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Abstract: Ever since the World Health Organization gave the name COVID-19 to the coronavirus
pneumonia disease, much of the world has been severely impact by the pandemic socially and
economically. In this paper, the mathematical modeling and stability analyses in terms of the
susceptible–exposed–infected–removed (SEIR) model with a nonlinear incidence rate, along with
media interaction effects, are presented. The sliding mode control methodology is used to design
a robust closed loop control of the epidemiological system, where the property of symmetry in the
Lyapunov function plays a vital role in achieving the global asymptotic stability in the output. Two
policies are considered: the first considers only the governmental interaction, the second considers
only the vaccination policy. Numerical simulations of the control algorithms are then evaluated.
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1. Introduction

A recent World Health Organization (WHO) report has shown that over 2.7 million
people die each year from communicable diseases in 2019, down from 15 millions in 2007 [1].
This dramatic decrement is attributable to a largely efficient health system worldwide.
Although vaccines are available for a variety of communicable diseases such as dengue,
hepatitis A and B, influenza, measles etc. [2], they are mainly prophylactic measures to
control the spread in susceptible individuals and require significant time to be developed
and tested. If the individuals themselves are familiar with the communicable disease and
taking appropriate measures to avoid further infection, these susceptible individuals will
isolate themselves or seek the vaccines. Investigations into the epidemiological sciences will
help governments around the globe combat ongoing pandemics effectively and efficiently
to restore normalcy from any epidemic outbreaks.

Mathematical modeling is a standard tool that can be used to offer insights in the behav-
ior of the spread of the disease. The standard epidemiological models follow the Kermack
and McKendrick framework [3]. This model is now well-known as the SIR compartmental
model, which divides the entire host population into three separate compartments: suscepti-
bles individuals (S), infected individuals (I), and recovered individuals (R). However, most
infectious diseases have a latent state, where the individuals have contracted the disease,
but the amount of the viral loading is not sufficient for the individuals to be infective. This
state is termed exposed (E), making the system a four-state differential equation system.
This four-state system is called the susceptible–exposed–infected–recovered (SEIR). The
earliest SEIR models were simple, assuming that the number of each classes is affected by
few factors. With more research, the SEIR model can be modified with additional terms,
including addition factors [4] and recruitment rate [5,6]. In addition, the incidence rate itself,
which is usually modeled to be a linear function of the infectious class, can be modified
to be nonlinear [7–10]. The SEIR model and its equivalents have been used in the study
of other infectious diseases including influenza A [11], dengue fever [5], MERS-CoV [6],
Zika [12], and SARS [13]. Although stochastic models (including Markov models) based on

Symmetry 2022, 14, 1010. https://doi.org/10.3390/sym14051010 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051010
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-2000-8259
https://doi.org/10.3390/sym14051010
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051010?type=check_update&version=1


Symmetry 2022, 14, 1010 2 of 24

the generalized SIR and SEIR have also been proposed to provide more understanding of
an epidemic at patient levels [14,15], deterministic SEIR models remain useful in providing
the big picture of the dynamics of an infectious disease, as well as developing targets for
disease control.

With the development of vaccines to combat worldwide epidemics, a crucial factor
for the vaccine coverage is the perceived beliefs and misconceptions associated with the
vaccines themselves. Individuals can refuse to accept vaccines if they perceive it to be
too risky. This phenomenon could jeopardize the coverage program if the uptake rates is
heavily affected by the public perception. Conversely, lack of awareness about the vaccine
availability and accessibility will dissuade people from seeking the vaccines. To overcome
these issues, awareness need to be created through media campaigns. Media can induce
behavioral changes and alter public perception of vaccination, which, along with other
interventions such as governmental intervention, can shorten the epidemic. Although social
media influences are also felt in recent years, traditional media campaigns such as television
and radio are still very much alive, particularly in non-OECD countries. Researchers have
therefore looked at the role of media on epidemic outbreaks with deterministic [16–18] and
stochastic models [19].

The ultimate goal of formulating mathematical model of epidemics is to implement
corresponding strategies to control the disease. By evaluating the strategies, effective
information can be put forward to the government and the ministry of public health to
formulate and implement an effective strategy of control. Optimal control approaches have
been proposed for a number of epidemics [5,20–24]. This type of control, though achieving
the aim of minimizing the number of infective individuals, can still be viewed from a
control engineering viewpoint as an open loop control. In this light, a closed-loop control
approach would be preferred. With this motivation, this work would like to investigate the
design of the closed loop control using a nonlinear controller called sliding mode control
(SMC). This type of control is targeted mainly to nonlinear systems and is well known
for features such as insensitivity to variations of model disturbances [25,26]. Numerous
applications of the SMC are well-documented in the literature, with applications ranging
from robotic manipulators [27], MEMS gyroscopes [28], power converters [29], UAV [30],
among others. Other recent developments of the SMC have included stochastic SMC,
particularly Markovian jump systems (MJS) [31–34]. Epidemiological applications of the
SMC have included the control of influenza dynamics [35,36], although in both works, only
one control policy is designed.

