
Citation: Li, H.; Chen, Y.; Zhang, Z.;

Peng, J. RAISE: Rank-Aware

Incremental Learning for Remote

Sensing Object Detection. Symmetry

2022, 14, 1020. https://doi.org/

10.3390/sym14051020

Academic Editor: Wiesław Leonski

Received: 4 March 2022

Accepted: 9 May 2022

Published: 17 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

RAISE: Rank-Aware Incremental Learning for Remote Sensing
Object Detection
Haifeng Li 1 , Ye Chen 1, Zhenshi Zhang 2 and Jian Peng 1,*

1 School of Geosciences and Info-Physics, Central South University, Changsha 410083, China;
lihaifeng@csu.edu.cn (H.L.); 195012130@csu.edu.cn (Y.C.)

2 Undergraduate School, National University of Defense Technology, Changsha 410080, China;
zhangzhenshi@nudt.edu.cn

* Correspondence: pengj2017@csu.edu.cn

Abstract: The deep learning method is widely used in remote sensing object detection on the premise
that the training data have complete features. However, when data with a fixed class are added
continuously, the trained detector is less able to adapt to new instances, impelling it to carry out
incremental learning (IL). IL has two tasks with knowledge-related symmetry: continuing to learn
unknown knowledge and maintaining existing knowledge. Unknown knowledge is more likely to
exist in these new instances, which have features dissimilar from those of the old instances and cannot
be well adapted by the detector before IL. Discarding all the old instances leads to the catastrophic
forgetting of existing knowledge, which can be alleviated by relearning old instances, while different
subsets represent different existing knowledge ranges and have different memory-retention effects on
IL. Due to the different IL values of the data, the existing methods without appropriate distinguishing
treatment preclude the efficient absorption of useful knowledge. Therefore, a rank-aware instance-
incremental learning (RAIIL) method is proposed in this article, which pays attention to the difference
in learning values from the aspects of the data-learning order and training loss weight. Specifically,
RAIIL first designs the rank-score according to inference results and the true labels to determine
the learning order and then weights the training loss according to the rank-score to balance the
learning contribution. Comparative and analytical experiments conducted on two public remote
sensing datasets for object detection, DOTA and DIOR, verified the superiority and effectiveness of
the proposed method.

Keywords: deep learning; object detection; incremental learning; stability and plasticity; data rank;
remote sensing

1. Introduction

The object-detection task for remote sensing images, as one of the important tasks of
remote sensing image interpretation, needs to detect all the objects describing the Earth’s
surface objects in remote sensing images, to achieve the goals of determining the classes
of objects and accurate localization. The classes of interest in the object-detection task
for remote sensing images mainly encompass airplanes, buildings, vehicles, vessels, etc.,
playing a highly crucial role in object tracking and monitoring, activity detection, scenario
analysis, urban planning, military research, and other application fields [1]. Deep learning
automatically acquires the colors, edges, textures, contours, and other low-level features
of images and advanced features macroscopically describing the semantics [2], and its
performance in object-detection tasks for remote sensing images has already exceeded that
of traditional detection algorithms, which design features manually [3]. However, it is
important to note that the deep-learning method needs the trained data to be integral and
to have sufficiently rich features. In practice, the real world is dynamically changing, and
new remote sensing image data appear continuously over time.
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Classical learning paradigms that learn from static data are not suitable for such a
scenario of incremental data change. Incremental learning (IL) [4–7] has received much
attention among the methods for handling streaming data. Specifically, IL has three
requirements: (1) not having access to large amounts of old data again; (2) maintaining
stability, that is, firmly committing the knowledge learned from old data to memory (this is
difficult because, when the neural network only learns new data, a catastrophic forgetting
of the old knowledge occurs [8,9]); (3) achieving plasticity, that is, continuing to learn useful
knowledge from new data to fit the distribution of new data. Most studies on IL [10–13]
generally focus on a class-incremental scenario for image classification, which has achieved
good results in solving the problem of the catastrophic forgetting of an old class. For
more complex object-detection tasks, when the domain of the class changes, the methods
described in [14–18] can enable the detector to adapt to the new and old classes.

However, in the field of remote sensing, the classes of objects are relatively constant.
The instance increment scenario in remote sensing object detection is common, but there is
a lack of research. The instances of the same class provided by remote sensing satellites are
ever increasing, and the feature diversity of an object is continuously enriched. The feature
diversity of the objects of remote sensing images refers specifically to the diversity in color,
size, resolution, background complexity, and other aspects, which stems from a myriad
of factors, including imaging factors such as the imaging condition and imaging quality;
environmental factors such as the weather, season, and geographic location; and intrinsic
semantic factors, such as the shape and visual appearance. When the feature diversity of
the old instance data is not enough, the trained model cannot adapt to the new instance
well. As shown in Figure 1, the original detection model trains old instances in the initial
scenario. When new instances are added to the training data, the detection model should fit
the features of all the objects and demonstrate improved detectability after IL. Moreover, a
mass of unlearned new instances are unlabeled and need to be manually annotated before
being provided for IL.

Figure 1. Schematics of the initial scenario and the instance incremental scenario. Provided that the
class is constant before and after, new instances appear continuously over time.

