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Abstract: To improve the performance of the arithmetic optimization algorithm (AOA) and solve
problems in the AOA, a novel improved AOA using a multi-strategy approach is proposed. Firstly,
circle chaotic mapping is used to increase the diversity of the population. Secondly, a math optimizer
accelerated (MOA) function optimized by means of a composite cycloid is proposed to improve the
convergence speed of the algorithm. Meanwhile, the symmetry of the composite cycloid is used
to balance the global search ability in the early and late iterations. Thirdly, an optimal mutation
strategy combining the sparrow elite mutation approach and Cauchy disturbances is used to increase
the ability of individuals to jump out of the local optimal. The Rastrigin function is selected as the
reference test function to analyze the effectiveness of the improved strategy. Twenty benchmark
test functions, algorithm time complexity, the Wilcoxon rank-sum test, and the CEC2019 test set are
selected to test the overall performance of the improved algorithm, and the results are then compared
with those of other algorithms. The test results show that the improved algorithm has obvious
advantages in terms of both its global search ability and convergence speed. Finally, the improved
algorithm is applied to an engineering example to further verify its practicability.

Keywords: arithmetic optimization algorithm; circle chaotic mapping; compound cycloid; sparrow
elite mutation; Cauchy disturbance; motor control

1. Introduction

The swarm intelligence optimization algorithm is widely used in engineering opti-
mization issues because of its excellent efficiency and convenience. Therefore, extensive
research has been conducted on swarm intelligence algorithms in recent years. Inspired
by the laws underlying the development of natural things, some examples of these al-
gorithms are the teaching and learning optimization algorithm (TLBO) [1], the positive
chord algorithm (SCA) [2,3], the particle swarm optimization (PSO) [4–6], and the genetic
algorithm (GA) [7,8]. They can also be inspired by the collective or social intelligence of
natural biology, as in the case of the Harris hawks algorithm (HHO) [9,10], the artificial
fish swarm algorithm (FSA) [11], the sparrow search algorithm (CSA) [12–14], and the gray
wolf optimization algorithm (GWO) [15].

Many researchers have focused on improving the performance of swarm intelligence
optimization algorithms because there are various deficiencies in different algorithms.
He et al. [16] used reverse-learning strategies to enhance information exchange and learn-
ing between groups in the chimpanzee optimization algorithm. Jia et al. [17] applied
polynomial mutation to the population initialization of the chimpanzee optimization algo-
rithm to improve the diversity of the population and the quality of the initial solution. Wang
et al. [18] added Cauchy disturbances to the firefly algorithm to improve the performance
of the algorithm, which easily falls into the local optimum. Zhang et al. [19] integrated
quadratic interpolation and the Levy flight strategy into the whale optimization algorithm
to improve its optimization accuracy. Saremi et al. [20] and Mirjalili et al. [21] proposed the
combination of a dynamic evolutionary population and the gray wolf algorithm to improve
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the local search ability of the algorithm. However, this approach neglected the algorithm’s
global search ability.

The arithmetic optimization algorithm (AOA) is a swarm intelligence optimization
algorithm proposed by Laith Abualigah in 2021 [22]. The algorithm utilizes the distribution
behavior of the main arithmetic operators in mathematics and guides the individuals of
the population into the exploration phase and the exploitation phase through the math
optimizer accelerated (MOA) function. However, the AOA had the disadvantages of
poor convergence accuracy and the fact that it easily fell into the local optimum due
to the poor MOA allocation effect and the characteristics of the four operations. There
are many research results on the improvement of AOA. Lan et al. [23] prevented AOA
from displaying premature behavior during iteration by means of chaotic elite mutation.
However, this single improvement method led to a poor mutation effect, and in some
cases, the performance of the algorithm was not even improved. Yang et al. [24] enhanced
the local development capability of AOA by improving the math optimizer probability
(MOP). However, the effect of MOP is limited, and increasing the local development ability
reduces the convergence speed of the algorithm. Abualigah et al. [25] integrated differential
evolution into AOA in order to enhance its ability to jump out of the local optimum. Khatir
et al. [26] proposed the improved artificial neural network using the arithmetic optimization
algorithm (IANN-AOA) to deal with the damage quantification problem in functionally
graded material (FGM) plate structures. To improve the searching quality of the original
AOA, Zheng et al. [27] presented an improved AOA integrated with a proposed forced
switching mechanism (FSM).

In this study, a novel and effective optimization strategy is proposed in response
to the limitations of AOA. An initialization method based on circle chaotic mapping is
introduced to solve the uneven distribution of the individuals of the initial population; an
MOA optimized by means of a compound cycloid increases the global search ability and
convergence speed, and an optimal mutation strategy combining sparrow elite mutation
with the adaptive water wave factor and Cauchy disturbances is proposed to improve
the algorithm’s ability to jump out of the local optimum and increase its convergence
accuracy. Through the Rastrigin function, we verify the effectiveness of these various
improvement strategies. The overall performance of the algorithm is analyzed based on
20 benchmark functions, time complexity, the Wilcoxon rank-sum test, and the CEC2019
test functions. Finally, the practical application effect of the algorithm is verified using
engineering examples.

The existing problems of AOA are improved through a series of improvement strate-
gies in this paper. Several experiments have proven that the performance of AOA has been
greatly improved through the improvement of the above strategies. Composite cycloids
are used to balance the global and local search ability of the algorithm during this process,
which improves the convergence speed of the algorithm. Moreover, this paper presents a
new optimal mutation strategy, employing the sparrow elite mutation approach with an
adaptive water wave factor. This effectively enhances the ability of the algorithm to jump
out of the local optimum, which provides a reference for future researchers.

2. Arithmetic Optimization Algorithm

AOA is a simple and efficient swarm intelligence optimization algorithm. The running
process of AOA [22] is shown in this section. The first step in running AOA is to initialize
the population matrix. The population matrix is used to complete the task of searching
values within the specified search range.

X =



x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

...
...

...
...

...
...

xm,1 · · · · · · xm,n

 (1)
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where X is the initial population and {x1.1, x1.2, . . . , x1.n} is an individual from the ini-
tial population; thus, there are m individuals in this population. n is the dimension of
the individual.

Individual fitness values will be calculated and sorted according to user requirements.
The individual whose fitness value is closest to the user’s required value is called ‘the
optimal individual’.

Secondly, all individuals are allocated to the exploration phase or the exploitation
phase according to the MOA. The random number r1 is taken between [0,1] in the allocation
process. The individual enters the exploration phase when r1 < MOA(t); otherwise, it enters
the exploitation phase. The MOA is calculated as shown in Equation (2).

MOA(t) = MOAmin + t · (MOAmax −MOAmin

Tmax
) (2)

where t is the current iteration number, Tmax is the final iteration number of the al-
gorithm, and MOAmax and MOAmin are the maximum and minimum values of the
MOA, respectively.

If the individual enters the exploration phase, the update function is:

xt+1
i,j =

{
xt

best,j ÷ (MOP + ε) ·ωj r2 ≤ 0.5
xt

best,j ·MOP ·ωj r2 > 0.5
(3)

ωj = (ubj − lbj)× µ + lbj (4)

where xt
best,j is the j-dimensional value of the optimal individual in t iterations; ε is the

minimum constant to prevent the denominator from being 0; µ is the optimization process
control constant, with a value of 0.499; ubj and lbj represent the bounds of the j-dimensional
value of an individual; and MOP is expressed as in Equation (5).