In this work, based on the basic SEIR model, a more general SEIR model is investigated.
This model includes the use of the nonlinear incidence rate, which is explicitly tailored
to incorporate governmental interactions, rather than being some general function [9,10],
and the media interaction, which is modeled with separate compartments rather than
being just an incidence rate [19], thereby allowing for the quantification of the effect of
media in epidemics. This aspect of the contribution is important, as the developed model
incorporates both factors into a single model, where previous works in the literature only
consider one or the other in their models. The positivity of the resulting system will be
proved, along with an equilibrium analysis. Stability of the open loop epidemic model,
including the endemic equilibria, will also discussed. The nonlinear sliding mode control
will also be proposed based on two policies to curtail the disease to a more manageable
level. The property of symmetry in the Lyapunov function plays an important role in
achieving the global asymptotic stability in the closed-loop control. The first policy centers
on the governmental interaction. This policy is purely nonvaccination strategy, which
is helpful for countries that could only scarcely access the vaccines. The second policy
investigates a pure inoculation strategy, incorporating transformations seen in nonlinear
control systems theory. Although the SMC has been applied in other epidemics such as
influenza [35,36], these works only investigated the design of only one policy. To the
author’s best knowledge, this is the first work that investigates the application of SMC to
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multiple control policies. Numerical results will be given for the application of each policy,
including the designs of multiple reaching laws.

2. Modeling and Dynamical System Analysis
2.1. The Model

The model considered in this paper is the SEIR framework. In this respect, the entire
population is subdivided into four main classes, namely susceptible (S), exposed (E),
infected (I), and recovered (R). Note that the infection force in this work is assumed to be
nonlinear in similar fashion to the work of Xiao [7]. This nonlinear incidence rate models
the inhibitory effect which is caused by strict governmental issues such as lockdowns.

Note that the governmental input effect is modelled by the parameter α. When α is
zero, that is, no governmental inhibition occurs; the infection force is just the customary
linear infection force βSI. A nonzero value of α will signify a significant decrease of
the infection force, which is feasible since there will then be lesser contacts between the
susceptibles and the infectives.

Furthermore, the media impact on the population is modeled by assuming that part
of the susceptible population forms a subclass called the susceptible aware population (Sa).
This population class models the susceptible individuals who are aware of the awareness
program driven by media efforts M at time t. The effect of such program is that the
susceptible aware population, having been aware of the correct procedures of keeping
themselves safe from the pathogen, will then take appropriate measures to do so. The
media influence is initially expected to have low impact on the population, but their effects
are modeled to be increased over time. This influence cannot increase indefinitely because
of resource limitation and waning interests. Moreover, the impact on the population itself
can also be limited on the population side mainly through digital illiteracy, digital divide,
and financial constraints. Hence, both the media efforts and their effects can be expected
to follow some sort of saturation relationship. Here, it is assumed that this saturation
follows the Holling type II functional response. The growth rate of cumulative density of
the media is modeled in this case to be proportional to the number of infected individuals.
Note that some individuals of the susceptible aware class may transfer themselves back to
the susceptible class through negligence or forgetfulness. In addition, the model used in
this work is different from those used in the works of Tchuenche [17] and more recently
Ding [19], where the dynamics of the media impact is modeled by explicit compartments
(Sa and M) in the system of the differential equations, rather than just being a Holling
type functional factor of the incidence rate as were seen in the models of Tchuenche and
Ding. Figure 1 depicts the schematics of the formulated model, where flows between
compartments are labeled with their respective rates of change.

