, 2 two times, (r− 2) components of value three, 2 times of value 4, and
(r− 3) competent of value five. Therefore ∑

vi∈A,v0∈C
vi∼v0

|−→vi +
−→v0 |2 = ∑

vi∈A,v0∈C
vi∼v0

(34r− 51)2

= r(34r− 51)2. Hence

HML1 (ς) = r
[
(104r− 237)2 + (74r− 143)2 + (34r− 51)2

]
= r(212r− 431)2.

2. HML2 (ς) =

(1)︷ ︸︸ ︷
∑

vi ,vi+1∈A
vi∼vi+1

(−→vi · −−→vi+1
)2

+

(2)︷ ︸︸ ︷
∑

vi ,∈A, vr+i∈B
vi∼vr+i

(−→vi · −−→vr+i
)2

+

(3)︷ ︸︸ ︷
∑

vi∈A,v0∈C
vi∼v0

(−→vi · −→v0
)2 . For

summation (1), we have ∑
vi ,vi+1∈A
vi∼vi+1

(−→vi · −−→vi+1
)2

= r[4(r− 4) + 2(r− 5) + 9(r− 4) + 13]2

= r(15r− 49)2. For summation (2), we have ∑
vi ,∈A, vr+i∈B

vi∼vr+i

(−→vi · −−→vr+i
)2

= r[6(r− 1)+

12(r− 3) + 6]2 = r(18r− 36)2. For summation (3), we have ∑
vi∈A,v0∈C

vi∼v0

(−→vi · −→v0
)2

=

r[6(r− 3) + 2(r− 3) + 10]2 = r(8r− 14)2. Hence HML2 (ς) = r(15r− 49)2

+ r(18r− 36)2 + r(8r− 14)2.
3. It is clear from part 2 that RL(ς) =

r√
(15r− 49) + (18r− 36) + 8r− 14

.
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4. SOL(ς) =

(1)︷ ︸︸ ︷
∑

vi ,vi+1∈A
vi∼vi+1

√
|−→vi |2 + |−−→vi+1|2 +

(2)︷ ︸︸ ︷
∑

vi ,∈A, vr+i∈B
vi∼vr+i

√
|−→vi |2 + |−−→vr+i|2

+

(3)︷ ︸︸ ︷
∑

vi∈A,v0∈C
vi∼v0

√
|−→vi |2 + |−→v0 |2 . For summation in (1)

∑
vi ,vi+1∈A
vi∼vi+1

√
|−→vi |2 + |−−→vi+1|2 = r

√
2[(4(r− 1) + 9(r− 3) + 4)]2 = r

√
2(13r− 27)2 =

√
2r(13r− 27).

For summation in (2)

∑
vi ,∈A, vr+i∈B

vi∼vr+i

√
|−→vi |2 + |−−→vr+i|2 = r

√
[(4(r− 1) + 9(r− 3) + 4)]2 + [9(r− 1) + 6(r− 3) + 13]2

= r
√
(13r− 27)2 + (15r− 14)2

For summation in (3)

∑
vi∈A,v0∈C

vi∼v0

√
|−→vi |2 + |−→v0 |2 = r

√
(13r− 27)2 + 25r2.

Hence, SOL(ς) =
√

2r(13r− 27) + r
√
(13r− 27)2 + (15r− 14)2

+ r
√
(13r− 27)2 + 25r2.

4. Significance of New Versions of Locating Indices

Accordant to Milan Randić [25] in order to consider a topological index as an acceptable
index, it must satisfy some of the following conditions: have positive correlation with
at least one property; have structural interpretation; preferably contradistinguish; be
generalizable to more advanced analogues; be elementary; not be established based on
properties; not be trivially related to other descriptors; be possible to compose effectively;
and be based on organizable structural abstractions. In this section, we considered 11
benzenoid hydrocarbons to test the anticipating capability of these new indices. The
experimental data of 11 benzenoid hydrocarbons are found in references [26–28], and also
https://pubchem.ncbi.nlm.nih.gov (accessed on 26 March 2022). Table 1 indicates the
experimental data of benzenoid hydrocarbons. Table 2 shows the new index-values of
benzenoid hydrocarbons. Molecular graphs of benzenoid hydrocarbons are depicted in
Figure 1. We have seen that these indices play a crucial part in evaluation the boiling point
(BP), molar entropy (S), acentric factor (v), octanol–water partition coefficient (logP),
complexity (C), and Kovats retention index (RI) of these 11 benzenoid hydrocarbons.
Table 3 shows the correlation coefficient (R) of the these indices with some physicochemical
properties of 11 benzenoid hydrocarbons (where the significance of bold numbers denote
highest correlation value).