MOP(t) = 1− t1/α

T1/α
max

(5)

where α is a sensitive coefficient, usually constant at 5.
If the individual enters the exploitation phase, the update function is:

xt+1
i,j =

{
xt

best,j −MOP×ωj r3 ≤ 0.5
xt

best,j + MOP×ωj r3 > 0.5
(6)

where r3 is used to select the update function of an individual in the exploitation phase,
and r3 is a random number belonging to [0,1].

3. The Improved Arithmetic Optimization Algorithm
3.1. Initial Population Based on Circle Chaotic Mapping

Circle chaotic mapping refers to a process in which the randomly generated popu-
lation matrix is mathematically mapped into the chaotic domain via the circle mapping
formula [28]. Circle chaotic mapping is used to ensure the ergodicity of the individuals of
the initial population due to its excellent unpredictable and nonlinear characteristics. The
circle mapping formula is introduced in Equation (7).

xt+1 = xt + a−mod(
b

2π
sin(2π × xt), 1) (7)

where a = 0.2 and b = 0.5.
The individual distribution of the initial population after circle chaotic mapping has

ergodicity, as is evident in the comparison between Figure 1a,b. Figure 1b show that the
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individuals are evenly distributed throughout the search space after 500 iterations, which
reduces the risk of AOA falling into the local optimum in a later iteration.
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Figure 1. (a) Individual distribution map using random generation. (b) Individual distribution map
using circle chaotic mapping.

3.2. MOA Optimized by Means of A Compound Cycloid

The MOA increases linearly in Equation (2) of the basic AOA, and the minimum value
of the MOA is 0.2, and its maximum value is 1 in the iterative process. This leads to a large
number of individuals being allocated into the exploitation phase in the early iterations and a
large number of individuals being allocated into the exploration phase in the later iterations.
In other words, this allocation method leads to an insufficient global search ability and a
faster convergence speed. The global search carried out in the later iterations leads to a slow
convergence speed, and it is easy for this approach to fall into the local optimum.

A composite cycloid [29] is often used in curve planning because of its flexible form.
Here, the curve of a composite cycloid in the vertical direction is utilized to optimize the MOA
to solve the above problems. The optimized MOA is expressed as shown in Equation (8).

MOA(t) = 1.2− 0.8×
(

1
2
− 1

2
cos(

2π × (t− a)
Tmax

)

)
(8)

where t is the current iteration number, Tmax is the final iteration number, and a is the
adaptation coefficient.

As shown in Figure 2, the MOA curve optimized using the composite cycloid intro-
duces most of the individuals into the exploration phase in the early iteration so as to
improve the global search ability of the algorithm in the early optimization stage. In the
middle of the iteration, most of the individuals are introduced into the exploitation phase,
which improves the local search ability of the algorithm and increases the convergence
rate. In the later iterations, the proportion of individuals entering the exploration phase
increases so that some individuals jump out of the local optimum in the late iteration and
increase the optimization ability of the algorithm.

The MOA optimized using the compound cycloid demonstrates a strong global search
ability in the early iterations. The cosine factor is introduced into the MOA to further
improve the algorithm’s performance. The cosine factor c is shown in Equation (9).

c = cos(
π × t

2× Tmax
) (9)

3.3. The Optimal Mutation Strategy, Combining Sparrow Elite Mutation with the Adaptive Water
Wave Factor and Cauchy Disturbances

The updating of the individual is affected by the last optimal individual in each iteration
in AOA, so in AOA, it is easy to converge to the local optimum in the iteration process.
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Therefore, we propose the optimal mutation strategy, combining sparrow elite mutation with
the adaptive water wave factor and Cauchy disturbances, to solve the above problems.
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Figure 2. Comparison of optimized MOA curves before and after improvement.

3.3.1. Sparrow Elite Mutation

The sparrow search algorithm is an efficient swarm intelligence optimization algo-
rithm. Its population consists of a discoverer, a subscriber, and a watchman [30]. The
discoverer plays an important role in the sparrow search algorithm (SSA) because of its
large optimization space and good optimization ability, which guides the changes in the
position of other individuals in SSA.

Elite mutation [31] is a mutation method that presents the abilities of individuals with high
search performance to the current optimal individuals. The strong optimization ability (in terms
of the discoverer role) is given to the top 20% of the individuals with the current fitness value
during each iteration of the AOA. This approach is known as sparrow elite mutation.

The adaptive water wave factor [16] is added to the updating formula of mutation
individuals in order to further increase the optimization ability of the mutation individuals.
The water wave factor changes adaptively with the number of iterations. A water wave
factor has the characteristics of small fluctuation in the early iteration and large fluctuation
in the later iteration. The uncertainty in the iteration process and the violent mutation in
the later iterations of the water wave factor enhance the ability of individuals to jump out
of the local optimum. The mathematical model of the adaptive water wave factor is:

v = 1− sin
(

π · t
2 · Tmax

+ 2 · π
)

(10)

where v is the adaptive water wave factor, t is the current iteration number, and Tmax is the
final iteration number.

A water wave factor distribution diagram with 500 iterations is shown in Figure 3.
The individuals in the sparrow elite mutation model will be updated according to

Equation (11) after adding the adaptive water wave factor.

Xt+1
0.2·best,j =

{
Xt

0.2·best,j · v · exp
(
− i

α·Tmax

)
R < ST

Xt
0.2·best,j + v ·Q · L R ≥ ST

(11)

where X0.2·best,j is the top 20% of the individuals with the current fitness value, t is the
current iteration number, v is the adaptive water wave factor, i is the number of rows in the
population matrix where the current individuals are located, and Tmax is the final iteration
number. Q is a random number obeying a [0,1] normal distribution, L is a 1 × d matrix with
all elements 1, R is a random number, ST is a vigilance value, and 0.6 is taken according
to experience.
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Figure 3. Adaptive water wave factor distribution with 500 iterations.

The optimal fitness value after mutation is compared with the fitness value of the
current optimal individual. If it is less than the current fitness value, the current optimal
individual is mutated to participate in the next update.

3.3.2. Cauchy Disturbance

After the sparrow elite mutation, Cauchy disturbance is conducted in relation to the
current optimal individual by introducing the Cauchy operator, which further enhances the
optimization performance of AOA. The Cauchy operator is a random variable that satisfies
the one-dimensional standard Cauchy–Lorenz distribution [32]. The probability density
function is shown in Equation (12).

f (x) =
1
π
× 1

1 + x2 (12)

As shown in Figure 4, the Cauchy distribution has reasonable probability in all do-
mains, which leads to a stronger mutation effect. However, the probability distributions
of some Gaussian normal distributions are concentrated near the origin, not traversing all
domains, and the probability distribution of some normal distributions are basically the
same in all domains, close to randomly taking values.
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normal distributions.

The Cauchy distribution formula for the current optimal individual is shown in
Equation (13).

xt+1
i,j = xt

best + cauchy(0, 1)⊕ xt
best (13)

where cauchy (0,1) is the Cauchy operator.
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The fitness value of an individual after the Cauchy disturbance is thus recalculated.
The new fitness value is then compared with the fitness value of the current optimal
individual. The individual with the optimal fitness value is selected to participate in the
next individual update. The pseudo-code of the improved AOA is as follows (Algorithm 1).

Algorithm 1. The pseudo-code of the improved arithmetic optimization algorithm.

