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Abstract: Initially, the concept of the complexity reduction approach was applied to solve symmetry
algebraic systems that were generated from the discretization of the partial differential equations.
Consequently, in this paper, the effectiveness of a complexity reduction approach based on half- and
quarter-sweep iteration concepts for solving linear Fredholm integral equations of the second kind is
investigated. Half- and quarter-sweep iterative methods are applied to solve dense linear systems
generated from the discretization of the second kind of linear Fredholm integral equations using a
repeated modified trapezoidal (RMT) scheme. The formulation and implementation of the proposed
methods are presented. In addition, computational complexity analysis and numerical results of test
examples are also included to verify the performance of the proposed methods.

Keywords: Fredholm equations; complexity reduction approach; repeated modified trapezoidal;
point iterative method

1. Introduction

Integral equations commonly arise as mathematical models for a variety of physical
phenomena and also as reformulations of other mathematical models. In this paper, the sec-
ond kind of linear Fredholm integral equations, which can be represented mathematically
as follows,

ϕ(x) +
∫ b

a
K(x, t)ϕ(t)dt = f (x), x ∈ [a, b] (1)

are considered. The kernel K(x, t) and function f (x) are known, whereas the function ϕ(x)
is unknown and has to be determined from Equation (1). The kernel K(x, t) is assumed
to be integrable and to satisfy properties that are sufficient to guarantee the conditions of
the Fredholm alternative theorem (refer to Theorem 1 below). Equation (1) can also be
rewritten in the equivalent operator form

(I + κ)ϕ = f (2)

where the integral operator is defined as follows:
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κϕ(t) =
∫ b

a
K(x, t)ϕ(t)dt. (3)

Theorem 1 ([1]). Let χ be a Banach space and let κ : χ −→ χ be compact. Then, the equation
(I + κ)ϕ = f has a unique solution x ∈ χ if and only if the homogeneous equation (I + κ)z = 0

has only the trivial solution z = 0. In such a case, the operator I + κ : χ
1−1−→
onto χ has a bounded

inverse (I + κ)−1.

Definition 1 ([1]). Let χ and Y be a normed vector space and let κ : χ −→ Y be linear. Then, κ
is compact if the set {κx|‖x‖x ≤ 1} has compact closure in Y. This is equivalent to saying that,
for every bounded sequence {xn} ⊂ χ, the sequence {κxn} has a subsequence that is convergent to
some points in Y. Compact operators are also called completely continuous operators.

In many applications, numerical techniques are widely used to solve linear Fredholm
integral equations compared to the analytical method. The basic concept is the discretiza-
tion of linear Fredholm integral equations to yield linear systems, which are then solved
numerically. Many methods have been proposed to discretize the linear Fredholm integral
equations of the second kind into linear systems, such as projection [2–6] and quadra-
ture [7–13] methods. Such discretizations mostly lead to dense linear systems and can be
prohibitively expensive to solve using direct methods as the order of the system increases.
Hence, iterative methods are an attractive alternative for efficient solutions.

Consequently, the concept of the half-sweep iteration was first envisioned by Abdul-
lah [14] via the Explicit Decoupled Group (EDG) method to solve symmetry algebraic
systems that are generated from the discretization of the two-dimensional Poisson equa-
tions. Meanwhile, Othman and Abdullah [15] extended the half-sweep iteration concept to
the quarter-sweep iteration concept through the Modified Explicit Group (MEG) method.
Both the iteration concepts are also known as the complexity reduction approach. The
basic idea of the half- and quarter-sweep iteration concepts is to reduce the computa-
tional complexity of the method during iterations. The implementation of the half- and
quarter-sweep iterations will only consider nearly a half and a quarter of all interior node
points in a solution domain, respectively. Further studies to verify the effectiveness of both
iteration concepts have been carried out; refer to [16–21] and references therein. In this
paper, the performance of the half- and quarter-sweep iterative methods is investigated in
solving dense linear systems generated by the discretization of problem (1) using a repeated
modified trapezoidal (RMT) [13] scheme.

The outline of this paper is as follows. Section 2 gives the formulation of the full-, half-
and quarter-sweep RMT approximation equations. Meanwhile, Section 3 discusses the
application of the full-, half- and quarter-sweep iterative methods to solve problem (1). Nu-
merical results are presented in Section 4 to demonstrate the performance of the proposed
numerical techniques. The computational complexity of the proposed methods in solving
problem (1) is explained in Section 5, and concluding remarks are given in Section 6.