In the instance incremental scenario, the plasticity and stability of IL come from new
and old instances, respectively, and the IL value of the data is different. For the new
instances, there are some data with features similar to those of the old instances, and there
are also data with features different from those of the old instances. The former situation is
not well understood by the detection model, which is more valuable for the plasticity of
IL. Using a memory buffer [6] is a good strategy for maintaining stability, i.e., relearning
some of the old instances. With the same buffer volume, different old instances represent
different memory ranges, and the IL value of consolidating stability is different. If all the
data are treated in a consistent manner, resources are wasted due to the label costs of new
instances, the storage space for old instances, and training resources, which eventually lead
to low learning efficiency. The existing methods solve data differences at a single level
using the data-learning order or a training strategy. Some methods in the domain of active
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learning [19–23] can give priority to learning important new instances by estimating the
learning value of unlabeled samples via the query algorithm; the methods focusing on hard
samples [24–26] can adjust the learning process. However, there is a lack of an effective
two-level unified method.

Therefore, this study designed a rank-aware instance-incremental learning (RAIIL)
method for the instance incremental scenario of remote sensing image object detection.
This method includes instance rank (IR) and rank-aware incremental learning (RAIL).
Oriented to the unlabeled new instances and learned old instances in IR, the designed
rank-score can automatically estimate the IL value and rank data. In RAIL, the rank-aware
loss is designed for loss weighting according to the rank-score to balance the training
contributions. The key to the success of the method lies in the rank-scores of the instances.
The new instances that the model cannot understand have a high learning value, and the
rank-scores of new instances are measured according to the uncertainty of the predicted
results without artificial visual participation. The idea of selecting uncertain data to learn
comes from active learning [27], but it is not focused on the learned data. For the old
instances, considering that the representative samples can better restore memory and
that whether they are representative is evaluated from the prediction results, the rank-
score is calculated according to the uncertainty and inaccuracy of the prediction results.
Afterwards, according to the rank-score, uniform sampling makes the prediction results as
rich as possible.

The main contributions of this article are summarized as the following three points:

1. For the object-detection task for remote sensing images, a rank-aware instance-
incremental learning method for the instance incremental scenario, which is an in-
cremental learning paradigm using the learning order and a training strategy for
learning streaming data with differing values, is proposed.

2. The calculation method for the rank-score was designed based on the uncertainty and
inaccuracy of the predicted results to adaptively rank new instances and old instances;
meanwhile, a uniform sample weighting direction was provided for model training.

3. Experiments were conducted on two widely used remote sensing image datasets, the
superiority of the proposed method compared to the existing methods was verified,
and the intrinsic effectiveness of the method was verified by an ablation experiment
and a hyperparameter analysis experiment.

2. Related Work
2.1. Object Detection for Remote Sensing Images

The methods of object detection for remote sensing images are mainly classified
into traditional feature-representation and deep-learning-based methods, according to
the mode of feature extraction. The former rely on the designer’s prior knowledge of
the manual design of the corresponding features targeted against different classes of
detection objects. The authors in [28,29] utilized the histogram of oriented gradient (HOG)
features for the detection of vessels, buildings, and vehicles, respectively. In addition, some
researchers [30,31] have utilized binarized normed gradient (BING) magnitude features
for airplane detection. The authors in [32] utilized local binary patterns (LBPs) for vessel
detection. For the visual interpretation of images, information of great value is layered,
while traditional methods show inferior robustness. Since 2012, deep learning has gained
overwhelming superiority in natural image-classification tasks by virtue of its powerful
feature-extraction ability [33,34]. Deep learning has been widely and successfully applied
in semantic segmentation [35], object detection [36], remote sensing interpretation [37,38],
graph convolutional network [39,40], and adversarial examples[41], and it can satisfactorily
address the deficiencies of traditional methods when applied in object detection for remote
sensing images [42–45].

In the deep-learning-based object detector, the backbone network extracts the features
of images for follow-up networks. As the backbone network has evolved from AlexNet [33],
VGG [34], and GoogleNet [46] to ResNet [47], its depth, width, and complexity have
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continued to increase, and its performance in network detection has continued to improve.
Specific to the object-detection network structure, depending on whether or not the region
of interest (ROI) is extracted, it is divided into one-stage and two-stage methods.

The two-stage methods first generate region proposals via specialized modules to
seek the prospect before further classifying and adjusting the position of the box. The
R-CNN [36] uses a selective search algorithm to generate candidate regions before inputting
a convolution neural network (CNN) for feature extraction. However, the candidate regions
may overlap, leading to a very high computational complexity. A Fast R-CNN [48] performs
feature extraction from the entire image to reduce redundancy. The Faster R-CNN [49] is
an end-to-end model in its real sense, using the candidate region proposal network (RPN)
to generate foreground candidate regions to achieve a higher generation quality, and it is
later connected to the Fast R-CNN for further classification and localization. The features
utilized by previous networks are typically limited to the deep layer; although deep features
contain richer semantic information and are more conducive to object classification, the
absence of spatial information is not conducive to object localization. Therefore, the authors
in [50] propose feature pyramid network (FPN) with a top-down network architecture with
a lateral connection that fuses multilayer features to make the localization more accurate.
The models adopted in this experiment also include a Faster R-CNN and an FPN.