https://pubchem.ncbi.nlm.nih.gov


Symmetry 2022, 14, 1022 12 of 18

Figure 1. Molecular graphs of benzenoid hydrocarbons.

Table 1. Experimental values of some physicochemical properties of benzenoid hydrocarbons.

Benzenoid Hydrocarbons (BP) (S) (v) LogP (RI) (C)

naphthalene 218 79.38 0.302 3.3 200 80.6

phenanthrene 338 93.79 0.39 4.46 300 335

chrysene 431 106.83 0.46 5.81 400 264

tetraphene 425 108.22 0.46 5.76 398.5 294

triphenylene 429 104.66 0.46 5.49 400 217

tetrahelicene 436 − 0.47 5.7 391.12 266

perylene 497 109.10 0.49 6.25 456.22 217

naphthacene 440 105.47 0.46 5.76 408.3 304

pyrene 404 96.06 0.41 4.88 351.22 236

benzo[a]pyrene 496 111.85 − 6.13 453.44 372

benzo[e]pyrene 493 110.46 − 6.44 450.73 336
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Table 2. New locating indices of benzenoid hydrocarbons.

Benzenoid Hydrocarbons HML
1 (ς) HML

2 (ς) RL(ς) SOL(ς)

naphthalene 2857 412,483 1.4826 37.7094

phenanthene 8834 300,968 1.4640 261.804

chrysene 21,738 155,303 1.3854 474.224

tetraphene 22,490 165,133 1.3583 416.911

triphenylene 17,963 101,068 1.5071 375.695

tetrahelicene 20,446 134,949 1.4325 399.556

naphthacene 24,314 193,765 1.3058 429.787

pyrene 11,696 462,142 1.6024 328.713

perylene 24,699 163,161 1.5707 531.393

benzo[a]pyrene 27,576 215,760 1.4943 575.456

benzo[e]pyrene 24,158 159,451 1.5832 537.929

Table 3. Correlation coefficients (R) between versions of new locating indices and some physiochemi-
cal properties of benzenoid hydrocarbons.

Locating Index (BP) (S) (v) (LogP) (RI) (C)

HML1 (ς) 0.930 0.967 0.945 0.964 0.955 0.669

HML2 (ς) 0.843 0.905 0.859 0.894 0.878 0.602

RL(ς) 0.112 −0.080 −0.194 −0.013 0.052 0.069

SOL(ς) 0.980 0.975 0.972 0.978 0.982 0.788

4.1. Regression Model

Using the data in Tables 1 and 2, linear regression models were obtained for boil-
ing point (BP), molar entropy (S), acentric factor (v), octanol–water partition coefficient
(logP), complexity (C), and Kovats retention index (RI). The corresponding R were cal-
culated. Where, N, R2, Se, F, and SF denote the population, coefficient of determination,
standard error of estimate, Fischer F-values, F-significance, respectively. We have tested
the following linear regression model P = A + B(LI) where P = physical property, LI=
locating index. We have obtained the following different linear models for each of the
locating indices, which are listed below:

1. First Hyper Locating Index HML1 (ς):

BP = 235.916 + 0.01[HML1 (ς)] (5)

v = 0.312 +
(

7.1× 10(−6)
)
[HML1 (ς)] (6)

LogP = 3.31 +
(

1.1× 10(−4)
)
[HML1 (ς)] (7)

RI = 206.488 + 0.009[HML1 (ς)] (8)

C = 136.682 + 0.007[HML1 (ς)] (9)