2. Repeated Modified Trapezoidal Approximation Equations

The RMT scheme is applied to discretize problem (1) by replacing the integral by
finite sums. The formula for the modified trapezoidal scheme for solving definite integral∫ b

a ϕ(t)dt is defined as follows

∫ b

a
ϕ(t)dt =

b− a
2

[ϕ(a) + ϕ(b)] +
(b− a)2

12
[ϕ
′
(a)− ϕ

′
(b)]− (b− a)5

720
ϕ(4)(ξ), (4)

and its repeated formula (RMT) is

∫ b

a
ϕ(t)dt =

h
2

ϕ(a) + h
n−1

∑
j=1

ϕ(tj) +
h
2

ϕ(b) +
h2

12
[ϕ
′
(a)− ϕ

′
(b)] (5)
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where the constant step size, h, is defined as

h =
b− a

n
, (6)

and, n and tj (j = 0, 1, 2, · · · , n− 2, n− 1, n) are the number of subintervals in the interval
[a, b] and abscissas of the partition points of the integration interval [a, b], respectively.

The conditions of K(x, t) and f (x) must be differentiable with respect to their variables
should be satisfied in order to discretize problem (1) using the RMT scheme. Moreover, two
cases, which are whether the derivative of ∂K(x,t)

∂x∂t exists or not, also need to be considered
separately. Before further explanation, the following notations are used for simplicity:

Ki,j ≡ K(xi, tj),

ϕi ≡ ϕ(xi),

ϕj ≡ ϕ(tj),

fi ≡ f (xi),

Ji,j ≡
∂K(xi, tj)

∂tj
,

Hi,j ≡
∂K(xi, tj)

∂xi
,

Li,j ≡
∂K(xi, tj)

∂xi∂tj
,

ϕ
′
i ≡ ϕ

′
(xi)

and

f
′
i ≡ f

′
(xi).

Now, let interval [a, b] be divided uniformly into n subintervals and the discrete set of
points of x and t given by xi = a + ih and tj = a + jh. Based on [13], the RMT approxima-
tion equations for both cases are shown as follows.

Case 1: ∂K(x,t)
∂x∂t does not exist

ϕi + Ai,0 ϕ0 + h ∑n−1
j=1 Ki,j ϕj + Bi,n ϕn, i = 0, 1, 2, · · · , n− 2, n− 1, n

+ h2

12 (Ki,0 ϕ
′
0 − Ki,n ϕ

′
n) = fi

ϕ
′
0 +

h
2 H0,0 ϕ0 + h ∑r j = 1n−1H0,j ϕj +

h
2 H0,n ϕn = f

′
0

ϕ
′
n +

h
2 Hn,0 ϕ0 + h ∑n−1

j=1 Hn,j ϕj +
h
2 Hn,n ϕn = f

′
n

 (7)

Case 2: ∂K(x,t)
∂x∂t exists
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ϕi + Ai,0 ϕ0 + h ∑n−1
j=1 Ki,j ϕj + Bi,n ϕn, i = 0, 1, 2, · · · , n− 2, n− 1, n

+ h2

12 (Ki,0 ϕ
′
0 − Ki,n ϕ

′
n) = fi

ϕ
′
0 + C0,0 ϕ0 + h ∑n−1

j=1 H0,j ϕj + D0,n ϕn +
h2

12 (H0,0 ϕ
′
0 − H0,n ϕ

′
n) = f

′
0

ϕ
′
n + Cn,0 ϕ0 + h ∑n−1

j=1 Hn,j ϕj + Dn,n ϕn +
h2

12 (Hn,0 ϕ
′
0 − Hn,n ϕ

′
n) = f

′
n

 (8)

where

Ai,j =
h
2

Ki,j +
h2

12
Ji,j,

Bi,j =
h
2

Ki,j −
h2

12
Ji,j,

Ci,j =
h
2

Hi,j +
h2

12
Li,j

and

Di,j =
h
2

Hi,j −
h2

12
Li,j.

The standard RMT approximation equations as defined in Equations (7) and (8) also can be
referred to as full-sweep RMT approximation equations.

For further discussions on formulating the half- and quarter-sweep RMT approx-
imation equations for problem (1), the interval that is divided uniformly, as shown in
Figures 1 and 2, is considered.