The one-stage methods, using only one network to simultaneously perform object
classification and bounding-box positioning, can better meet the real-time requirement
than the region-proposal-based methods in terms of computing speed. You only look once
(YOLO) [51] has streamlined the whole process of object detection, thereby improving
the speed and utilizing grids. YOLO9000 [52] shows an enhanced detection accuracy
and a high speed realized through multifaceted improvements in the backbone network,
training strategy, etc. RetinaNet [25] utilizes the characteristic pyramid network and the
loss function concerning the issue of a hard sample imbalance to enhance the detection
accuracy. However, the current one-stage methods remain inaccurate.

Regarding some existing problems in remote sensing images, many studies have con-
ducted intensive exploration, including working with class imbalances [53], complicated
backgrounds [54], changes in object scale [55], rotated object detection [56], small objects [57],
and other aspects, and demonstrated improved performance in object detection for remote
sensing images. However, the current object-detection methods for remote sensing images
typically focus on closed-world static data and set the learning scenarios for only one-time
learning, without the ability to learn incrementally as data continuously extend.

2.2. Incremental Learning in Deep Learning

Incremental learning (IL) is a progressive learning mode that can effectively handle
streaming data and that originated from cognitive neuroscience research into memory and
forgetting [58]. IL specifically refers to the learning paradigm in which the model can keep
learning new knowledge on the basis of having finished learning old knowledge. Since
incremental learning itself is a broad concept, it calls for analysis and research relying on
the concrete scenario. According to the definition in [59], there are three major scenarios:
the instance incremental scenario, the class incremental scenario, and the instance-and-class
incremental scenario. In the instance incremental scenario, the number of classes is constant,
while the data in each class would extend at each learning stage. In the class incremental
scheme, the number of classes is modifiable. The last one is the scenario that may coincide
with the circumstance of either of the former two scenarios.

The current research mainly concerns the issue of catastrophic forgetting in the class in-
cremental scenario and image classification, a basic visual analysis task. The regularization-
based IL learns new tasks on the premise of not using old data and protects the model’s
memory of old knowledge by constraining the loss function. Representative methods
include the learning without forgetting (LwF) algorithm [4] and the elastic weight con-
solidation (EWC) algorithm [5]. The former is based on knowledge distillation [60] and
places emphasis on keeping the decision boundary as unchanged as possible, while the
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latter aims to update the internal representation. The memory-buffer-based IL allows
parts of representative old data to join the new data to train a new task together, and the
model reviews and consolidates old knowledge by gaining access to the old data once
again. Representative methods include the iCaRL method [6] and GEM method [7]. This
kind of method can achieve an improved balance between cost consumption and learning
outcomes, but there are no recent studies for object detection.

Object detection models are more complicated than image classification models, which
need to perform semantic classification and bounding-box positioning for the objects in the
image. The authors in [14] proposed a new class-oriented incremental detection method
for the first time, but this method uses a less advanced Fast R-CNN and generally relies
on old classes. Later, [15,16] improved the Faster R-CNN, and a study also achieved class-
incremental learning via meta-learning [17] and multiscale feature fusion [18]. The above
work concerns class-IL for object detection using knowledge distillation, but there remain
no established research outcomes of instance-IL for object detection in the remote sensing
domain.

3. Methods
3.1. Overview

The structure of rank-aware instance-incremental learning (RAIIL) is shown in Figure 2,
including the instance rank (IR) at the data level and rank-aware incremental learning
(RAIL) at the model level. The algorithm flow of method is in Algorithm 1.

Figure 2. Method structure of RAIIL. The topmost two subfigures display the two parts, IR and RAIL,
of RAIIL, respectively. In IR, for unlabeled new instances, the uncertainty (UC)-based rank-score is
calculated using Formula (1) and ranked towards high rank-score values; for old instances, the UC-
and inaccuracy (IA)-based rank-score is calculated using Formula (4), and old instances are ranked
towards a diverse rank-score value. After new instances are labeled, they are rescored in terms of
the UC- and IA-based rank-score. The two kinds of data finally construct an incremental training
dataset after ranking and sampling. In RAIL, the loss function adopts a rank-aware loss (Formula (5))
when the model is fine-tuning. The bottom-most two subfigures display the calculation methods for
the UC and IA, respectively. The UC is a comprehensive estimate of the model’s non-determinacy
level with respect to the predicted results of the original image and the transformed image, while the
IA is an estimate of the degree of non-coincidence with respect to the image’s predicted results and
true labels.

In IR, the rank-score calculation function is designed for ranking and sampling accord-
ing to the response between the data themselves and the original model, so that priority
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can be given to learning the new instances, which carry more unknown features, and the
old instances, which are able to simulate the previous data distribution, hence shaping the
model’s plasticity with respect to new knowledge and stability with respect to old knowl-
edge. In RAIL, the original loss function has been improved in terms of the learning of the
incremental training set with a uniform learning value assessment system, by assigning
reasonable weights to the training losses of samples in terms of the rank-score. Section 3.2
describes, in detail, the IR method for two kinds of data: new instances and old instances;
Section 3.3 describes the RAIL for the entire incremental training set.