01 Initialization
02 Initialize the population size (n), dimension (m), and the number of iterations (Tmax)
03 Initialize the individuals of population Xi (i = 1, 2, 3, . . . , n) using circle chaotic mapping, as shown in Equation (7).
04 Evaluate the fitness value and find the current best individual and best fitness value
05 Set the parameters α, µ, ubj, and lbj
06 Main loop{
07 While (t ≤ Tmax)
08 Calculate the MOP by Equation (5)
09 Calculate the MOA by Equations (8) and (9)
10 For each search agent
11 If r1 > MOA
12 Update position by Equation (3)
13 Else
14 Update position by Equation (6)
15 End if
16 Calculate the fitness values of the individuals and rankings according to the fitness values
17 Calculate the water wave factor
18 Update the top 20% of the individuals with the current fitness value according to Equation (11)
19 Update current best individual and best fitness value
20 Disturb the current optimal individual with Equation (13). Compare its fitness value with that before disturbance
21 Update current best individual and best fitness value
22 End for
23 t = t + 1
24 End While}
25 Return best fitness value and current best individual

4. Test of Algorithm
4.1. Effectiveness Test of Algorithm Improvement Strategy

In the arithmetic optimization algorithm combining the compound cycloid and spar-
row elite mutation (CSAOA), we apply several strategies to improve the performance
of the AOA. The Rastrigin function was selected as the reference test function to verify
the effectiveness of these strategies relative to the basic AOA. The Rastrigin function is
multi-modal. The difference between the suboptimal value and the global optimal value is
large, allowing us to better verify the optimization performance of the CSAOA.

The Rastrigin function is shown in Equation (14), and the range distribution is shown
in Figure 5.

f (x) =
D
Σ

i=1
(xi

2 − 10 cos(2π × xi) + 10) (14)

where xi ∈ [−5.12,5.12] and D is the total number of xi.
To ensure the fairness of the optimization environment, 1000 iterations were adopted

for each algorithm; the individual dimensions of the population were 30 and 50, separately;
and the search area was [−5.12,5.12]. The performance of the algorithm was evaluated
based on the mean value and standard deviation.

In the experiment, we adopted the control variable method. CAOA refers to the model
only adding the MOA optimized by means of the compound cycloid, as compared with the
AOA. SAOA refers to the model only adding the optimal mutation strategy combining the
sparrow elite mutation with the adaptive water wave factor and Cauchy disturbance, as
compared with the AOA. The mean value of the algorithm reflects the overall convergence
speed of the algorithm in the optimization process, and the standard deviation of the
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algorithm reflects the overall stability of the algorithm in the optimization process. Each
strategy was able to find the optimal value, so the optimal value is not reflected in Table 1.
Each improvement strategy showed a significant improvement over the performance of
the AOA, according to the data in Table 1. The mean value and standard deviation were
significantly improved after optimizing the MOA, which proves that CAOA improved the
convergence speed and maintained good stability. The convergence rate of SAOA was faster
than that of AOA, but the algorithm stability was lower than that of CAOA. However, CSAOA
maintained better convergence speed and stability while converging to the optimal value.
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Table 1. Mean value and standard deviation of different improvement strategies.

Algorithm Mean Value Standard Deviation

Dimensional 30 50 30 50

AOA 0.0120 0.0271 0.0312 0.0647
CAOA 9.1050 × 10−5 0.0040 0.0013 0.0041
SAOA 9.5750 × 10−4 0.0017 0.0178 0.0392

CSAOA 1.0912 × 10−7 1.7104 × 10−4 6.8177 × 10−7 1.5102 × 10−10

4.2. Benchmark Function Test

The performance of CSAOA was checked on 20 benchmark functions. F1–F7 are
single-mode benchmark functions that have only one global optimal value, and there is
no local optimal value; these were used to test the global search ability and convergence
speed of the algorithm. F8–F13 are multi-modal benchmark functions with many local
optimal values, and these were used to test the convergence speed of the algorithm and the
ability to jump out of the local optimum. F14–F20 are composite fixed low-dimensional test
functions, and these were used to test the balanced development ability and stability of the
algorithm. The characteristics of some functions are shown in Table 2.

The test dimensions of the algorithms were 30 and 100, except for the composite fixed
low-dimensional benchmark functions. AOA, the sparrow search algorithm (SSA), the
moth-flame optimization algorithm (MFO), Harris hawks algorithm (HHO), and particle
swarm optimization (PSO) were compared with the CSAOA to verify the competitiveness
of the CSAOA with other swarm intelligence optimization algorithms. Moreover, two
recent optimization techniques for AOA were compared with CSAOA. These were the
improved AOA based on an adaptive t-distribution (tAOA) [33] and the improved AOA
based on narrowed exploitation (IAOA) [34]. In order to maintain the fairness of the test
environment, the software version used was MATLAB 2020a, and the operating system
was Microsoft Windows10. The test results of single-mode and multi-mode benchmark
functions are exhibited in Table 3, and the results of composite fixed low-dimensional
benchmark functions are exhibited in Table 4.
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Table 2. Some of the benchmark functions.

F Function Dimensional Domain Optimal
Value

F1 f1(x) =
n
∑

i=1
x2

i
30/100 [−100,100] 0

F2 f2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 30/100 [−10,10] 0

F3 f3(x) =
n
∑

i=1

(
i

∑
j=1

xj

)2
30/100 [−100,100] 0

F4 f4(x) = max
i
{|xi |, 1 ≤ i ≤ n} 30/100 [−100,100] 0

F5 f5(x) =
n−1
∑

i=1

[
100
(
xi+1 − x2

i
)2

+ (xi − 1)2
]

30/100 [−30,30] 0

F6 f6(x) = x2
1 + 106

n
∑

i=2
x2

i
30/100 [−10,10] 0

F7 f7(x) =
n
∑

i=1
ix4

i + random[0, 1) 30/100 [−1.28,1.28] 0

F8 f8(x) =
n
∑

i=1

x2
i

4000 −
n
∏
i=1

cos
(

xi√
i

)
+ 1 30/100 [−600,600] 0

F9 f9(x) =
n
∑

i=1

[
x2

i − 10 cos(2πxi) + 10
] 30/100 [−5.12,5.12] 0

F10 f10(x) = −20 exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
+ · · ·+ e 30/100 [−32,32] 0

F11 f11(x) = 1
4000

n
∑

i=1
x2

i −
n
∏
i=1

cos( xi√
i
) + 1 30/100 [−600,600] 0

F12

f12(x) = π
n

{
10 sin(πy1) +

i=1
∑

n−1
(yi − 1)2[1 + 10sin2(πyi+1)] + (yn − 1)2

}
+

i=1
∑
n

u(xi , 10, 100, 4)

yi = 1 + xi+1
4

u(xi , a, k, m) =


k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m xi < −a

30/100 [−50,50] 0

F13 f13(x) = 0.1{sin(3πx1) + · · ·}+
n
∑

i=1
u(xi , 5, 100, 4) 30/100 [−50,50] 0

F14
f14(x) =

 1
500 +

25
∑

j=1

1

j+
2
∑

i=1
(xi−aij)

6


−1

2 [−65,65] 1

F15 f15(x) =
11
∑

i=1

[
ai −

x1(bi
2+b1x2)

bi
2+b1x3+x4

]
4 [−5,5] 0.1484

F16 f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1
F17 f17(x) =

(
x2 − 5.1

4π2 x2
1 +

5
π x1 − 6

)2
+ 10

(
1− 1

8π

)
cos x1 + 10 2 [−5,5] 0.3

F18 f18(x) =
[
1 + (x1 + x2 + 1)2(19− 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2
)]

×
[
30 + (2x1 − 3x2)

2 ×
(
18− 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2
)] 2 [−5,5] 3

F19 f19(x) = −
4
∑

i=1
ci exp

(
−

4
∑

i=1
aij(xj − pij)

2
)

3 [1,3] −3

F20 f20(x) =
5
∑

i=1

[
(X− ai)(X− ai)

T + ci

]−1 4 [0,10] −1
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Table 3. Comparison of test results of single-mode and multi-mode reference test functions.