The formulated model is given by the following system of differential equations:

S̄′ = µNT − µS̄− β0S̄ Ī
1 + α Ī2 + δ3S̄a −

βS̄M
1 + γM

(1a)

Ē′ =
β0S̄ Ī

1 + α Ī2 − (σ + µ)Ē (1b)

S̄′a =
βS̄M

1 + γM
− (µ + δ3)S̄a (1c)

Ī′ = σĒ− (µ + r + µd) Ī (1d)

R̄′ = r Ī − µR̄ (1e)

M′ = µm Ī − µ0M (1f)

where:
S̄ is the number of susceptible individuals at time t;
Ē is the number of exposed individuals at time t;
S̄a is the number of susceptible aware individuals at time t;
Ī is the number of infected individuals at time t;
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R̄ is the number of recovered individuals at time t;
M is the amount of media exposure at time t;
NT is the total human population;
µ is the birth/death rate of the population
µd is the disease induced mortality rate;
β0 is the per-capita contact rate;
β is the rate of dissemination of awareness information;
γ is the media inhibition parameter limiting the effect the media has on the susceptibles;
α the governmental effort parameter to limit the spread of infection;
δ3 is the rate at which the aware susceptible individuals transfer themselves back to
susceptibles;
σ is the rate of transfer between the exposed and infected classes, in other words, 1

σ is the
mean incubation period of the disease;
r is the recover rate of the disease;
µm is the implementation rate of the awareness program;
µ0 is the removal rate of the awareness program.

Figure 1. Schematics of the formulated model.

Note that the bars over the variables S, E, Sa, I, and R denote the unnormalized vari-
ables at time t. The nature of these variables as well as the model itself remain deterministic.
Note also that the total population at time t, N(t), is given by the sum of the S̄, Ē, S̄a, Ī, and
R̄, that is:

N(t) = S̄ + Ē + S̄a + Ī + R̄ (2)

The total population demography is described by following:

N′(t) = −µNT − µN − µd Ī (3)

At this stage, since we have the demography of the total population, it is prudent to
investigate the region of attraction of the model. This is then given in Lemma 1.

Definition 1. (Positive invariant set) A set of states S ⊆ R6
+ is called the positive invariant set of

the system (1) if for all the initial condition {S̄(0), Ē(0), S̄a(0), Ī(0), R̄(0), M̄(0)} ∈ S and for all
t ≥ 0, {S̄, Ē, S̄a, Ī, R̄, M̄} ∈ S.
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Lemma 1. The set Σ = {S̄, Ē, S̄a, Ī, R̄, M̄ ∈ R6
+ : 0 ≤ S̄ + Ē + S̄a + Ī + R̄ = N ≤ NT , 0 ≤

µM NT
µ0

} is positively invariant.

Proof. Let P(t) = (N(t), M(t)), then:

dP
dt

=

(
dN
dt

,
dM
dt

)
= (−µNT − µN − µd Ī, µm Ī − µ0M).

It is apparent from Equation (3) that:

dN
dt
≤ −µNT − µN

implying that:

lim sup
t→∞

N(t) ≤ NT

Similarly, for the dM
dt equation in Equation (1f),

dM
dt
≤ −µmNT − µ0M

which thereby implies:

lim sup
t→∞

M(t) ≤ µM NT
µ0

.

This completes the proof of Lemma 1.

Having determined that the region of attraction of the system is positively invariant,
the model is then normalized through the normalizing variables:

S =
S̄

NT
, E =

Ē
NT

, Sa =
S̄a

NT

I =
Ī

NT
, R =

R̄
NT

(4)

Since the original model is positively invariant, the order of the system can actually
be reduced by simply neglecting the R equation. The reduced model, in normalized form,
is simply:

S′ = µ− µS− β0SI
1 + αI2 + δ3Sa −

βSM
1 + γM

(5a)

E′ =
β0SI

1 + αI2 − (σ + µ)E (5b)

S′a =
βSM

1 + γM
− (µ + δ3)Sa (5c)

I′ = σE− (µ + r + µd)I (5d)

M′ = µm I − µ0M (5e)

This normalized model will be used for dynamical system analysis as well as control
design in the subsequent sections.

2.2. Equilibrium Analysis

The first step in analyzing the system given in Equation (5) is the equilibrium analysis.
In this light, the definition is:
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Definition 2. The state xeq = (Seq, Eeq, Sa,eq), Ieq, Meq)T is called the equilibrium state of
Equation (5) if f (xeq) = 0.

The system of Equation (5) admits two types of equilibrium, namely the disease-free
equilibrium EDFE and the endemic equilibrium E1:

EDFE = (1, 0, 0, 0, 0)T (6)

E1 = (S∗, E∗, S∗a , I∗, M∗)T (7)

The disease-free equilibrium EDFE exists without any condition. To proceed in working
out the existence condition of the endemic equilibrium, as well as the endemic equilibrium
itself, we first need to work out the basic reproduction number R0. In this respect, quite
a few approaches exist in the computation of R0, but recently, the next-generation matrix
approach of van den Driessche et al. [37] has established itself as one of the standard
methods in R0 computation. A simple way of setting up the next generation matrix
approach is to consider the equations influencing the new infections, then evaluating the F
and V matrices:

F =

[
0 β0
0 0

]
, V =

[
σ + µ 0

σ µ + r + µd

]
(8)

The matrix H = FV−1 is then computed to be:

H =

[
β0σ

(µ+r+µd)(µ+σ)
β0

µ+σ

0 0

]

The basic reproduction number is calculated from the maximum eigenvalue of the
H matrix:

R0 =
β0 σ

(µ + r + µd)(µ + σ)
(9)

Returning to the problem of working out the endemic equilibrium E1, setting the right
hand side of Equation (5) to zero yields:

µ− µS− β0SI
1 + αI2 + δ3Sa −

βSM
1 + γM

= 0 (10a)

β0SI
1 + αI2 − (σ + µ)E = 0 (10b)

βSM
1 + γM

− (µ + δ3)Sa = 0 (10c)

σE− (µ + r + µd)I = 0 (10d)

µm I − µ0M = 0 (10e)

Solving Equations (10d) for E∗ and (10e) for M∗ in terms of I∗ yield:

E∗ =
µ + r + µd

σ
I∗ =

β0

R0(µ + σ)
I∗

M∗ =
µm

µ0
I∗

Now, Equation (10b) implies:

S∗ =
(σ + µ)(1 + α (I∗)2)

β0 I∗
E∗ =

(1 + α (I∗)2)

R0
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Solving Equation (10c) for S∗a yields:

S∗a =
βS∗M∗

(µ + δ3)(1 + γM∗)
=

βµm I∗(1 + α(I∗)2)

R0(µ + δ3)(µ0 + µmγI∗)

Every variables being solved so far depends on the endemic I∗. To finally solve the
entire system, we could substitute the expressions for E∗, M∗, S∗, and S∗a into Equation (10a)
to yield the cubic equation:

A(I∗)3 + B(I∗)2 + CI∗ + D = 0 (11)

where:

A = µµmα((µ + δ3)γ + β) (12)

B = µ(µ + δ3)(αµµ0 + β0γµm) (13)

C = −µmγ(R0 − 1)µ2 + ((−δ3(R0 − 1)γ + β)µm

+ µ0β0)µ + β0δ3µ0 (14)

D = −µµ0(µ + δ3)(R0 − 1) (15)

By examining Equations (12)–(15) with Descartes’ rule of signs, a unique positive real
root will occur if C and D are both negative. Equating Equations (14) and (15) to zero and
solving for R0, we can then conclude that the cubic equation will have unique positive real
root if the following condition holds:

1 < R0 <
µm((µ + δ3)γ + β) + µ0β0

γµm(µ + δ3)
. (16)

The actual value of I∗ can then be obtained by solving Equation (11), whose value
can then be substituted back into the expressions for E∗, M∗, S∗, and S∗a to finally solve
the system.

2.3. Stability Analysis of Open Loop System

In this section, the stability of the model is discussed. In this respect, we consider the
stability of the disease-free equilibrium EDFE = (1, 0, 0, 0, 0).

Theorem 1. The disease-free equilibrium EDFE=(1,0,0,0,0) is asymptotically stable if the basic
reproduction number R0 is less than unity.

Proof. The Jacobian matrix evaluated at EDFE is:

JDFE =


−µ 0 δ3 β0 −β
0 −µ− σ 0 β0 0
0 0 −δ3 − µ 0 β
0 σ 0 −µ− µd − r 0
0 0 0 µm −µ0

 (17)

The resulting characteristic polynomial of JDFE is evaluated in Mathematica and
given by:

p(s) = (−µ− s)(−µ0 − s)(−δ3 − µ− s)(s2 + c1s + c2) (18)

The first three eigenvalues are simply s1 = −µ, s2 = −µ0 and s3 = −µ− δ3, which are
all obviously negative. The last two eigenvalues are the roots of the quadratic s2 + c1s + c2,
where:

c1 = 2µ + σ + µd + r (19)
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c2 = µσ
( 1

R0
− 1
)

(20)

The conditions for the quadratic equation s2 + c1s + c2 = 0 to have negative solutions
can be found by the applying the Routh–Hurwitz criterion and are given by:

c1 > 0, c2 > 0.

It is obvious that c1 will be positive definite. For c2 to remain positive, R0 must remain
less than one.

Having investigated the stability of the DFE, we now turn our attention to the stability
of the endemic equilibrium. Due to the complicatedness of the I∗ expression, which is
the solution of Equation (11), our vehicle of investigating the stability of the endemic
equilibrium will be mainly with respect to the Lyapunov stability theory.