Algorithm 1: Rank-aware instance-incremental learning (RAIIL).
input : Inew: unlabeled new instances; Iold:labeled old instances; p: the sampling

proportion of new instances; s: the sampling proportion of old instances;
Modelold: the original detection model; T: incremental training dataset;

output : ModelIL: the updated detection model;

1 Initialization: T = {};
2 for i ∈ Inew do
3 iT ← Trans f orm(i); //Transform is the image transformation operation
4 Infer i and iT by Modelold;
5 Calculate RS of i according to the Formula 1;

6 Rank Inew from largest to smallest by RS ;
7 Ip

new ← Samplehigh(Inew, p); //Sample at large values
8 Annotate Ip

new and recalculate RS according to the Formula 4;
9 T← T ∪ Ip

new;
10 for j ∈ Iold do
11 jT ← Trans f orm(j);
12 Infer j and jT by Modelold;
13 Calculate RS of j according to the Formula 4;

14 Rank Inew from largest to smallest by RS;
15 Is

old ← Samplevarious(Inew, s); //Sample evenly at the same interval
16 T← T ∪ Is

old;
17 ModelIL ← arg min ∑k=1 Lossrank−aware(Tk) //This loss function is in Formula (5)

3.2. Instance Rank

In order to effectively deal with data differences for the model’s plasticity and stability
before training, we rank the new instances and old instances and sample important data in
advance. The rank-scores of samples are designed to measure the values of incremental
learning and serve as a basis for rank. There are differences in the labeling status and incre-
mental value between new instances and old instances: the new instances are unlabeled,
while the old instances carry true labels; the learning of the former serves the purpose
of gaining plasticity through the learning of new knowledge, while the learning of the
latter serves the purpose of retaining stability through the reviewing of old knowledge.
Considering that there is a certain difference in the rank of new instances and old instances,
IR includes two subparts—new instances rank (NIR) for plasticity and old instances rank
(OIR) for stability—which are covered in detail in Sections 3.2.1 and 3.2.2.

3.2.1. New Instances Rank for Plasticity

New instances are the data that have never been learned prior to the original model,
and the model’s plasticity can be achieved by learning them. In the state where new
instances are unlabeled, the original model with learning experience is relied on to measure
the value of the new instances. The more uncertain the original model is regarding the
predicted results of new instances, the more likely it is that these new instances contain
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new knowledge. Hence, the rank-score is calculated in terms of the uncertainty (UC) of the
original model regarding the predicted results of new instances. The higher the rank-score,
the higher up the rank order.

The predicted results for the entire image are actually for the prediction box level. The
“top-1” confidence level of the prediction box is used to estimate the degree of UC at the
box level. A lower “top-1” confidence level indicates that the model is more uncertain
regarding that result. The “top-1” confidence levels of all the prediction boxes in the
image are averaged in order to measure the UC at the image level. Additionally, since
the information in the predicted results of the original image is simplex, we transform
the original image and enrich its information content using the predicted results of the
transformed image. The uncertainties of the images before and after transformation are
calculated, respectively, and the difference between the predicted results before and after
transformation is calculated and compared. All of them constitute the UC at the sample
level. The greater the difference is, the more uncertain the original model is regarding
this image.

The UC is calculated using the following formula:

UC(imgi) =
uc(imgi) + uc(trans f orm(imgi))

2
+ |uc(imgi)− uc(trans f orm(imgi))| (1)

uc(imgi) = 1− 1
N

N

∑
j=1

pboxj
(2)

where imgi is the ith image; trans f orm is the image transformation operation on imgi, which
prevents the image’s semantic information from being undermined; uc(imgi) denotes the
UC level of the single image; pboxj

is the “top-1” confidence level of the ith predicted box
in imgi.

3.2.2. Old Instances Rank for Stability

The old instances rank uses important data to ensure the model’s stability. Since the
original model has fit the distribution of old instances through learning, the old instances
whose quality of predicted results is more likely to be diversified restore the model’s learn-
ing experience and possess greater learning value. Therefore, the rank-score is calculated
for the old instances in terms of the quality of the predicted results, and the data with
diversified rank-score values should be ensured for sampling.

In the state where the data are labeled, aside from uncertainty, the accuracy of the
predicted results also reflects the quality of the predicted results. The inaccuracy (IA) is
calculated in terms of the difference between the prediction boxes and truth labels using
the following formula:

IA(imgi) = 1− AP50(TLimgi , PRimgi ) (3)

where imgi is the ith image; TLimgi is the true labels in imgi; PRimgi is the predicted results in
imgi; AP50 is the calculation method for the average precision below the 0.5 IoU threshold
of the COCO dataset [61], which is used here to calculate the accuracy of a single image.

The rank-score is calculated comprehensively in terms of the uncertainty and inaccu-
racy of the predicted results. To weigh the proportions of both, the weight hyperparameters
α and β are introduced. The formula for the rank-score (RS) is as follows:

RS(imgi) = α ∗UC(imgi) + β ∗ IA(imgi) (4)

While the old instances are ranked in terms of the UC- and IA-based rank-score, the
unlabeled new instances are labeled manually and have true labels after being ranked in
terms of the UC-based rank-score, at which point their information content is as complete
as that of the old instances. We add the metric IA and recalculate the rank-score of the
new instances.
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3.3. Rank-Aware Incremental Learning

During fine-tuning, the original model faces the incremental training set composed of
new instances and old instances, which carry the rank-scores calculated under the same
evaluation system. Since the learning value of the samples had been estimated, RAIL uses
the rank-scores to learn different data.