F Algorithm
d = 30 d = 100

Optimal Value Standard
Deviation Mean Value Optimal Value Standard

Deviation Mean Value

F1

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 1.3697 × 10−2 7.5626 × 10−3 2.2228 × 10−2 2.1635 × 10−2 5.9715 × 10−3 2.8779 × 10−2

tAOA 6.0359 × 10−243 0.0000 1.3240 × 10−196 2.1929 × 10−244 0.0000 3.4896 × 10−185

IAOA 2.3852 × 105 1.8367 × 104 2.6226 × 105 2.4203 × 105 1.6107 × 104 2.6472 × 105

SSA 0.0000 3.8612 × 10−70 1.2210 × 10−70 3.2493 × 10−252 5.8498 × 10−64 2.6161 × 10−64

MFO 4.1769 × 104 1.1343 × 104 6.1448 × 104 3.8511 × 104 2.0171 × 104 6.4982 × 104

HHO 1.3821 × 10−108 3.9119 × 10−96 1.3335 × 10−96 5.7961 × 10−103 1.3175 × 10−93 5.8958 × 10−94

PSO 3.0264 × 103 3.7812 × 103 5.9509 × 103 1.4261 × 103 6.3480 × 103 5.2815 × 103

F2

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 6.7015 × 10−126 4.8715 × 10−65 1.8559 × 10−65 2.9511 × 10−112 1.1059 × 10−87 4.9459 × 10−88

tAOA 3.7605 × 10−201 2.5231 × 10−103 7.9788 × 10−104 4.9927 × 10−157 2.0300 × 10−118 9.0785 × 10−119

IAOA 1.1290 × 1035 7.2497 × 1042 2.4022 × 1042 1.2191 × 1037 1.4926 × 1043 6.6814 × 1042

SSA 0.0000 5.4268 × 10−29 1.7161 × 10−29 0.0000 4.2946 × 10−38 2.0106 × 10−38

MFO 1.9997 × 102 4.6211 × 101 2.6686 × 102 2.5107 × 102 2.4185 × 101 2.7995 × 102

HHO 3.7321 × 10−57 4.9387 × 10−53 5.9955 × 10−53 3.9098 × 10−55 1.6429 × 10−51 1.3727 × 10−51

PSO 1.0347 × 102 4.8000 × 101 1.7509 × 102 1.4143 × 102 5.3238 × 101 2.2226 × 102

F3

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 2.7419 × 10−1 5.3244 × 10−1 6.6035 × 10−1 3.2951 × 10−1 3.9231 × 10−1 7.1837 × 10−1

tAOA 1.0365 × 10−218 0.0000 9.6478 × 10−176 4.4972 × 10−231 0.0000 1.1412 × 10−173

IAOA 6.3870 × 105 7.1026 × 104 7.4294 × 105 6.4921 × 105 4.8333 × 104 7.1367 × 105

SSA 0.0000 0.0000 1.7346 × 10−200 0.0000 6.5412 × 10−122 2.9253 × 10−122

MFO 1.4995 × 105 9.0594 × 104 2.0952 × 105 1.6427 × 105 4.8054 × 104 2.2954 × 105

HHO 1.3408 × 10−84 6.6239 × 10−75 2.9892 × 10−75 3.0461 × 10−89 2.1092 × 10−67 9.4328 × 10−68

PSO 7.8597 × 104 5.0613 × 104 1.3898 × 105 1.2535 × 105 5.9520 × 104 1.6895 × 105

F4

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 7.5159 × 10−2 1.3982 × 10−2 9.1227 × 10−2 8.2203 × 10−2 1.1301 × 10−2 9.3750 × 10−2

tAOA 2.1545 × 10−115 2.0561 × 10−96 9.2816 × 10−97 3.7202 × 10−104 1.1302 × 10−94 5.0544 × 10−95

IAOA 9.5448 × 101 7.8251 × 10−1 9.6471 × 101 9.3059 × 101 1.2238 9.4969 × 101

SSA 0.0000 9.6027 × 10−58 4.2944 × 10−58 0.0000 4.6888 × 10−39 2.0969 × 10−39

MFO 9.1040 × 101 2.3321 9.4580 × 10 8.9873 × 101 2.1850 9.3124 × 10
HHO 1.7164 × 10−54 3.8730 × 10−50 1.7338 × 10−50 3.4508 × 10−51 6.1853 × 10−50 5.1528 × 10−50

PSO 2.0289 × 101 1.4869 2.2811 × 101 1.6643 × 101 4.2802 2.1232 × 101

F5

CSAOA 2.8910 × 10−3 1.2243 × 10−2 1.3436 × 10−2 7.9052 × 10−4 7.6104 × 10−2 5.4217 × 10−2

AOA 9.8905 × 101 3.1023 × 10−2 9.8941 × 101 9.8819 × 101 6.9540 × 10−2 9.8904 × 101

tAOA 9.8858 × 101 1.2841 × 10−2 9.8873 × 101 9.8866 × 101 9.0567 × 10−3 9.8875 × 101

IAOA 1.1471 × 109 4.2754 × 107 1.2011 × 109 1.0705 × 109 1.2350 × 108 1.1855 × 109

SSA 6.1471 × 10−2 6.4823 × 10−2 1.3251 × 10−1 3.3717 × 10−2 1.9198 × 10−1 1.8190 × 10−1

MFO 6.5409 × 107 8.6820 × 107 1.8203 × 108 4.0630 × 107 1.1197 × 108 1.7326 × 108

HHO 3.7312 × 10−3 2.2197 × 10−2 2.6143 × 10−2 1.4050 × 10−3 7.3666 × 10−2 7.9354 × 10−2

PSO 1.9830 × 105 1.8568 × 107 9.2024 × 106 5.2993 × 105 5.5151 × 105 1.2947 × 106

F6

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
tAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IAOA 2.7492 × 108 5.9874 × 107 3.3817 × 108 2.9878 × 108 1.0220 × 108 4.0924 × 108

SSA 0.0000 2.1406 × 10−93 9.5732 × 10−94 1.0696 × 10−286 8.7194 × 10−72 3.8994 × 10−72

MFO 1.0873 × 104 4.4717 × 107 2.0021 × 107 1.9622 × 104 5.4764 × 107 4.0018 × 107

HHO 6.6623 × 10−108 7.3828 × 10−98 3.3020 × 10−98 1.1054 × 10−110 1.0168 × 10−94 4.5478 × 10−95

PSO 1.3601 × 106 3.5205 × 106 5.7181 × 106 4.5861 × 106 4.9289 × 107 4.2768 × 107

F7

CSAOA 2.9267 × 10−6 2.3722 × 10−5 2.8044 × 10−5 9.1698 × 10−6 2.0147 × 10−5 3.5667 × 10−5

AOA 4.2757 × 10−6 5.9644 × 10−5 5.9879 × 10−5 5.4595 × 10−5 1.3258 × 10−4 2.0102 × 10−4

tAOA 1.0078 × 10−5 6.4877 × 10−5 6.8564 × 10−5 2.8181 × 10−5 1.1090 × 10−4 9.3297 × 10−5

IAOA 1.6981 × 103 2.0348 × 102 1.9295 × 103 1.5203 × 103 2.3306 × 102 1.8371 × 103

SSA 2.6432 × 10−5 4.5348 × 10−4 4.4236 × 10−4 1.7974 × 10−4 3.7072 × 10−4 5.6990 × 10−4

MFO 1.5975 × 102 1.9347 × 102 2.9386 × 102 1.0539 × 102 1.2845 × 102 2.1167 × 102

HHO 2.0064 × 10−5 1.2755 × 10−4 1.9150 × 10−4 2.0187 × 10−5 1.2515 × 10−4 1.2073 × 10−4

PSO 1.0825 5.6768 × 101 4.5013 × 101 9.6292 3.9483 × 101 5.0622 × 101
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Table 3. Cont.