Figure 1. Distribution of uniform node points for the half-sweep case.

Figure 2. Distribution of uniform node points for the quarter-sweep case.

Based on Figures 1 and 2, the half- and quarter-sweep iterative methods will compute
estimation values for node points of type • only until the convergence criterion is satisfied.
After the convergence criterion is achieved, the estimation solutions for the remaining
points are computed directly [12,14,15].

By applying the half- and quarter-sweep iteration concepts, the generalized full-,
half- and quarter-sweep RMT approximation equations for both cases can be expressed as
follows.

Case 1: ∂K(x,t)
∂x∂t does not exist

ϕi + Ai,0 ϕ0 + ph ∑
n−p
j=p,2p,3p Ki,j ϕj + Bi,n ϕn, i = 0, p, 2p, · · · , n− 2p, n− p, n

+ (ph)2

12 (Ki,0 ϕ
′
0 − Ki,n ϕ

′
n) = fi

ϕ
′
0 +

ph
2 H0,0 ϕ0 + ph ∑

n−p
j=p,2p,3p H0,j ϕj +

ph
2 H0,n ϕn = f

′
0

ϕ
′
n +

ph
2 Hn,0 ϕ0 + ph ∑

n−p
j=p,2p,3p Hn,j ϕj +

ph
2 Hn,n ϕn = f

′
n

 (9)
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Case 2: ∂K(x,t)
∂x∂t exists

ϕi + Ai,0 ϕ0 + ph ∑
n−p
j=p,2p,3p Ki,j ϕj + Bi,n ϕn, i = 0, p, 2p, · · · , n− 2p, n− p, n

+ (ph)2

12 (Ki,0 ϕ
′
0 − Ki,n ϕ

′
n) = fi

ϕ
′
0 + C0,0 ϕ0 + ph ∑

n−p
j=p,2p,3p H0,j ϕj + D0,n ϕn +

(ph)2

12 (H0,0 ϕ
′
0 − H0,n ϕ

′
n) = f

′
0

ϕ
′
n + Cn,0 ϕ0 + ph ∑

n−p
j=p,2p,3p Hn,j ϕj + Dn,n ϕn +

(ph)2

12 (Hn,0 ϕ
′
0 − Hn,n ϕ

′
n) = f

′
n


(10)

where

Ai,j =
ph
2

Ki,j +
(ph)2

12
Ji,j,

Bi,j =
ph
2

Ki,j −
(ph)2

12
Ji,j,

Ci,j =
ph
2

Hi,j +
(ph)2

12
Li,j

and

Di,j =
ph
2

Hi,j −
(ph)2

12
Li,j.

The value of p, which corresponds to 1, 2 and 4, represents the full-, half- and quarter-
sweep cases, respectively. From Equations (9) and (10), it is obvious that the full-, half- and
quarter-sweep RMT approximation equations can be represented in matrix form, as shown
in Equation (11) with ( n

p + 3) equations and ( n
p + 3) unknowns

Mϕ = f , (11)

where the matrix M is dense, f is known and ϕ is the unknown vector to be calculated.

3. Iterative Methods

For the solution of system (11), complexity reduction approaches with the Gauss–
Seidel (GS) iterative method are implemented. Combinations of the GS method with half-
and quarter-sweep iterations are called the Half-Sweep Gauss–Seidel (HSGS) and Quarter-
Sweep Gauss–Seidel (QSGS) methods, respectively. Meanwhile, the standard GS method is
also known as the Full-Sweep Gauss–Seidel (FSGS) method.

Definition 2 ([22]). Let M be a real matrix. Then, M = S− T is referred to as

(i) a regular splitting if S is nonsingular, S−1 ≥ O and T ≥ O,
(ii) a weak regular splitting if S is nonsingular, S−1 ≥ O and S−1T ≥ O,
(iii) a nonnegative splitting, if S−1T ≥ O, and
(iv) a convergent splitting if ρ(S−1T) < 1.

Theorem 2 ([23]). The following statements are equivalent:

(i) W is a convergent matrix,
(ii) limk→∞ ‖Wk‖ = 0 for some matrix norm,
(iii) ρ(W) < 1.

Lemma 1 ([23]). If the spectral radius satisfies ρ(W) < 1, then (I −W)−1 exists and

(I −W)−1 = I + W + W2 + · · · =
∞

∑
l=0

W l .
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Based on regular splitting, the GS splitting can be defined as follows.