Specifically, we improved the original loss function by proposing a rank-aware loss,
which weights the sample loss in terms of the rank-score, assigning greater weight to the
sample with a higher rank-score. Since the rank-score is gained from the original model’s
fixed experience prior to incremental learning, as the model’s learning ability varies during
the learning process and the initial rank-score is somewhat different from the current
learning value, the initial rank-score is set to be weakened. With an increase in the number
of iterations, the rank-score is progressively regressed to the mean of the initial rank-score
of the dataset.

The calculation formula for the rank-aware loss is as follows:

Lossrank−aware(imgi) = W(imgi, iter) ∗ Lossoriginal(imgi) (5)

where Lossoriginal(imgi) is the original training loss of imgi; W(imgi, iter) is the weight of
loss when the number of iterations is iter.

The calculation formula for the weight of the rank-aware loss is as follows:

W(imgi, iter) = RS + (RS(imgi)− RS) ∗ (1− iter
itermax ) (6)

RS =
1
N

N

∑
j=1

RS(imgj) (7)

where itermax is the maximum number of iterations; RS is the mean of the initial rank-score
of the incremental training set; RS(imgj) is the rank-score of imgi.

4. Materials for Experiments
4.1. Datasets

An experiment was conducted on DIOR [62] and DOTA [63], two commonly used
public datasets for remote sensing images, which have ample classes for object detection.
DIOR has 23,463 images of size 800 × 800, including 192,472 instance objects covering
20 common classes. DIOR falls into a training set, validation set, and test set, containing
5862, 5863, and 11,725 images, respectively. DOTA has 2806 images varying in size from
800 × 800 to 4000 × 4000, including 188,282 objects covering 15 classes. DOTA falls into a
training set, validation set, and test set, containing 1411, 758, and 937 images, respectively.
Since the test set of DOTA is unusable, its training set was used for determining the training
and testing accuracy over the validation set. Additionally, since a uniform size was required,
9123 and 2796 images were generated, respectively, within the 800*800 range to comprise a
usable training set and a validation set, after the original DOTA images were clipped.

4.2. Baselines

There is no existing method for instance-IL for object detection. We considered the
correlation, representativeness, and reproducibility and selected existing methods that
could deal with incremental learning or data differences to verify that this proposed method
could solve the problem of data differentiation learning in an instance incremental scenario.

(1) Fine-tuning (FT). It suggests that there is no difference between new instances and
that they are added into the training set in a disorderly fashion. At the same time, the
original model is used to fine-tune the parameters.

(2) ALDOD [19]. It actively selects samples for learning according to the query strategy.
We selected two mean-based active query strategies: Avg (based on the average 1v2
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confidence level) and Avg + w (based on the average 1v2 confidence level while balancing
the numbers of objects of different classes). This method is used in new instances.

(3) The memory buffer (MB). It adds new instances into the training set in a disorderly
manner while accounting for the existence of forgetting and preserving old instances, also
in a disorderly manner.

(4) Focal loss (FL) [25]. It suggests that there is a difference in the difficulty of new
samples and that the losses of hard samples should be balanced during model training.
This method is used in new instances.

4.3. Experiment Setup
4.3.1. Division of Datasets for the Instance Incremental Scenario

To simulate the instance incremental scenario, the whole dataset was divided into three
sub-datasets, one for old instances, one for new instances, and a third for test instances.
Old instances were used to train the original model. As new instances appeared later, the
model needed to start incremental learning. Test instances were always fixed before and
after incrementation, to estimate the accuracy of the trained model. For DIOR, the training
set was set as old instances, the validation set as new instances, and the test set as test
instances. For DOTA, half of the elements of the training set were selected at random as old
instances, and the other half as new instances. The original validation set was used as test
instances. The statistics regarding the division of the datasets are shown in Tables 1 and 2.
The old instances and new instances of each dataset have roughly the same numbers of
images and objects.

Table 1. The numbers of images after division for the increment scenario.

Datasets Old Instances New Instances Test Instances

DIOR 5862 5863 11,725
DOTA 4602 4521 2796

Table 2. The numbers of objects after division for the increment scenario.

Datasets Old Instances New Instances Test Instances

DIOR 32,592 35,437 124,443
DOTA 54,134 52,826 31,168

4.3.2. Sampling Proportion Setting for IL

To explore and compare the performance of different methods (including the baselines
and the method proposed in this article) regarding data differences, we set distinct sampling
proportions of new instances and old instances for incremental training.

The proportion of new instances varied from 10% to 80% in intervals of 10%. Some
of the new instances were sampled according to a certain proportion by the sampling
strategy for one method. From the experimental accuracy results, we could explore whether
sampling this part of the data was useful and whether the model could learn it well.