F Algorithm
d = 30 d = 100

Optimal Value Standard
Deviation Mean Value Optimal Value Standard

Deviation Mean Value

F8

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 1.3418 × 10−4 2.9923 × 10−4 5.0244 × 10−4 2.9660 × 10−4 1.1015 × 10−4 3.9687 × 10−4

tAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IAOA 6.3157 × 101 3.2242 6.8351 × 101 6.9486 × 101 2.5146 7.2765 × 101

SSA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MFO 1.1117 × 101 3.7540 1.6059 × 101 1.5147 × 101 1.4293 1.6984 × 101

HHO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PSO 1.4107 1.7084 2.4831 2.0968 1.4855 3.4349

F9

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
tAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IAOA 1.6102 × 103 3.1635 × 101 1.6402 × 103 1.5785 × 103 3.3781 × 101 1.6346 × 103

SSA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MFO 8.1370 × 102 8.0360 × 101 8.9231 × 102 7.5818 × 102 5.1659 × 101 8.1717 × 102

HHO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PSO 8.7786 × 102 9.1631 × 101 9.5337 × 102 9.2307 × 102 6.6515 × 101 9.9908 × 102

F10

CSAOA 8.8818 × 10−16 0.0000 8.8818 × 10−16 8.8818 × 10−16 0.0000 8.8818 × 10−16

AOA 8.8818 × 10−16 4.7666 × 10−4 2.1317 × 10−4 8.8818 × 10−16 1.0928 × 10−3 1.1372 × 10−3

tAOA 8.8818 × 10−16 0.0000 8.8818 × 10−16 8.8818 × 10−16 0.0000 8.8818 × 10−16

IAOA 2.0471 × 101 3.0222 × 10−2 2.0506 × 101 2.0382 × 101 6.4016 × 10−2 2.0477 × 101

SSA 8.8818 × 10−16 0.0000 8.8818 × 10−16 8.8818 × 10−16 0.0000 8.8818 × 10−16

MFO 1.9868 × 101 3.3033 × 10−2 1.9924 × 101 1.9755 × 101 7.4727 × 10−2 1.9880 × 101

HHO 8.8818 × 10−16 0.0000 8.8818 × 10−16 8.8818 × 10−16 0.0000 8.8818 × 10−16

PSO 1.3243 × 101 1.6071 1.5113 × 101 1.4995 × 101 1.8789 1.7506 × 101

F11

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 1.2203 × 102 2.6186 × 102 4.8193 × 102 2.4244 × 102 2.4150 × 102 4.8551 × 102

tAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IAOA 2.2522 × 103 1.2950 × 102 2.4163 × 103 2.3306 × 103 1.5393 × 102 2.5064 × 103

SSA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MFO 3.7195 × 102 1.2642 × 102 5.1564 × 102 5.0258 × 102 9.5333 × 101 5.7926 × 102

HHO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PSO 3.3916 × 101 5.4661 4.1221 × 101 1.9851 × 101 5.5612 2.5891 × 101

F12

CSAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
AOA 2.8126 1.6248 4.7728 1.3210 1.4682 3.1535
tAOA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IAOA 2.5552 × 105 1.7410 × 104 2.7892 × 105 2.5568 × 105 6.4507 × 103 2.6388 × 105

SSA 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
MFO 5.7450 × 104 1.9759 × 104 7.7476 × 104 3.1256 × 104 1.9452 × 104 6.5136 × 104

HHO 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PSO 3.4242 × 103 1.4911 × 103 4.5739 × 103 4.2942 × 103 2.1801 × 103 6.7126 × 103

F13

CSAOA 7.7892 × 10−8 5.4511 × 10−5 4.6380 × 10−5 1.0178 × 10−6 2.1624 × 10−5 1.5606 × 10−5

AOA 9.7578 5.8550 × 10−2 9.8453 9.9285 4.1098 × 10−2 9.9813
tAOA 9.9859 2.4972 × 10−3 9.9891 9.9841 2.8709 × 10−3 9.9886
IAOA 4.6601 × 109 4.9023 × 108 5.1856 × 109 4.9443 × 109 4.1623 × 108 5.5553 × 109

SSA 5.0924 × 10−4 1.0188 × 10−3 1.4685 × 10−3 8.8230 × 10−5 1.1020 × 10−2 5.5947 × 10−3

MFO 2.1222 × 108 3.4180 × 108 6.0517 × 108 2.7935 × 108 3.9204 × 108 7.0479 × 108

HHO 4.1771 × 10−6 9.8017 × 10−5 8.9227 × 10−5 5.5344 × 10−6 9.6250 × 10−5 8.4396 × 10−5

PSO 6.0808 × 101 8.3371 × 104 9.3264 × 104 3.0820 × 102 4.1416 × 104 5.4588 × 104
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Table 4. Comparison of test results of composite fixed low-dimensional test functions in
different iterations.

F Algorithm
Tmax = 500 Tmax = 1000

Optimal Value Standard
Deviation Mean Value Optimal Value Standard

Deviation Mean Value

F14

CSAOA 5.9288 1.5366 × 10−13 5.9288 5.9288 3.0150 7.2772
AOA 7.8740 1.9654 10.9480 5.9288 3.2338 10.3630
tAOA 9.9800 × 10−1 5.2590 7.6354 2.9821 5.0191 8.4137
IAOA 9.9801 × 10−1 2.6881 × 10−4 9.9822 × 10−1 9.9800 × 10−1 8.8731 × 10−1 1.3948
SSA 2.9821 4.3328 10.7330 9.9800 × 10−1 5.6778 8.5956
MFO 1.9920 1.6460 4.3572 9.9800 × 10−1 2.0442 2.3818
HHO 9.9800 × 10−1 8.8250 × 10−11 9.9800 × 10−1 9.9800 × 10−1 1.4927 × 10−10 9.9800 × 10−1

PSO 9.9800 × 10−1 3.2980 × 10−10 9.9800 × 10−1 9.9800 × 10−1 3.0115 × 10−10 9.9800 × 10−1

F15

CSAOA 3.1135 × 10−4 2.2550 × 10−5 3.4556 × 10−4 3.0804 × 10−4 7.7145 × 10−6 3.1364 × 10−4

AOA 2.0151 × 10−3 7.4864 × 10−3 7.8982 × 10−3 3.3393 × 10−4 9.0278 × 10−3 5.6261 × 10−3

tAOA 3.3949 × 10−4 9.3537 × 10−3 1.5406 × 10−2 3.8758 × 10−4 1.0277 × 10−3 1.8579 × 10−3