S = 80.340 + 0.001[HML1 (ς)] (10)

2. Second Hyper Locating Index HML2 (ς):

BP = 296.857 +
(

9.8× 10(−5)
)
[HML2 (ς)] (11)
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v = 0.354 +
(

7.28× 10(−8)
)
[HML2 (ς)] (12)

LogP = 3.991 +
(

1.2× 10(−6)
)
[HML2 (ς)] (13)

RI = 263.502 +
(

9.6× 10(−5)
)
[HML2 (ς)] (14)

C = 180.186 +
(

6.9× 10(−5)
)
[HML2 (ς)] (15)

S = 87.27 + 1.24× 10(−5)[HML2 (ς)] (16)

3. Randić Locating Index RL(ς):

BP = 278.037 + 95.673[RL(ς)] (17)

v = 0.602− 0.115[RL(ς)] (18)

LogP = 5.638− 0.126[RL(ς)] (19)

RI = 321.911 + 41.301[RL(ς)] (20)

C = 180.445 + 57.871[RL(ς)] (21)

S = 114.458− 8.049[RL(ς)] (22)

4. Sombor Locating Index SOL(ς) :

BP = 210.599 + 0.524[SOL(ς)] (23)

v = 0.293 + 0.00039[SOL(ς)] (24)

LogP = 3.105 + 0.006[SOL(ς)] (25)

RI = 186.921 + 0.493[SOL(ς)] (26)

C = 101.352 + 0.414[SOL(ς)] (27)

S = 78.212 + 0.061[SOL(ς)] (28)

4.2. Results and Discussion

Using the regression models, we calculated the correlation coefficients (R) between
versions of new locating indices and some physiochemical properties of benzenoid hydro-
carbons shown in Table 3. Scatter plots between the boiling point (BP), molar entropy (S),
acentric factor (v), octanol–water partition coefficient (logP), and Kovats retention index
(RI) with new locating indices are shown in Figure 2.
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Figure 2. Physicochemical properties of benzoid hydrocarbons with topological indices.

4.3. Concluding Remarks

By analyzing the data given in Tables 4–7, it is possible to derive some results for the
given new locating indices (expect for the Randić locating index which will be excluded
from our discussion). These tables show the regression model of various physicochemical
properties. It can be observed that the regression model value R is more than 0.6 and
significance F is less than 0.05. Hence, it can be observed that all the physical and chemical
properties of benzenoid hydrocarbons are positively correlated with the defined new
locating indices. First, the Randić locating index was found to be completely inadequate
for any structure–property correlation, although many models have been tested to validate
this index it did not pass these tests. Second, the Sombor locating index, Table 7, depicts
that this index is a beneficial tool in deriving the physical and chemical properties for
benzenoid hydrocarbons with correlation coefficient values lying between 0.972 to 0.982
except for the complexity of benzenoid hydrocarbons, where the correlation coefficient
value of the Sombor locating index with complexity is 0.788. More clearly, when examining
the table correlation coefficients horizontally for physical properties, we see that SOL(ς)
index gives highest correlation coefficient for boiling point (BP) (R = 0.980), molar entropy
(S) (R = 0.975), acentric factor (v) (R = 0.972), octanol–water partition coefficient (logP)
(R = 0.978), complexity (C) (R = 0.788), and Kovats retention index (RI) (R = 0.982).
Sombor locating index is highly recommended for predicting the QSPR of benzenoid
hydrocarbons. The first Hyper locating index shows good correlation properties. The
QSPR study in Table 4 shows that the predicting power of this index is quite satisfactory,
with range of 0.930 ≤ R ≤ 0.967, excluding the complexity value of 0.669. On the other
hand, the second Hyper locating index has a positive and highly significant correlation
coefficient for molar entropy (S) (R = 0.905) and for others, and for the physical and
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chemical properties for benzenoid hydrocarbons, the range of the correlation coefficient is
between 0.843 and 0.894.

Table 4. Statical parameters for the linear QSPR model for first Hyper locating index.