When old instances are relearned in the method, due to the limitations of storage
space and training resources, most data cannot be retained. The default proportion of old
instances is set as 25%, and other smaller proportions are set as 5–20% in intervals of 5%.
IL uses a certain proportion to sample old instances for relearning, and we analyzed the
results to determine if those data were useful.

4.3.3. Training Configuration

The object-detection model used was a Faster R-CNN, which exhibits outstanding
accuracy for DIOR and DOTA. The backbone network adopted the Resnet-50-FPN. The
specific implementation was based on Detectron2 [64]. The GPU was configured with an
NVIDIA GeForce GTX 2080. The pretraining model for the COCO dataset [61] was utilized
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and relocated onto the object-detection task for remote sensing images. If the random
selecting operation was available in the method, then the execution needed to be repeated
five times. In the hyperparameter setting, during the training period, the initial learning
rate was set as 0.00025, the batch size as 4, and the epochs as 12. The hyperparameters α
and β of RAIIL were set as 1 by default, and the transformation operation on the images
was set as a clockwise rotation by 90°. For the hyperparameter of FL [25], we referred to
the original document and set the value of γ as 2. Since the Faster R-CNN is a two-stage
detection model, the classification losses in the structures of the RPN and the Fast R-CNN
became focal losses. Additionally, the value of focal losses in classification was converted
to the same value as the value of the original classification losses to avoid an imbalance
between the classification losses and regression losses.

4.4. Precision Metrics

Like the existing incremental detection methods [14–18], this study also adopted the
average precision (AP) as the metric of the instance-IL for object detection. The AP metric
comprehensively estimated the precision of the classification and coordinate regression
results over the test set. Specifically, three precision metrics of the COCO dataset [61]
were adopted:

(1) mAP: the mean AP below all the thresholds (0.50:0.05:0.95) of the IoU (intersection
over union) and under all the classes, which integrates different requirements on the
positioning accuracy and reflects the average performance;

(2) AP50: the AP of all the classes below the threshold 0.5 of IoU; as per the positioning
accuracy requirement, the IoU between the predicted box and ground truth should be
greater than 0.5;

(3) AP75: the AP of all the classes below the threshold 0.75 of IoU; as per the positioning
accuracy requirement, the IoU between the predicted box and ground truth should be
greater than 0.75.

5. Results
5.1. Performance
5.1.1. Comparison of All Methods

Figures 3 and 4 display the precision results obtained by different methods, with
distinct proportions of new instances in DIOR and DOTA used for training. By default, the
proportion of old instances for MB and RAIIL was 25%. Among the experimental results,
in most of the settings, the FT precision in baselines is the lowest. FT learns new instances
on the current base without performing value ranking and manual adjustment, and its
performance is minimum. At the current parameters and some of the proportions, FL [25],
which calls for the manual adjustment of parameters, has slightly improved performance
compared to FT, which reflects that the benefit of FL [25] focusing on hard samples is
weak for incremental learning. The results of MB over these two datasets are consistent,
with a precision far higher than that of FT. The reason for the good results is that a certain
amount of storage space opened for old instances, which effectively mitigated catastrophic
forgetting. At multiple proportions of new instances over DIOR and DOTA, the two
methods of ALDOD [19] are both superior to FT, indicating that new instances with greater
value can be selected actively via the query strategy of ALDOD [19]. Aside from the
new method proposed in this article, the methods with the highest precision are MB and
ALDOD [19], the two most competitive methods among baselines.

Compared to all of the existing methods in this experiment, RAIIL exhibits significant
superiority in all three precision metrics, whether at a small proportion or at a large
proportion close to the complete dataset, demonstrating the powerful advantage of RAIIL.
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Figure 3. Precision results for multiple sampling proportions of new instances over DIOR. The solid
line of the three methods (MB, FL, and FT) represents the average value of 5 random experiments,
and the dotted line represents the maximum and minimum values. (a) mAP. (b) AP50. (c) AP75.

Figure 4. Precision results for multiple sampling proportions of new instances over DOTA. The solid
line of the three methods (MB, FL, and FT) represents the average value of 5 random experiments,
and the dotted line represents the maximum and minimum values. (a) mAP. (b) AP50. (c) AP75.
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5.1.2. Further Comparison of MB and RAIIL Involving Old Instances Retention

An additional experiment was conducted on DIOR and DOTA to further compare
the performances of the two methods (MB and RAIIL) that need to preserve old instances.
Figure 5 shows the precision results for the additional experiment at various proportions of
old instances ranging from 5% to 25%, with the proportion of new instances fixed at 30%,
close to the largest proportion of old instances. Of these two methods, RAIIL had higher
precision in most settings, which further indicates that RAIIL has good performance.

Figure 5. Precision results for RAIIL and MB at multiple sampling proportions of old instances.
(a) mAP. (b) AP50. (c) AP75.

5.2. Labeling Cost for New Instances

Unlabeled new instances are sampled before being labeled and learned. Hence, in most
studies, the sample size is controlled using the number of images. This was also done in our
experiments, but at the same number of images, the sampling strategy in different methods
labeled different numbers of objects. We adopted four different sampling strategies for
the new instances over the two experimental datasets and counted the manually labeled
objects generated by different methods.