Theorem 2. The endemic equilibrium E1 is globally asymptotically stable if the following condi-
tion holds:

k1(µ + δ3Sa) + k2
β0SI

1 + αI2

+ k3
βSM

1 + γM
<

σEI∗

I
+

M∗(µm I − µ0M)

M
(21)

Proof. Consider the following Lyapunov candidate:

Ve = I∗ln
(

I∗

I

)
+ k1S + k2E + k3Sa + M∗ln

(
M∗

M

)
(22)

Time differentiating Equation (22) along the trajectory of the system yields:

V′e = k1

(
µ− µS− β0SI

1 + αI2 + δ3Sa −
βSM

1 + γM

)
+ k2

( β0SI
1 + αI2 − (σ + µ)E

)
− M∗(µm I − µ0M)

M

− I∗σE
I
− (µ + r + µd)I∗ + k3

βSM
1 + γM

− (µ + δ3)Sa (23)

Note that because the positivity of S, I, Sa, E, and M have all been ensured, it is then
obvious that to keep V′e negative definite, one needs to have the condition of Equation (21).
This concludes the proof of the theorem.

2.4. Numerical Analysis with Baseline Parameter Values

In this section, a numerical simulation for the open-loop system of Equation (5) is
given. Table 1 gives the parameters used. Most of the epidemiological values are from [38],
with the exception of β0, which is obtained from the R0 expression of Equation (9). The R0
value for the simulation is 2.2. The media parameter values are taken from [16]. The initial
value used in the simulation is:

y0 = [0.97, 0.01, 0.01, 0.01, 0.01] (24)

The simulation was conducted with the use of a differential equation solver in MAT-
LAB. Figure 2 plots the simulated response of the open-loop system with the parameters
of Table 1 and the initial values given by Equation (24). The trajectory of the susceptible
population appears to decay briefly from its starting value to about 0.75 on Day 12, before
slowing increasing to about 0.77 on Day 52. S(t) then exponentially decays, achieving the
value of about 0.4 on Day 152 and staying at around that value thereafter. The exposed
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and infected trajectories follow similar trends, where they exponentially increase to a peak,
which is attained on Day 100, before exponentially decays to a nonzero steady state. The
trajectory of the susceptible aware population Sa(t) can be viewed as the inverse of the
susceptible population, where it initially exponentially increases slightly, attaining a stop
part way through, before again exponentially increases and saturates at around 0.55. The
media efforts initially stays at about 0.01 for about 70 days, before exponentially increasing
and saturating at about 0.1.

(a) Susceptible individuals S (b) Exposed individuals E

(c) Susceptible aware individuals Sa (d) Infected individuals I

(e) Media efforts M

Figure 2. Numerical simulation for the open loop system given in Equation (5) with the parameters
shown in Table 1.
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Table 1. Parameters used in the numerical simulation of the model.

Parameter Values

Birth/death rate, µ 0.08
Contact rate, β0 0.76

Rate of transfer between the aware susceptible individuals back to susceptibles, δ3 0.18
Governmental effort, α 10

Media inhibition parameter, γ 20
Rate of transfer between the exposed and infected classes, σ 0.20

Disease recovery rate, r 1/7
Disease induced mortality rate, µd 0.02

Implementation rate of the awareness program, µm 0.05
Removal rate of the awareness program, µ0 0.02

2.5. Sensitivity Analysis

The main goal of this work is to design a controller that reduces the infectiousness of
a communicable disease. Though a nonlinear controller generally takes into account the
other states of the system, an insight into the relative importance of the different factors
contributing to the disease spread is always useful. This knowledge could act as our
crosscheck at the end of the controller design process that the resulting designed controller
had already included the most contributing factors in it. Sensitivity indices thus enable us
to quantify the relative change in a variable upon parameter changes and is formally given
by the following definition:

Definition 3. Refs. [39,40] The normalized forward sensitivity index of R0 that depends on a
variable p is defined as:

ΨR0
p =

∂R0

∂p

∣∣∣∣∣ p
R0

∣∣∣∣∣ (25)

The interpretation of this index is that if the value of ΨR0
p is 1; then, an increase or

decrease of a parameter p by y % changes the basic reproduction number by the same
percentage. In this case, the parameter p is deemed a highly sensitive parameter. Using
Equation (25), the normalized forward sensitivity index of R0 with respect to the given
parameter is given by:

ΨR0
σ =

µ

µ + σ
(26)

ΨR0
β0

= 1 (27)

ΨR0
µ = µ

(
− 1

µ + µd + r
− 1

µ + σ

)
(28)

ΨR0
µd = − µd

µ + µd + r
(29)

ΨR0
r = − r

µ + µd + r
(30)

ΨR0
δ3

= 0 (31)

ΨR0
γ = 0 (32)

ΨR0
µm = 0 (33)

ΨR0
µ0 = 0 (34)

Table 2 gives the forward sensitivity parameter of R0 with respect to the parameters
of Table 1. It is seen from Table 2 that the most influential parameter for the spread of
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the disease is the rate of transmission β0 with the forward sensitivity value of positive
unity. This is consistent with common sense since the spread of the disease is greater with
a greater rate of virus transmission. Moreover, the negative values of ΨR0

p suggest that the
most influential factors that actually suppress the disease spread are the rate of recovery r
and the natural death rate µ, with the disease mortality rate µd a distant third.