IAOA 1.5193 × 10−3 3.2671 × 10−3 3.4810 × 10−3 1.5141 × 10−3 8.5690 × 10−4 2.1570 × 10−3

SSA 3.1621 × 10−4 2.3664 × 10−5 3.3133 × 10−4 3.0826 × 10−4 5.7720 × 10−4 5.7235 × 10−4

MFO 4.9014 × 10−4 5.1649 × 10−4 1.1770 × 10−3 6.9306 × 10−4 3.8080 × 10−4 1.0286 × 10−3

HHO 3.2187 × 10−4 4.0765 × 10−5 3.4526 × 10−4 3.1063 × 10−4 2.1931 × 10−5 3.2805 × 10−4

PSO 1.6554 × 10−3 8.9768 × 10−3 7.3008 × 10−3 1.6554 × 10−3 8.4166 × 10−3 8.6256 × 10−3

F16

CSAOA −1.0316 2.2288 × 10−11 −1.0316 −1.0316 1.5954 × 10−12 −1.0316
AOA −1.0316 1.3946 × 10−7 −1.0316 −1.0316 8.4764 × 10−8 −1.0316
tAOA −1.0316 1.6411 × 10−7 −1.0316 −1.0316 1.3202 × 10−7 −1.0316
IAOA −1.0290 3.3750 × 10−3 −1.0251 −1.0252 6.4286 × 10−3 −1.0185
SSA −1.0316 1.4550 × 10−7 −1.0316 −1.0316 5.9986 × 10−9 −1.0316
MFO −1.0316 0.0000 −1.0316 −1.0316 0.0000 −1.0316
HHO −1.0316 1.6503 × 10−10 −1.0316 −1.0316 8.2136 × 10−13 −1.0316
PSO −1.0316 1.7876 × 10−5 −1.0316 −1.0316 1.2757 × 10−5 −1.0316

F17

CSAOA 3.9789 × 10−1 1.7207 × 10−6 3.9789 × 10−1 3.9789 × 10−1 2.6523 × 10−7 3.9789 × 10−1

AOA 3.9920 × 10−1 6.9016 × 10−3 4.0607 × 10−1 4.0060 × 10−1 1.0145 × 10−2 4.0984 × 10−1

tAOA 3.9826 × 10−1 8.4643 × 10−3 4.0736 × 10−1 3.9800 × 10−1 9.1688 × 10−3 4.0481 × 10−1

IAOA 3.9798 × 10−1 3.8876 × 10−3 4.0362 × 10−1 3.9790 × 10−1 3.5639 × 10−3 4.0178 × 10−1

SSA 3.9789 × 10−1 7.0847 × 10−7 3.9789 × 10−1 3.9789 × 10−1 3.9668 × 10−8 3.9789 × 10−1

MFO 3.9789 × 10−1 0.0000 3.9789 × 10−1 3.9789 × 10−1 0.0000 3.9789 × 10−1

HHO 3.9789 × 10−1 4.3690 × 10−8 3.9789 × 10−1 3.9789 × 10−1 3.9874 × 10−9 3.9789 × 10−1

PSO 3.9789 × 10−1 1.0920 × 10−6 3.9789 × 10−1 3.9789 × 10−1 4.8865 × 10−1 5.5241 × 10−1

F18

CSAOA 3.0000 6.9354 × 10−11 3.0000 3.0000 4.5769 × 10−11 3.0000
AOA 3.0000 1.5252 × 10−8 3.0000 3.0000 1.1297 × 101 8.3583
tAOA 3.0000 1.2072 × 101 8.4046 3.0000 7.5751 5.3955
IAOA 3.0181 1.3154 4.4153 3.0125 6.8648 × 10−1 3.7742
SSA 3.0000 1.1655 × 10−6 3.0000 3.0000 1.9297 × 10−7 3.0000
MFO 3.0000 1.1322 × 10−15 3.0000 3.0000 2.0134 × 10−15 3.0000
HHO 3.0000 1.0688 × 10−7 3.0000 3.0000 1.5775 × 10−8 3.0000
PSO 3.0000 1.2094 × 10−4 3.0001 3.0000 2.8097 × 10−5 3.0000

F19

CSAOA −3.8628 3.4487 × 10−6 −3.8628 −3.8628 2.0503 × 10−6 −3.8628
AOA −3.8541 2.0932 × 10−3 −3.8521 −3.8573 3.4847 × 10−3 −3.8524
tAOA −3.8589 6.1122 × 10−3 −3.8511 −3.8603 3.1827 × 10−3 −3.8534
IAOA −3.8270 1.1869 × 10−1 −3.7383 −3.8493 1.0174 × 10−1 −3.7700
SSA −3.8628 2.3691 × 10−5 −3.8628 −3.8628 1.0027 × 10−6 −3.8628
MFO −3.8628 0.0000 −3.8628 −3.8628 9.3622 × 10−16 −3.8628
HHO −3.8626 4.6271 × 10−4 −3.8618 −3.8628 2.2493 × 10−3 −3.8614
PSO −3.8628 3.5228 × 10−3 −3.8612 −3.8628 4.0691 × 10−3 −3.8596

F20

CSAOA −1.0153 × 101 9.9270 × 10−5 −1.0153 × 101 −1.0153 × 101 1.4965 × 10−5 −1.0153 × 101

AOA −5.3422 1.1597 −3.6184 −5.0130 7.2225 × 10−1 −3.5994
tAOA −7.9372 1.6177 −5.1167 −9.0817 1.8651 −5.3548
IAOA −2.0531 3.1992 × 10−01 −1.5500 −6.8960 1.8733 −2.2640
SSA −1.0153 × 101 4.4744 × 10−4 −1.0153 × 101 −1.0153 × 101 6.5870 × 10−5 −1.0153 × 101

MFO −1.0153 × 101 2.2595 −9.1427 −1.0153 × 101 3.0171 −7.3715
HHO −5.0548 1.1872 × 10−3 −5.0534 −5.0551 1.4752 × 10−3 −5.0541
PSO −1.0149 × 101 2.7849 −7.0881 −1.0152 × 101 1.6090 −9.6342
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The optimal values, mean values, and standard deviations of each algorithm are
shown in Tables 3 and 4, which were used to verify the overall performance of the al-
gorithm. CSAOA showed excellent convergence speed and stability compared with the
other algorithms in the single-modal benchmark function, with d = 30. CSAOA found the
optimal value with the highest convergence rate and the best stability in F1–F4. Since the
parameters of the F5 function were complex, none of the algorithms found the optimal
value, but CSAOA approached the optimal value with the highest convergence accuracy,
and its convergence speed and stability were among the best. With the increase in the
dimensions (d = 100), the convergence speed and stability of each algorithm decreased, but
CSAOA still demonstrated better performance than the other algorithms.

In the multi-modal benchmark function with d = 30, the CSAOA found the optimal
value with the fastest convergence speed and the best stability in F8–F12. Due to the global
uniform distribution of circle chaotic mapping, it converged to the optimal value when the
mean and standard deviation were 0 in F8, F9, F11, and F12. SSA and tAOA showed good
performance on some simple multi-modal benchmark functions, but CSAOA still showed
better performance on complex multi-modal functions, which is similar to its performance
in regard to single-mode benchmark functions. The excellent performance of CSAOA in
multi-modal benchmark functions fully reflects the role of the MOA optimized by means of
compound cycloid and the optimal mutation strategy combining the sparrow elite mutation
with the adaptive water wave factor and Cauchy disturbance, with CSAOA demonstrating
a stronger ability to jump out of local optimum.