Definition 3 ([22]). Let M = P − Q − R, where P, −Q and −R are diagonal, strictly lower
triangular and strictly upper triangular parts of matrices M, respectively. We call M = S− T the
Gauss–Seidel splitting of M, if S = P−Q and T = R. In addition, the splitting is called

(i) Gauss–Seidel convergent if spectral radius, ρ(S−1T) < 1, and
(ii) Gauss–Seidel regular if S−1 = (P−Q)−1 ≥ O and T = R ≥ O.

The general scheme for all three GS iterative methods to solve system (11) can be
written as

ϕ(k+1) = (P−Q)−1(Rϕ(k) + f ), k = 0, 1, 2, · · · . (12)

Based on the formulation (12), the iterative forms of the FSGS, HSGS and QSGS methods
for solving system (11) are of the form

ϕ(k+1) = WFSGS ϕ(k) + cFSGS (13)

ϕ(k+1) = WHSGS ϕ(k) + cHSGS (14)

and

ϕ(k+1) = WQSGS ϕ(k) + cQSGS (15)

respectively, where
WFSGS = WHSGS = WQSGS = S−1T

and

cFSGS = cHSGS = cQSGS = S−1 f .

Theorem 3. Let square matrices WFSGS, WHSGS and WQSGS be in the order of n + 3, n
2 + 3 and

n
4 + 3, respectively. The successive approximations (13)–(15) for k = 0, 1, 2, · · · converge to the
unique solution of

ϕ = WFSGS ϕ + cFSGS (16)

ϕ = WHSGS ϕ + cHSGS (17)

and
ϕ = WQSGS ϕ + cQSGS (18)

respectively, if and only if the spectral radius of the iteration matrices is less than one, i.e.,
ρ(WFSGS) < 1, ρ(WHSGS) < 1 and ρ(WQSGS) < 1.

Proof. The iterative form of the FSGS, HSGS and QSGS methods can be rewritten as follows:

ϕ(k+1) = Wk+1
FSGS ϕ(0) + [Wk

FSGS + · · ·+ WFSGS + I]cFSGS (19)

ϕ(k+1) = Wk+1
HSGS ϕ(0) + [Wk

HSGS + · · ·+ WHSGS + I]cHSGS (20)

and

ϕ(k+1) = Wk+1
QSGS ϕ(0) + [Wk

QSGS + · · ·+ WQSGS + I]cQSGS (21)

respectively. Since ρ(WFSGS) < 1, ρ(WHSGS) < 1 and ρ(WQSGS) < 1 and, based on
Theorem 2, WFSGS, WHSGS and WQSGS matrices are convergent and satisfy the follow-
ing conditions
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lim
k→∞

Wk+1
FSGS ϕ(0) = 0, (22)

lim
k→∞

Wk+1
HSGS ϕ(0) = 0 (23)

and

lim
k→∞

Wk+1
QSGS ϕ(0) = 0 (24)

respectively. Based on Lemma 1, this implies that

lim
k→∞

ϕ(k+1) = lim
k→∞

Wk+1
FSGS ϕ(0) +

(
∞

∑
l=0

W l
FSGS

)
cFSGS = (I −WFSGS)

−1cFSGS (25)

lim
k→∞

ϕ(k+1) = lim
k→∞

Wk+1
HSGS ϕ(0) +

(
∞

∑
l=0

W l
HSGS

)
cHSGS = (I −WHSGS)

−1cHSGS (26)

and

lim
k→∞

ϕ(k+1) = lim
k→∞

Wk+1
QSGS ϕ(0) +

(
∞

∑
l=0

W l
QSGS

)
cQSGS = (I −WQSGS)

−1cQSGS. (27)

Hence, the sequences converge to the vectors ϕ = (I −WFSGS)
−1cFSGS , ϕ = (I −

WHSGS)
−1cHSGS and ϕ = (I −WQSGS)

−1cQSGS and, ϕ = WFSGSx + cFSGS, ϕ = WHSGSx +
cHSGS and ϕ = WQSGSx + cQSGS, respectively.

By determining the values of matrices P, −Q and −R as stated in Definition 3, the
algorithms for the FSGS, HSGS and QSGS methods with full-, half- and quarter-sweep RMT
approximation equations, respectively, to solve problem (1) can generally be described by
Algorithms 1 and 2.