Table 2. Forward sensitivity parameter of R0 with respect to the parameters of Table 1.

Parameter Forward Sensitivity ΨR0
p

µ −0.6151
β0 1
δ3 0
α 0
γ 0
σ 0.2857
r −0.5882

µd −0.082
µm 0
µ0 0

3. Sliding Mode Control Designs

The sliding mode control (SMC) is a type of nonlinear model-based control framework
that is widely applied to a great number of dynamical systems. The first step in the sliding
mode control design is to define a sliding surface comprising the desired dynamics of the
system that must be achieved. The second step is to design a control law that drives the
open-loop system to reach and stay on the sliding surface. Once the system has reached
the sliding surface, it is said to be in sliding mode, which also includes the robustness
properties [33].

This section discusses the sliding mode control design with respect to two policies.
The first policy involves only the governmental interaction (α), whose boundary includes
restriction of public movements, isolation, and aggressive sanitation as the control input.
The second policy involves the use of vaccination V(t), where the vaccine is to act on the
susceptibles compartment.

3.1. Policy 1: Governmental Interaction

In this design, the sliding surface is defined in terms of the fraction of the exposed
population E, in similar fashion to the work of [38]. This choice is because the differential
equation for the exposed compartment has the α term in it, and also because the exposed
population E has a direct influence in the dynamics of the infection as well as the entire
system. This second fact is evident in the calculation of the next generation matrix for the
basic reproduction number R0. For these reasons, suppose we choose a constant desired
value of exposed population, namely Ed, then defining the sliding surface:

s1 = c1(E− Ed) (35)

where constant c1 is the slope of the sliding surface, which signifies the convergence rate
that the system reaches the sliding surface. The derivative of the sliding surface with time
is simply:

ṡ1 = c1Ė = c1

[
β0SI

1 + αI2 − (σ + µ)E

]
(36)
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To design the sliding law so that the system can reach the sliding surface of
Equation (35), various sliding laws can be used. The first example is the constant reaching
rate law (CRRL) [38,41].

ṡ1 = −k1sign(s) (37)

where sign denotes the signum function. Other possible law includes:

ṡ1 = −k1|s|msign
(

s
φ

)
(38)

where φ > 0 and m are design parameters. This second law attempts to mitigate the effect
of chattering normally seen with sliding mode control designs. For the constant reaching
rate law, equating Equations (36) and (37) and solving for the control input α yields:

α =
1
I2

[
c1β0SI

c1(µ + σ)E− k1sign(s)
− 1

]
(39)

For the power law of Equation (38), equating Equation (36) to Equation (38) and
solving for the control input yields:

α =
1
I2

[
c1β0SIsign(φ)

c1(µ + σ)Esign(φ)− k1|s|msign(s)
− 1

]
(40)

Stability Analysis of Closed-Loop System

The stability analysis of the sliding mode control is normally provided by the Lya-
punov stability theory. In this respect, suppose the Lyapunov function is defined using the
sliding surface of Equation (35):

V1 =
1
2

s2
1 (41)

Its time derivative V̇ is simply s1 ṡ1. Substituting the control law of Equation (39) into
Equation (36) yields the derivative of the Lyapunov function as:

V̇1 = −c1|s1| < 0 (42)

Hence, the closed loop system for the control law of Equation (39) will be asymptoti-
cally stable. For the power reaching law, substituting the control law of Equation (40) into
Equation (36) yields the derivative of the Lyapunov function as:

V̇1 = − c1|s1|m+1

sign(φ)
< 0 (43)

Again, the closed-loop system for the control law of Equation (40) will indeed be stable.