The dimension of the composite fixed low-dimensional function is fixed, and the
dimension cannot be changed in the test process. Therefore, higher iterations are selected
to test the performance of the algorithm in high-intensity operations. The results are shown
in Table 4. For composite fixed low-dimensional benchmark functions, CSAOA showed
the highest convergence accuracy compared with the other algorithms except in the case of
F14, but the stability of CSAOA was better in the case of F14. When the various algorithms
had the same optimization accuracy in other composite fixed low-dimensional benchmark
functions, CSAOA maintained a faster convergence speed. However, it was less stable than
MFO. CSAOA still has strong competitiveness when the number of iterations is increased.

The convergence curves of each algorithm in some functions are shown in Figure 6 to
enable a more intuitive comparison of the competitiveness of CSAOA with various existing
mature algorithms. Each algorithm has 500 iterations in Figure 6. CSAOA approached the
optimal value at a faster convergence rate under the same conditions, and the fluctuation
was small. Furthermore, CSAOA converged to the optimal value with the highest accuracy
and stability, except for the case shown in Figure 6e. Although CSAOA fell into the local
optimum in Figure 6e, the optimization accuracy also had a good effect, and the stability
was higher.

4.3. Time Complexity of the Algorithm

The time complexity of the CSAOA was analyzed to test the solution speed. The total
number of individuals is denoted by N, the dimension of each individual is d, and the
maximum number of iterations is assumed to be M in the AOA. The time occupied in the
initial stage is T0,

T0 = O(n0 + N( f (d) + d× n1)) (15)

where n0 is the time required to initialize the algorithm parameters and n1 is the time
required to generate a random number in the algorithm initialization phase. f (d) is the time
required to calculate the individual fitness of the initial population.
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Figure 6. Convergence curves of different algorithms on different functions. The selected functions
were those with obvious differences between the convergence curves of each algorithm. (a) F2
function; (b) F3 function; (c) F7 function; (d) F10 function; (e) F15 function; (f) F20 function.



Symmetry 2022, 14, 1011 15 of 21

The time required for individual updating is T1 after entering the iteration,

T1 = O(N(n2 + n3 + n4)× d) (16)

where n2 is the random number generation time required for Equations (2), (3), and (6) in
the update process, n3 is the time required for the updating of the MOA, and n4 is the time
required for individual updating, according to Equations (3) and (6).

The time needed to calculate the fitness value of the new individual is T2 after updating
the individual.

T2 = O(N × f (d)) (17)

The time complexity required by the AOA is obtained through the above analysis as
Equation (18).

Tw = T0 + M× (T1 + T2) = O(d + f (d)) (18)

The time complexity of CSAOA in initialization is expressed as T0′ ,

T0′ = O(t0 + N( f (d) + d× t1)) (19)

where t0 is the time required to initialize the algorithm parameters and t1 is the time
required to generate a random number when the algorithm is initialized. It can be seen
from Equation (19) that the introduction of the circle chaotic approach did not increase the
algorithm’s time complexity.

The time required for individual updating is T1′ after entering the iteration,

T1′ = O(N((t2 + t3 + t4)× d + f (d))) (20)

where t2 is the random number generation time required for Equations (2), (3), and (6) in the
updating process, t3 is the time required for the MOA optimized by compound cycloid updating,
and t4 is the time required for individual updating, according to Equations (3) and (6).

The time complexity of the sparrow elite mutation with the adaptive water wave factor
is calculated as:

T2′ = O(t5 + t6 + t7 + f (d))× d)) (21)

where t5 is the generation time of the adaptive water wave factor, t6 is the generation
time of the random number in sparrow elite mutation, and t7 is the time required for the
individual updating process according to Equation (11).

The time complexity of the Cauchy disturbance performed on the optimal individual
in the population is:

T3′ = O(0.1× N(t8 + f (d))× d)) (22)

where t8 is the time required for the individual to perform the Cauchy disturbance.
In summary, the time complexity of CSAOA is expressed as Tw’.

Tw′ = T0′+ M× (T1′+ T2′+ T3′) = O(d + f (d)) (23)

CSAOA had the same time complexity as AOA, comparing the time complexity
before and after improvement, which proves that CSAOA (representing the algorithm after
multi-strategy improvement) does not increase the time complexity of the AOA.

4.4. Wilcoxon Rank-Sum Test

Three single-mode benchmark functions and three multi-mode benchmark functions
were selected to perform the Wilcoxon rank-sum test for all algorithms. The rank-sum test
was performed under the conditions of p = 5% and d = 30 to compare the optimization
effect between CSAOA and other algorithms.

Firstly, we established assumptions H0 and H1, with H0 indicating that the optimiza-
tion effects of the two algorithms were not significantly different and H1 indicating that
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the optimization effects of the two algorithms were significantly different. H0 was rejected,
and H1 was accepted when p < 5%; otherwise, H0 was accepted, and H1 was rejected.

CSAOA was tested through Wilcoxon rank-sum tests with five algorithms, respectively.
The p-values are shown in Table 5.

Table 5. The p-values of the Wilcoxon rank-sum tests.

F AOA tAOA IAOA SSA MFO HHO PSO

F1 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.7016 × 10−8 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

F2 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 1.6572 × 10−11 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

F3 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 3.4526 × 10−7 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

F4 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12 5.7720 × 10−11 1.2118 × 10−12 1.2118 × 10−12 1.2118 × 10−12

F8 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12

F9 NAN NAN 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12

F10 3.1335 × 10−4 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 8.9713 × 10−13

F11 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12 NAN 1.2118 × 10−12

F20 1.2118 × 10−12 1.7769 × 10−10 3.0199 × 10−11 8.8411 × 10−7 1.5510 × 10−1 4.0772 × 10−11 2.6099 × 10−10

NAN represents the same optimization ability as the two algorithms in Table 5.
The Wilcoxon rank-sum test results indicated that most of the p-values of the nine

test functions were less than 5%, indicating that the test results enabled us to reject the
H0 hypothesis and accept the H1 hypothesis. This also proves that the results of CSAOA
and the other algorithms had significant differences. CSAOA proved to be more effective
than the other algorithms, combining the previous test results. Only the p-values of SSA
and tAOA were slightly higher than other algorithms, but they were all less than 5%. This
result proves that the significant differences among SSA, tAOA, and CSAOA were slightly
smaller than other algorithms, which is consistent with the previous tests.

4.5. CEC2019 Test Set

CEC2019 is a set of test functions proposed by the Congress on Evolutionary Com-
putation in 2019 (CEC 2019) to test the performance of algorithms [35]. CSAOA, AOA,
tAOA, IAOA, SSA, MFO, HHO, and PSO were brought separately into the CEC2019 test
set under the same conditions to verify the robustness of CSAOA. The CEC2019 test set
consists of functions with complex spatial characteristics and different dimensions, and the
optimal value of each function is 1. Each function was iterated 500 times and independently
repeated 30 times. The test results are shown in Table 6.

The test results showed that CSAOA displayed the highest relative optimization accuracy
in the solution process and maintained a relatively higher convergence speed and stability,
except for the case of CEC05 and CEC04. CSAOA has many operation parameters, and AOA
has difficulty solving CEC05, which results in a slightly lower convergence accuracy than
MFO and HHO. However, compared with AOA, performance was greatly improved.
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Table 6. CEC2019 test results.