Algorithm 1: GS methods with RMT scheme (Case 1)

Step i. Set ϕ(0) and initialize all the parameters.
Step ii. Iteration cycle

for k = 0, 1, 2, · · ·
for i = 0, p, 2p, · · · , n− 2p, n− p, n
Compute

ϕ
(k+1)
i ←



[ fi−ph ∑
n−p
j=p,2p,3p Ki,j ϕ

(k)
j −Bi,n ϕ

(k)
n −

(ph)2
12 (Ki,0 ϕ

′(k)
0 −Ki,n ϕ

′(k)
n )]

1+Ai,0
, i = 0

[ fi−Ai,0 ϕ
(k+1)
0 −ph ∑

i−p
j=p,2p,3p Ki,j ϕ

(k+1)
j −ph ∑

n−p
j=i+p Ki,j ϕ

(k)
j

−Bi,n ϕ
(k)
n − (ph)2

12 (Ki,0 ϕ
′(k)
0 −Ki,n ϕ

′(k)
n )]

1+phKi,i
, i = p, 2p, · · · , n− p

[ fi−Ai,0 ϕ
(k+1)
0 −ph ∑

n−p
j=p,2p,3p Ki,j ϕ

(k+1)
j − (ph)2

12 (Ki,0 ϕ
′(k)
0 −Ki,n ϕ

′(k)
n )]

1+Bi,n
, i = n

ϕ
′(k+1)
0 ← f

′
0 −

ph
2 H0,0 ϕ

(k+1)
0 − ph ∑

n−p
j=p,2p,3p H0,j ϕ

(k+1)
j − ph

2 H0,n ϕ
(k+1)
n

ϕ
′(k+1)
n ← f

′
n −

ph
2 Hn,0 ϕ

(k+1)
0 − ph ∑

n−p
j=p,2p,3p Hn,j ϕ

(k+1)
j − ph

2 Hn,n ϕ
(k+1)
n

Step iii. Convergence test. If the convergence criterion, i.e., the maximum norm
‖ ϕ(k+1) − ϕ(k) ‖∞≤ ε, is satisfied, go to Step iv. Otherwise, go to Step ii.

Step iv. Stop.
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Algorithm 2: GS methods with RMT scheme (Case 2)

Step i. Set ϕ(0) and initialize all the parameters.
Step ii. Iteration cycle

for k = 0, 1, 2, · · ·
for i = 0, p, 2p, · · · , n− 2p, n− p, n
Compute

ϕ
(k+1)
i ←



[ fi−ph ∑
n−p
j=p,2p,3p Ki,j ϕ

(k)
j −Bi,n ϕ

(k)
n −

(ph)2
12 (Ki,0 ϕ

′(k)
0 −Ki,n ϕ

′(k)
n )]

1+Ai,0
, i = 0

[ fi−Ai,0 ϕ
(k+1)
0 −ph ∑

i−p
j=p,2p,3p Ki,j ϕ

(k+1)
j −ph ∑

n−p
j=i+p Ki,j ϕ

(k)
j

−Bi,n ϕ
(k)
n − (ph)2

12 (Ki,0 ϕ
′(k)
0 −Ki,n ϕ

′(k)
n )]

1+phKi,i
, i = p, 2p, · · · , n− p

[ fi−Ai,0 ϕ
(k+1)
0 −ph ∑

n−p
j=p,2p,3p Ki,j ϕ

(k+1)
j − (ph)2

12 (Ki,0 ϕ
′(k)
0 −Ki,n ϕ

′(k)
n )]

1+Bi,n
, i = n

ϕ
′(k+1)
0 ←

f
′
0−C0,0 ϕ

(k+1)
0 −ph ∑

n−p
j=p,2p,3p H0,j ϕ

(k+1)
j −D0,n ϕ

(k+1)
n +

(ph)2
12 H0,n ϕ

′(k)
n

1+ (ph)2
12 H0,0

ϕ
′(k+1)
n ←

f
′
n−Cn,0 ϕ

(k+1)
0 −ph ∑

n−p
j=p,2p,3p Hn,j ϕ

(k+1)
j −Dn,n ϕ

(k+1)
n − (ph)2

12 Hn,0 ϕ
′(k+1)
0

1− (ph)2
12 Hn,n

Step iii. Convergence test. If the convergence criterion, i.e., the maximum norm
‖ ϕ(k+1) − ϕ(k) ‖∞≤ ε, is satisfied, go to Step iv. Otherwise, go to Step ii.