3.2. Policy 2: Vaccination Strategy

Suppose now that we wish to control the open-loop system with vaccination control
input u(t) ≡ V(t). We will suppose that the vaccination itself is perfect. The case of
imperfect vaccination, which aligns more with the real world, can be reduced to that of
perfect vaccination by multiplying the control input by an efficacy constant εa, that is,
u(t) ≡ Vi(t) = εaV(t). Suppose also that the vaccination control action is to act on the
susceptible compartment, which is a standard procedure in disease control. The closed
loop system is then:

S′ = µ− µS− β0SI
1 + αI2 + δ3Sa −

βSM
1 + γM

+ u(t)
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E′ =
β0SI

1 + αI2 − (σ + µ)E

S′a =
βSM

1 + γM
− (µ + δ3)Sa (44)

I′ = σE− (µ + r + µd)I

M′ = µm I − µ0M

The control objective of Policy 2 is to maintain the number of infected individuals at a
desired level, or I = Id. The output variable can thus be defined as:

eI = I − Id (45)

To assist in the design of a robust sliding mode controller that achieves the control
objective, some analytical backgrounds are first given.

Consider a single-input, single-output nonlinear system of the form [42]:

ẋ = f (x) + g(x)u,

y = h(x). (46)

where x ∈ Rn are the state variables, u is the control input, and y is the output, which is
measured in real time. Let f (x) and g(x) be smooth vector fields of the state variables that
are defined on an open set of Rn. The Lie derivatives are as follows:

Definition 4 (Lie Derivatives). Ref. [43]: Consider a smooth scalar function h(z) and a smooth
vector field f (z), the Lie derivative of h(z) with respect to f (z) is denoted L f h(z) and is defined:

L f h(z) =
∂h(z)

∂z
f (z) (47)

Higher order Lie derivatives can be recursively computed as follows:

L0
f h(z) = h(z)

L f h(z) =
∂h(z)

∂z
f (z)

L2
f h(z) =

∂(L f h(z))
∂z

f (z) (48)

...

Lk
f h(z) =

∂(Lk−1
f h(z))

∂z
f (z)

The system parameters then restrict transformation of the system into the normal form
with the use of standard approaches based on the transformation of f , g, and h.

Definition 5 (Relative degree). Refs. [44,45] The number r represents the relative degree of the
output h of the system with respect to the input u at equilibrium x0 if the conditions:

LgL f h(x) = LgL2
f h(x) = . . . = LgLr−2

f h(x) = 0

LgLr−1
f h(x) 6= 0 (49)

holds in the neighborhood of x0. The Lg and L f are the Lie derivatives.
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If the system has a relative degree r, then the output needs to be differentiated r times
before the input u appears. The input–output dynamics is written as:

y(r) = L(r)
f h(x) + LgL f h(x)u (50)

Let ξ = [h, ḣ, . . . , h(r−1)]T , then it is always possible to define the map:

ξ̇ = q1(ξ, z), (51)

as well as the reduced internal dynamics vector z ∈ Rn−r and the map:

ż = q2(ξ, z) (52)

The system dynamics of Equation (46) can then be expressed in the normal form as:

ξ̇1 = ξ2

ξ̇2 = ξ3

... (53)

ξ̇r = Lr
f h(x) + LgL f h(x)u

ż = q2(ξ, z)

The system is fully linearizable if r = n, that is, no underlying zero dynamics of the
system exists. However, if the system is not fully linearizable, the design of feedback
tracking controller is achieved if the following assumptions are satisfied:

Assumption 1. The reduced internal dynamics of the system (Equation (52)) is asymptotically stable.

Assumption 2. The Lie derivatives L(r)
f (x) and the controller gain LgL(r)

f (x) of the input–output
dynamics are bounded and Lipschitz.

3.2.1. Relative Degree of the SEIRM System and Asymptotic Stability of the Zero Dynamics

Assumptions 1 and 2 strictly place the requirements that the internal dynamics of
Equation (44) needs to first be stable before the controller could be designed. With this
in mind, we first rewrite the system of Equation (44) in the form of Equation (46) with
x = [x1, x2, x3, x4, x5]

T= [S, E, Sa, I, M]T .

f (x) =


µ− µx1 − β0x1x4

1+αx4
2 + δ3x3 − βx1x5

1+γx5
β0x1x4
1+αx4

2 − (σ + µ)x2
βx1x5
1+γx5

− (µ + δ3)x3

σx2 − (µ + r + µd)x4
µmx4 − µ0x5

, g(x) =


1
0
0
0
0

, h(x) =


0
0
0
x4
0

 (54)

The differentiated output with respect to time once reads:

ẏ = L f h(x) + Lgh(x)u (55)

where L f h(x) = σx2 − (µ + µd + r)x4, and Lgh(x) = 0. Differentiating the output equation
with respect to time again yields:

ÿ = L2
f h(x) + LgL f h(x)u (56)
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The quantity LgL f h(x) is computed to be zero, while the term L2
f h(x) is:

L2
f h(x) = (−µ− µd − r)(σx2 − (µ + µd + r)x4) + σ

(
−(µ + σ)x2 +

β0x1x4

1 + αx2
4

)
.