Physical Properties N R2 Se F SF

boiling point (BP) 11 0.866 31.317 57.973 3× 10(−5)

molar entropy (S) 10 0.935 2.729 114.332 5.1× 10(−6)

octanol partition coefficient (logP) 11 0.930 0.256 119.359 1.7× 10(−7)

complexity (C) 11 0.447 62.32 7.273 0.025

Kovats retention index (RI) 11 0.913 23.7 93.939 4.6× 10(−6)

acentric factor (v) 9 0.892 0.02 57.864 0.0001

Table 5. Statical parameters for the linear QSPR model for second Hyper locating index.

Physical Properties N R2 Se F SF

boiling point (BP) 11 0.711 45.928 22.14 0.001

molar entropy (S) 10 0.819 4.5335 36.295 0.0003

octanol partition coefficient (logP) 11 0.799 0.433 35.865 0.0002

complexity (C) 11 0.771 38.333 30.351 0.0004

Kovats retention index (RI) 11 0.362 66.914 5.116 0.05

acentric factor (v) 9 0.738 0.032 19.7533 0.003

Table 6. Statical parameters for the linear QSPR model for Randić locating index.

Physical Properties N R2 Se F SF

boiling point (BP) 11 0.013 84.890 0.115 0.742

molar entropy (S) 10 0.006 10.63802 0.051 0.827

octanol partition coefficient (logP) 11 0.001 0.96577 0.002 0.970

complexity (C) 11 0.005 80.04642 0.024 0.880

Kovats retention index (RI) 11 0.003 83.5988 0.043 0.840

acentric factor (v) 9 0.038 0.061 0.274 0.067

Table 7. Statical parameters for the linear QSPR model for Sombor locating index.

Physical Properties N R2 Se F SF

boiling point (BP) 11 0.961 16.879 221.565 1.2× 10(−7)

molar entropy (S) 10 0.950 2.382 152.546 1.7× 10(−6)

octanol partition coefficient (logP) 11 0.956 0.203 193.882 2.1× 10(−7)

complexity (C) 11 0.621 51.56 14.775 0.004

Kovats retention index (RI) 11 0.965 15.003 247.879 7.4× 10(−8)

acentric factor (v) 9 0.945 0.014 120.011 1.1× 10(−5)

In this paper, we introduce four new versions of locating indices, and find their
exact values for some families of known graphs and for the Helm graph. We examined
the efficiency of predicting the physicochemical properties of benzenoid hydrocarbons.
Raw data from the chemistry literature and a mathematical effort to find new topological
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indices are joined in this study to introduce these novel indices which will encourage its
utilization prospects in pharmacological and chemical fields. The cases in which satisfactory
correlations were gained proposed the effectiveness of the computed topological indices
to be useful in predicting the physicochemical properties of numerous intricate chemical
compounds. For instance, they can be used in the characterization of nanotubes and
graphene structures. This study predicted the validity new versions of locating indices.
They have been applied for a series of polycyclic aromatic hydrocarbons. The study is
reliable since it tested eleven polycyclic aromatic hydrocarbons. Accordingly, we can
suggest applying these new indices to other types of compounds such as the linear and
branched alkanes.

4.4. Comparative Analysis

To grasp the significance of these new indices, we will compare the results obtained
from the new versions of locating indices and some known indices in the literature. The
efficiency and applicability measured by comparable correlation coefficient (R) of the new
versions of locating indices and those of other known indices is shown in Table 8. The R
values of each index are very similar, range from 0.972 to 0.980. The unavailable data in
the table inspires more questions for future investigation to compare different topological
indices with our calculations of the new locating indices and to conduct more research into
the different types of benzenoid hydrocarbons.

Table 8. Correlation coefficients (R) between some topological indices and the physiochemical
properties of benzenoid hydrocarbons.

Topolgical Index (BP) (S) (v) (LogP) (RI) (C)

M1(ς) [First Zagreb index]

M2(ς) [Second Zagreb index] 0.980 [29]

R(ς) [Randić Index] 0.975 [30] 0.972 [30]

H(ς) [hyper Index] 0.974 [31] 0.972 [30]

SO(ς) [Sombor index]
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