Step iv. Stop.

After the iteration process, additional calculation is required for the HSGS and QSGS
methods to compute the remaining points. In this paper, the second-order Lagrange
interpolation technique [12] is applied to compute the remaining points. The formulations
to calculate remaining points using the second-order Lagrange interpolation technique for
HSGS and QSGS are defined as

ϕi =

{ 3
8 ϕi−1 +

3
4 ϕi+1 − 1

8 ϕi+3, i = 1, 3, 5, · · · , n− 3
3
4 ϕi−1 +

3
8 ϕi+1 − 1

8 ϕi−3, i = n− 1
(28)

and

ϕi =


3
8 ϕi−2 +

3
4 ϕi+2 − 1

8 ϕi+6, i = 2, 6, 10, · · · , n− 6
3
4 ϕi−2 +

3
8 ϕi+2 − 1

8 ϕi−6, i = n− 2
3
8 ϕi−1 +

3
4 ϕi+1 − 1

8 ϕi+3, i = 1, 3, 5, · · · , n− 3
3
4 ϕi−1 +

3
8 ϕi+1 − 1

8 ϕi−3, i = n− 1

(29)

respectively.

4. Numerical Simulations

For numerical simulations, two parameters, i.e., the number of iterations and computa-
tional time, are considered for comparative analysis to verify the performance of the FSGS
with full-sweep RMT (FSGS-RMT), HSGS with half-sweep RMT (HSGS-RMT) and QSGS
with quarter-sweep RMT (QSGS-RMT) methods in solving problem (1). The following two
test problems that satisfy the conditions of the Fredholm alternative theorem have been
chosen for the numerical simulations.

Test Problem 1 [24]

ϕ(x)−
∫ 1

0
(4xt− x2)ϕ(t)dt = x, x ∈ [0, 1], (30)

where the exact solution is given by

ϕ(x) = 24x− 9x2.

Test Problem 2 [11]
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ϕ(x)−
∫ 1

0
(x2 + t2)ϕ(t)dt = x6 − 5x3 + x + 10, x ∈ [0, 1], (31)

where the exact solution is

ϕ(x) = x6 − 5x3 +
1045

28
x2 + x +

2141
84

.

Throughout the simulations, the convergence test considered the threshold, ε = 10−10.
The simulations were run sequentially by a computer with processor Intel(R) Core(TM) 2
CPU 1.66GHz and computer codes were written in C programming language. The value of
initial datum ϕ(0) was set to be zero for all the test problems. All results of numerical simu-
lations obtained from the implementation of the FSGS-RMT, HSGS-RMT and QSGS-RMT
methods for test problems 1 and 2 are tabulated in Tables 1 and 2, respectively. The follow-
ing Tables 3 and 4 show the estimation solutions of ϕ(x) at points x = 0.00, 0.25, 0.50, 0.75
and 1.00 for both test problems. Moreover, numerical results by applying FSGS with
the standard repeated trapezoidal (FSGS-RT) method are also included for comparison
purposes.

Table 1. Numerical results of test problem 1.

Number of Iterations

n
Methods

FSGS-RMT HSGS-RMT QSGS-RMT

1024 199 198 197
2048 199 199 198
4096 199 199 199
8192 199 199 199

16,384 199 199 199

Computational Time (in seconds)

n
Methods

FSGS-RMT HSGS-RMT QSGS-RMT

1024 24.41 3.10 0.75
2048 90.20 11.89 2.96
4096 345.30 47.44 12.03
8192 1366.72 183.99 48.92

16,384 4954.54 1282.61 296.14

Table 2. Numerical results of test problem 2.

Number of Iterations

n
Methods

FSGS-RMT HSGS-RMT QSGS-RMT

1024 57 57 57
2048 57 57 57
4096 57 57 57
8192 57 57 57

16,384 57 57 57
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Table 2. Cont.