The statistical results are shown in Figure 6. From them, it can be seen that FT, which
uses a random sampling strategy, has the largest number of labeled objects at various
proportions. The two query and sampling strategies of ALDOD [19] significantly decrease
the number of annotations, while in most cases, RAIIL selects the image that contains the
smallest number of objects upon reaching the highest precision performance, which reflects
the advantage of this method in terms of the labeling cost.
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Figure 6. Statistics for the number of labeled objects for new instances. (a) Statistical results for DIOR.
(b) Statistical results for DOTA.

5.3. Ablation Experiment

The ablation experiment was conducted on three parts (NIR, OIR, and RAIL) of RAIIL
on DIOR, at four proportions of new instance selection and 25% of old instances. The
results are shown in Tables 3–5. The inclusion of each part contributes enormously to
higher performance, and the combination of the three almost achieves perfect performance,
indicating the internal and overall effectiveness of RAIIL.

Table 3. The mAP results under four proportions of new instances for DIOR.

Ablation Settings 20% 40% 60% 80%

NIR 37.99 40.42 41.00 41.92
NIR+RAIL +0.53 -0.47 +0.36 +0.12
NIR+OIR +1.90 +1.05 +0.65 +0.73

RAIIL +2.32 +1.41 +0.87 +0.85

Table 4. The AP50 results under four proportions of new instances for DIOR.

Ablation Settings 20% 40% 60% 80%

NIR 61.38 64.21 64.62 65.24
NIR+RAIL +0.91 −0.35 +0.95 +0.26
NIR+OIR +1.81 +1.05 +0.48 +1.12

RAIIL +2.98 +1.70 +1.01 +1.42

Table 5. The AP75 results under four proportions of new instances for DIOR.

Ablation Settings 20% 40% 60% 80%

NIR 40.84 43.65 44.36 45.70
NIR+RAIL +0.60 −0.59 +0.46 +0.27
NIR+OIR +2.37 +1.37 +1.40 +0.82

RAIIL +2.64 +1.85 +1.18 +0.86

5.4. Visualization of Rank Results

Figure 7 displays the rank results of some of the new instances in DIOR and the
rank-score calculated based on the UC, and it also visualizes the bases for the rank-score
calculation (the predicted results of original new instances and of transformed data); it also
displays the true labels possessed by the images. For the rank-score of new instances, the
degree of uncertainty is calculated according to the predicted results with respect to the new
instances (which is shown in the first two columns of Figure 7). Among the new instances,
as the average confidence level of the predicted results with a great difference before and
after transformation decreases, the rank-score, the uncertainty of the model, and the priority
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of being learned all increase. The samples with lower rank-scores have less learning value,
as the original model can achieve very good detection results without learning.

Figure 7. An example of rank results for some samples of new instances in DIOR. The first column
shows the rank results and rank-score based on UC, and the middle two columns visualize the
predicted results of the original new instances and the transformed samples; the last column shows
the true labels of the samples.

5.5. Parametric Sensitivity

The hyperparameters α and β control the weights of uncertainty and inaccuracy,
respectively, in rank-score. A parameter sensitivity experiment was conducted on the
DIOR dataset; the results are shown in Table 6. The experimental results were the most
inferior under the configuration α = 0, β = 1, while neither the configuration α = 1, β = 0,
nor the default α = 1, β = 1, in the comparative experiment failed to achieve the highest
accuracy when α = 1 and β = 5. Under the circumstance in which the samples are unlabeled,
new instances are selected and labeled by the RAIIL method, depending only on the
uncertainty. The adjustment of the weights of the uncertainty and inaccuracy only occurs
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in the follow-up training process and can be balanced with reference to the results of
this experiment.

Table 6. Precision results regarding parameter sensitivity for DIOR, using 20% of new instances and
25% of old instances.

Hyperparameters mAP AP50 AP75

α = 1, β = 1 (default) 40.30 64.36 43.48
α = 1, β = 0 40.29 63.38 44.00
α = 1, β = 2 39.93 63.57 43.04
α = 1, β = 3 39.86 63.62 43.07
α = 1, β = 4 40.45 64.58 43.72
α = 1, β = 5 40.66 (max) 65.10 (max) 44.13 (max)
α = 0, β = 1 39.36 (min) 61.64 (min) 42.47 (min)
α = 2, β = 1 39.62 63.99 42.92
α = 3, β = 1 40.14 64.87 43.61
α = 4, β = 1 40.29 64.52 43.89
α = 5, β = 1 39.83 64.50 42.89

5.6. Exploring the Influence of Data Order

The final incremental learning outcome may differ according to the order in which
the data come in. To explore how differences in the incoming data’s order influenced our
proposed incremental learning method, the incoming orders of new and old instances were
exchanged for the DIOR dataset. The setting 2 (where the new instances come first, and the
old instances come later) was put forward to compare with the default setting 1 (where
the old instances come first, and the new instances come later). To ensure the reliability
of the results, the high-performing MB method among baselines and the RAIIL method
were selected for the experiment together; the experimental results are shown in Table 7.
First, under the setting where the orders are reversed, the RAIIL method exhibited excellent
performance compared to the MB method. Next, taking the mean of all the precision results
under four proportions as the overall outcome, we found that a different data-learning
order led to different results. Compared to the MB method, RAIIL can narrow such a gap,
which indicates an improved handling of changes in the data.