Function Dimensional Algorithm Optimal Value Standard
Deviation Mean Value

CEC01 9

CSAOA 1.0000 9.9362 × 10−11 1.0000
AOA 1.0000 2.0992 × 101 1.9396
tAOA 1.0000 5.9761 × 103 6.3787 × 102

IAOA 7.6618 × 103 1.5845 × 104 1.5918 × 104

SSA 1.0000 9.5074 × 101 5.2818
MFO 2.7674 × 101 5.3492 × 103 1.1279 × 103

HHO 1.0000 1.7750 × 104 1.2836 × 103

PSO 5.1698 × 102 7.9872 × 103 2.0578 × 103

CEC02 16

CSAOA 4.3008 1.9870 × 10−1 4.4720
AOA 4.8822 3.0697 5.3359
tAOA 4.6721 6.1232 5.2510
IAOA 5.4774 × 101 1.4310 × 101 6.2534 × 101

SSA 5.0000 6.1930 × 10−1 5.0301
MFO 6.4186 × 101 2.3793 × 101 7.1883 × 101

HHO 5.0000 1.3384 × 101 6.1740
PSO 2.4646 × 101 1.0274 × 101 3.2307 × 101

CEC03 18

CSAOA 1.4791 3.0558 4.2609
AOA 4.4274 8.0300 × 10−1 4.6550
tAOA 5.8347 1.2666 6.5828
IAOA 1.2712 × 101 1.0040 × 10−1 1.2730 × 101

SSA 5.6212 9.5340 × 10−1 6.6439
MFO 1.0712 × 101 7.3540 × 10−1 1.1880 × 101

HHO 8.2746 6.7500 × 10−1 8.6720
PSO 9.4749 4.9620 × 10−1 9.6062

CEC04 10

CSAOA 3.7850 × 101 2.4151 × 101 6.1721 × 101

AOA 6.4291 × 101 5.8293 6.6431 × 101

tAOA 3.2929 × 101 6.4355 3.5815 × 101

IAOA 5.0192 × 101 2.1434 × 101 6.1235 × 101

SSA 7.4627 × 101 6.5244 7.6946 × 101

MFO 6.2439 × 101 1.2302 × 101 6.5784 × 101

HHO 5.7328 × 101 1.5165 × 101 7.3943 × 101

PSO 6.4824 × 101 7.0026 6.9592 × 101

CEC05 10

CSAOA 1.3758 × 101 4.2440 × 101 4.0781 × 101

AOA 5.7798 × 101 2.2018 5.8757 × 101

tAOA 2.8283 × 101 2.5955 2.8973 × 101

IAOA 1.2654 × 101 1.6715 × 101 2.0529 × 101

SSA 1.6138 × 101 3.7191 × 101 3.7237 × 101

MFO 1.0359 × 101 2.6354 × 101 1.6591 × 101

HHO 1.6947 1.8314 × 101 1.9929 × 101

PSO 2.0462 × 101 1.4811 × 101 2.3161 × 101

5. Engineering Application of Algorithm
5.1. The Problem of AC Motor PID Control

Swarm intelligence optimization algorithms are usually used to optimize control
systems in the engineering field. Aiming at the stability problem of AC motor PID con-
trol, CSAOA was applied to the parameter tuning of the PID controller to ensure the
stable operation of the system. The mathematical model of the AC motor is displayed in
Figure 7 [36].
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Where the driver proportional coefficient KP1 is 10, the time constant Tp1 is 0.2, the
inertia J = 2.5 × 106 kg·m2, the current loop proportional coefficient Ki = 5, the proportional
coefficient Kt = 0.3, Ku = 1, and the feedback coefficient Kp = 0.001.

The control expression of PID, applied in practical engineering, is shown in Equation (24),

u(k) = Kpe(k) + Ki

K

∑
n=0

e(k) + Kd[e(k)− e(k− 1)] (24)

where Kp is the proportional coefficient, Ki is the integral coefficient, and Kd is a
differential coefficient.

AOA, tAOA, IAOA, SSA, MFO, HHO, PSO, and CSAOA were utilized separately
to tune the parameters of this PID control system, and then the results were compared.
The initial conditions of each algorithm were consistent, the number of individuals was
30, and the maximum number of iterations was 100. Each algorithm was run 30 times
independently, and the mean values of the results were taken. The parameter tuning results
of this PID control system are shown in Table 7.

Table 7. Comparison of parameter setting results of different algorithms applied to PID control of an
AC motor.

Algorithm Kp Ki Kd Fitness Value

CSAOA 0.0000 0.0238 0.5000 120.3124
AOA 0.4074 0.3279 0.2194 127.4984
tAOA 0.0604 0.0000 0.5000 123.3777
IAOA 0.4074 0.0788 0.3279 126.2875
SSA 0.4074 0.0439 0.1230 127.4984
MFO 0.4074 0.3279 0.2194 127.4984
HHO 0.4074 0.3279 0.2194 127.4984
PSO 0.4074 0.3279 0.2194 127.4984

As shown in Figure 8, CSAOA displayed the best tuning effect on the parameters of
the PID controller. The system reached the expected value with the minimum rise time
after CSAOA optimization, and the overshoot and oscillation values were the smallest.
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5.2. Pressure Vessel Design Problem

Pressure vessel design is a common problem in engineering design [37]. The goal of
pressure vessel design is to minimize the production costs of the pressure vessel under the
premise of meeting the pressure conditions. The design of a pressure vessel is shown in
Figure 9. The pressure vessel design problem has four variables to be optimized, namely,
L, R, Ts, and Th. L is the length of the tube, R is the inner wall diameter of the cylindrical
part, Ts is the wall thickness of the cylindrical part of the pressure vessel, and Th is the wall
thickness of the pressure vessel head. The objective function of the problem is exhibited in
Equations (25) and (26). The constraint conditions are shown in Equations (27) to (30),

x = [x1, x2, x3, x4] = [Ts, Th, R, L] (25)

f (x) = 0.6224x1x3x4 + 1.7781x2x2
3 + 3.1661x2

1x4 + 19.84x2
1x3 (26)

g1(x) = −x1 + 0.0193x3 ≤ 0 (27)

g2(x) = −x2 + 0.00954x3 ≤ 0 (28)

g3(x) = −πx2
3 − 4πx3

3/3 + 1296000 ≤ 0 (29)

g4(x) = x4 − 240 ≤ 0 (30)

where the search range for x1, x2, x3, x4 is shown in (31).

0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 100, 10 ≤ x4 ≤ 100 (31)
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Symmetry 2022, 14, 1011 20 of 21

6. Conclusions

An improved arithmetic optimization algorithm combining a compound cycloid and
sparrow elite mutation (CSAOA) was proposed in this paper. The novel improved AOA
displays a high convergence accuracy, fast speed, and strong stability.

In this improved AOA, the initialization method based on circle chaotic mapping
makes the distribution of the initial population more uniform. The global search ability is
enhanced, and the convergence speed is accelerated through the use of an MOA optimized
by means of a compound cycloid. The optimal mutation strategy is proposed to improve
the problems of falling easily into the local optimum and the low convergence accuracy.

The convergence accuracy, convergence speed, and stability of the CSAOA were
proven to be excellent compared with other algorithms, based on 20 benchmark functions,
solved separately using CSAOA, AOA, tAOA, IAOA, SSA, MFO, HHO, and PSO. The
time complexity of the algorithm, the significant difference in the running results of each
algorithm, and the optimization effect for functions of a high level of difficulty were further
verified through the use of a time complexity test, rank-sum test, and the CEC2019 test
set, respectively. Finally, the effectiveness of the practical application of the CSAOA was
verified through engineering examples.

Improving the updating formula of the individual population will be the focus of
future work. The algorithm will be made to jump out of the limit of the updating formula by
improving the updating formula of the algorithm. This will further improve the searching
ability of the algorithm in each iteration’s updating process.
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