Computational Time (in seconds)

n
Methods

FSGS-RMT HSGS-RMT QSGS-RMT

1024 6.38 1.48 0.38
2048 26.93 5.99 1.61
4096 110.83 25.53 6.92
8192 421.51 99.67 30.31

16,384 1589.12 405.52 112.27

Table 3. Numerical discrete solutions for test problem 1.

x
n = 1024

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.25 5.4375000000 5.4375422001 5.4374999834 5.4374998680 5.4374989407
0.50 9.7500000000 9.7500758171 9.7499999703 9.7499997640 9.7499981067
0.75 12.9375000000 12.9376008511 12.9374999608 12.9374996882 12.9374974982
1.00 15.0000000000 15.0001173021 14.9999999548 14.9999996405 14.9999971150

x
n = 2048

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.25 5.4375000000 5.4375105498 5.4374999978 5.4374999834 5.4374998680
0.50 9.7500000000 9.7500189538 9.7499999960 9.7499999703 9.7499997640
0.75 12.9375000000 12.9375252122 12.9374999948 12.9374999608 12.9374996882
1.00 15.0000000000 15.0000293249 14.9999999940 14.9999999548 14.9999996405

x
n = 4096

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.25 5.4375000000 5.4375026372 5.4374999996 5.4374999978 5.4374999834
0.50 9.7500000000 9.7500047381 9.7499999992 9.7499999960 9.7499999703
0.75 12.9375000000 12.9375063025 12.9374999990 12.9374999948 12.9374999608
1.00 15.0000000000 15.0000073307 14.9999999989 14.9999999940 14.9999999548

x
n = 8192

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.25 5.4375000000 5.4375006591 5.4374999998 5.4374999996 5.4374999978
0.50 9.7500000000 9.7500011841 9.7499999996 9.7499999992 9.7499999960
0.75 12.9375000000 12.9375015751 12.9374999995 12.9374999990 12.9374999948
1.00 15.0000000000 15.0000018321 14.9999999995 14.9999999989 14.9999999940

x
n = 16,384

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000
0.25 5.4375000000 5.4375001645 5.4374999998 5.4374999998 5.4374999996
0.50 9.7500000000 9.7500002956 9.7499999997 9.7499999996 9.7499999992
0.75 12.9375000000 12.9375003933 12.9374999996 12.9374999995 12.9374999990
1.00 15.0000000000 15.0000004575 14.9999999996 14.9999999995 14.9999999989
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Table 4. Numerical discrete solutions for test problem 2.

x
n = 1024

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 25.4880952381 25.4881398776 25.4880952013 25.4880949434 25.4880928707
0.25 27.9928036644 27.9928529780 27.9928036232 27.9928033343 27.9928010125
0.50 34.7090773810 34.7091407166 34.7090773265 34.7090769446 34.7090738755
0.75 45.3000023251 45.3000890310 45.3000022486 45.3000017117 45.2999973971
1.00 59.8095238095 59.8096432336 59.8095237020 59.8095229482 59.8095168899

x
n = 2048

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 25.4880952381 25.4881063979 25.4880952335 25.4880952013 25.4880949434
0.25 27.9928036644 27.9928159928 27.9928036593 27.9928036232 27.9928033343
0.50 34.7090773810 34.7090932148 34.7090773741 34.7090773265 34.7090769446
0.75 45.3000023251 45.3000240015 45.3000023155 45.3000022486 45.3000017117
1.00 59.8095238095 59.8095536654 59.8095237960 59.8095237020 59.8095229482

x
n = 4096

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 25.4880952381 25.4880980280 25.4880952375 25.4880952335 25.4880952013
0.25 27.9928036644 27.9928067465 27.9928036637 27.9928036593 27.9928036232
0.50 34.7090773810 34.7090813393 34.7090773800 34.7090773741 34.7090773265
0.75 45.3000023251 45.3000077441 45.3000023239 45.3000023155 45.3000022486
1.00 59.8095238095 59.8095312734 59.8095238078 59.8095237960 59.8095237020

x
n = 8192

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 25.4880952381 25.4880959355 25.4880952380 25.4880952375 25.4880952335
0.25 27.9928036644 27.9928044349 27.9928036643 27.9928036637 27.9928036593
0.50 34.7090773810 34.7090783705 34.7090773808 34.7090773800 34.7090773741
0.75 45.3000023251 45.3000036798 45.3000023249 45.3000023239 45.3000023155
1.00 59.8095238095 59.8095256754 59.8095238092 59.8095238078 59.8095237960

x
n = 16,384

Exact FSGS-RT FSGS-RMT HSGS-RMT QSGS-RMT
0.00 25.4880952381 25.4880954124 25.4880952380 25.4880952380 25.4880952335
0.25 27.9928036644 27.9928038570 27.9928036644 27.9928036643 27.9928036593
0.50 34.7090773810 34.7090776283 34.7090773809 34.7090773808 34.7090773741
0.75 45.3000023251 45.3000026637 45.3000023251 45.3000023249 45.3000023155
1.00 59.8095238095 59.8095242759 59.8095238094 59.8095238092 59.8095237960