Table 7. Results under two data-order settings for DIOR.

Conditions
Precision Results for MB Precision Results for RAIIL

mAP AP50 AP75 mAP AP50 AP75

setting 2-1 1 39.53 62.98 42.98 40.89 64.29 44.43
setting 2-2 2 40.64 64.26 44.19 41.58 65.66 45.09
setting 2-3 3 41.72 65.33 45.45 41.75 65.05 45.67
setting 2-4 4 42.22 65.95 46.02 42.71 66.17 46.68
Mean of four results under setting 2 41.03 64.63 44.66 41.73 65.29 45.47

Mean of four results under setting 1 40.73 64.05 41.69 41.69 65.64 45.27

Absolute difference in mean 0.30 0.58 2.97 0.04 (min) 0.35 (min) 0.20 (min)
1 Incremental learning 20% of new coming data and 25% of existing data under setting 2. 2 Incremental learning
40% of new coming data and 25% of existing data under setting 2. 3 Incremental learning 60% of new coming data
and 25% of existing data under setting 2. 4 Incremental learning 80% of new coming data and 25% of existing data
under setting 2.

6. Discussion
6.1. Strengths and Limitations

The method proposed in this article has the following strengths:

1. The precision results of the experiment show that giving priority to the data sampled
according to the rank-score and giving greater weight to the ones with a high rank-



Symmetry 2022, 14, 1020 16 of 19

score can effectively yield key knowledge. Moreover, it is appropriate to calculate
the rank-score based on the uncertainty and inaccuracy of the prediction results. The
new instances with high prediction uncertainty have greater learning value. After
calculating the rank-score according to the prediction uncertainty and prediction
inaccuracy, the representative old instances with various rank-scores have greater
learning value.

2. This method solves the difficulties of determining the kind of new or old instance
as well as how incremental training can be conducted. The results of the ablation
experiments show that the proposed method can well integrate the internal structure
and that every part of the method is valid.

3. Compared with other methods, our method marks fewer data, saving costs on labeling.

A weakness in the method is that it ranks new instances and old instances separately
instead of uniformly ranking and sampling them. The two types of data are separated to
perform ranking, adding operational steps.

6.2. Future Research Directions

The ultimate goal of ranking old instances and new instances is to upgrade the model’s
detectability. In future work, it will be worth studying how to rank the value of all data
uniformly. Had this been possible, an improved performance in boosting the model’s
detectability might have been achieved.

This work provides certain storage space for old instances. Research can further examine
instance-incremental learning methods without a memory buffer, to cope with the extreme
condition where data are unsavable and to save training resources to a greater extent.

Furthermore, the increment of the class, which is even less common than the increment
of the instance, will inevitably appear. Therefore, another direction of future research could
be to blend this work into the instance-and-class incremental scenario to adapt to complex
and diverse real-world applications.

7. Conclusions

In this work, the instance incremental scenario of the object-detection task for remote
sensing images was explored. The instance incremental scenario where new instances are
continuously added is more applicable than scenarios where data are closed and static. We
analyzed the difference in the learning value of data in the instance incremental scenario,
proposed the RAIIL method, designed a rank-score function for the value estimation of
learned and unlearned data, and designed a balanced training strategy with the rank-aware
loss. Over two remote sensing datasets, DIOR and DOTA, full experiments were conducted,
including performance comparison, data labeling cost, ablation of methods, visualization
of rank results, exploring the parameter sensitivity and the influence of the data order. The
outstanding results for RAIIL demonstrate the effectiveness of this method. It is hoped that
the work presented here can assist more studies in exploring instance incremental detection
for remote sensing images.
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Abbreviations
The following abbreviations are used in this manuscript:

ALDOD Active learning for deep object detection
AlexNet ImageNet classification with deep convolutional neural networks
AP Average precision
AP50 The AP below the threshold 0.5 of IoU
AP75 The AP below the threshold 0.75 of IoU
BING Binarized normed gradient
CNN Convolution neural network
COCO Common objects in context
EWC Elastic weight consolidation
Fast R-CNN Upgraded version of R-CNN
Faster R-CNN Upgraded version of Fast R-CNN
FL Focal loss
FPN Feature pyramid network
FT Fine-tuning
GEM Gradient episodic memory
GoogleNet Going deeper with convolutions
GPU Graphic processing unit
HOG Histogram of oriented gradient
IA Inaccuracy
iCaRL Incremental classifier and representation learning
IL Incremental learning
IoU Intersection over union
IR Instance rank
LBPs Local binary patterns
LwF Learning without forgetting
mAP The mean of AP below all thresholds (0.5:0.05:0.85) of IoU
MB Memory buffer
NIR New instances rank
OIR Old instances rank
RAIIL Rank-aware instance-incremental learning
RAIL Rank-aware incremental learning
R-CNN Region-based CNN
ResNet Residual network
RetinaNet One-stage detector with dense sampling for focal loss
ROI Region of interest
RPN Region proposal network
RS Rank-score
UC Uncertainty
VGG Visual geometry group
YOLO You only look once
YOLO9000 Better, faster, stronger YOLO
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