5. Computational Complexity Analysis

In order to measure the computational complexity of the methods, the amount of com-
putational work required from each method for solving problem (1) was estimated by con-
sidering the arithmetic operations performed per iteration. In estimating the computational
work of the proposed methods, it is assumed that the values of ph, Ki,j, Hi,j, Ji,j and Li,j are
stored beforehand. Based on Algorithm 1 (for Case 1), it can be observed that the number of
arithmetic operations required (excluding the convergence test) per iteration for the FSGS-
RMT, HSGS-RMT and QSGS-RMT methods is (( n

p )
2 + 8n

p + 7) additions/subtractions

(ADD/SUB) and (( n
p )

2 + 12n
p + 17) multiplications/divisions (MUL/DIV). Meanwhile,

for Case 2 (Algorithm 2), (( n
p )

2 + 8n
p + 15) ADD/SUB and (( n

p )
2 + 12n

p + 29) MUL/DIV
operations are involved for an iteration.

The iteration process for the HSGS-RMT and QSGS-RMT methods is carried out only
on ( n

2 + 3) and ( n
4 + 3) mesh points, respectively. Thus, an additional two ADD/SUB and

six MUL/DIV operations are involved to calculate a mesh point for the remaining points
after convergence by using second-order Lagrange interpolation. Hence, the total numbers
of arithmetic operations involved in an iteration and in the direct solution after convergence
for the FSGS-RMT, HSGS-RMT and QSGS-RMT methods are summarized in Table 5.
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Table 5. Total computing operations for the FSGS-RMT, HSGS-RMT and QSGS-RMT methods.

Case 1

Methods
Per Iteration After Convergence

ADD/SUB MUL/DIV ADD/SUB MUL/DIV

FSGS-RMT n2 + 8n + 7 n2 + 12n + 17 - -
HSGS-RMT n2

4 + 4n + 7 n2

4 + 6n + 17 n 3n
QSGS-RMT n2

16 + 2n + 7 n2

16 + 3n + 17 3n
2

9n
2

Case 2

Methods
Per Iteration After Convergence

ADD/SUB MUL/DIV ADD/SUB MUL/DIV

FSGS-RMT n2 + 8n + 15 n2 + 12n + 29 - -
HSGS-RMT n2

4 + 4n + 15 n2

4 + 6n + 29 n 3n
QSGS-RMT n2

16 + 2n + 15 n2

16 + 3n + 29 3n
2

9n
2

6. Conclusions

In this paper, a complexity reduction approach based on the half- and quarter-sweep
iteration concepts has been successfully employed to obtain the estimation solutions for
the second kind of linear Fredholm integral equations. Through numerical results obtained
for test problems 1 and 2 (refer Tables 1 and 2), the findings show that the numbers of
iterations for the FSGS-RMT, HSGS-RMT and QSGS-RMT methods are nearly the same. In
terms of computational time, both the HSGS-RMT and QSGS-RMT methods are faster than
the FSGS-RMT method. This is due to the reduction in the computational complexity of the
HSGS-RMT and QSGS-RMT methods, which is approximately 75% and 93.75% less than
the FSGS-RMT method, respectively. Meanwhile, accuracies of numerical solutions for the
HSGS-RMT and QSGS-RMT methods are also in good agreement compared to the FSGS-
RMT method. The findings also support the claim in [13] that the RMT scheme is more
accurate than the repeated trapezoidal scheme; refer to Tables 3 and 4. Overall, the results
reveal that the QSGS-RMT method is superior to the FSGS-RT, FSGS-RMT and HSGS-
RMT methods. For future works, the effectiveness of the proposed complexity reduction
approach will be investigated in solving fractional integro-differential equations [25,26].
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Abbreviations
The following abbreviations are used in this manuscript:

EDG Explicit Decoupled Group
MEG Modified Explicit Group
RMT Repeated Modified Trapezoidal
GS Gauss–Seidel
FSGS Full-Sweep Gauss–Seidel
HSGS Half-Sweep Gauss–Seidel
QSGS Quarter-Sweep Gauss–Seidel
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