Differentiating the output equation, the third time now yields:

ÿ = L3
f h(x) + LgL2

f h(x)u (57)

where L3
f h(x) and LgL2

f h(x) are:

L3
f h(x) =

1
(1 + αx2

4)
2

(
σ(2µ + µd + r + σ)(1 + αx2

4)(−β0x1x4 + (µ + σ)x2(1 + αx2
4))

+ (σx2 − (µ + µd + r)x4)(β0σx1(1− αx2
4) + (µ + µd + r)2(1 + αx2

4)
2)

+ β0σx4(1 + αx2
4)(µ− µx1 + δ3x3 −

β0x1x4

1 + αx2
4
− βx1x5

1 + γx5

)
,

LgL2
f h(x) =

β0σx4

1 + αx2
4

It is seen that since the controller gain term LgL2
f h(x) is nonzero, the relative degree of

the nonlinear incidence SEIRM system is three. This means that there exists internal zero
dynamics, which can be analyzed from the normal form of the system. To find the normal
form, we then take the states as:

ξ1 = h(x) = x4

ξ2 = L f h(x) = σx2 − (µ + µd + r)x4

ξ3 = L2
f h(x) = −(µ + µd + r)(σx2 − (µ + µd + r)x4) + σ

(
−(µ + σ)x2 +

β0x1x4

(1 + αx2
4

)
(58)

z1 = x3

z2 = x5

The resulting Jacobian matrix, which is:

J =


0 0 0 1 0
0 σ 0 −µ + µd + r 0

β0σx4
1+αx2

4
−(µ + µd + r)σ + (−µ− σ)σ 0 (−µ− µd − r)2 + σ(− 2αβ0x1x2

4
(1+αx2

4)
2 +

β0x1
(1+αx2

4)
0

0 0 1 0 0
0 0 0 0 1


is nonsingular for all nonzero x. The normal form can now be represented as:

ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 =
1

1 + αξ2
1

(
(2µ + µd + r + σ)(1 + αξ2

1)(2µ(µ + µd + r)ξ1 + (µ− µd − r)ξ2 − ξ3)

+ ξ2((µ + µd + r)2(1 + αξ2
1) + ((1− αξ2

1)
(−(µ + µd + r)(µ− σ)ξ1 + (µd + r + σ)ξ2 + ξ3))

ξ1

+ β0σξ1(µ− (−(µ + µd + r)(µ− σ)ξ1 +
(µd + r + σ)ξ2 + ξ3)

σ
+ (µ(1 + αξ2

1) (59)

× (−(µ + µd + r)(µ− σ)ξ1 +
(µd + r + σ)ξ2 + ξ3)

(β0σξ1)
+ δ3z1 − (β(1 + αξ2

1)
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×
(
−(µ + µd + r)(µ− σ)ξ1 +

(µd + r + σ)ξ2 + ξ3)z2)

β0σξ1(1 + γz2)

))
+

β0σξ1

1 + αξ2
1

u(t)

ż1 = −(δ3 + µ)z1 + (β(1 + αξ2
1)(−(µ + µd + r)(µ− σ)ξ1 +

(µd + r + σ)ξ2 + ξ3)z2)

(β0σξ1(1 + γz2)

ż2 = µmξ1 − µ0z2

The full derivation of the normal form is given in Appendix A.1.

Theorem 3. The internal dynamics is exponentially stable for any initial condition z(0).

Proof. The proof of this theorem is given in Appendix A.2.

3.2.2. Control Design

We reiterate that goal of our control is to design a sliding mode controller, which
drives the system of Equation (59) to its reference states:

zr = [ξ1,r, ξ2,r, ξ3,r, z1,r, z2,r] = [0.05, 0, 0, 0, 0] (60)

Note that this reference state vector corresponds to controlling the infected individuals
to remain at only 5% of the population. In order to ensure that the relative degree of the
closed-loop control is one, the sliding mode surface is designed as:

s2 = c1 ëI + c2 ėI + c3eI

= c1ξ3 + c2ξ2 + c3(ξ1 − ξ1,r) (61)

The time derivative of the sliding surface is:

ṡ2 = c1ξ̇3 + c2ξ̇2 + c3ξ̇1

= c1(L3
f h(xd) + LgL2

f h(xd)u(t)) + c2ξ3 + c3ξ2, (62)

where xd = [0, 0, 0, 0.05, 0]T represents the desired states in the original form.
The sliding laws of the form described in Equations (37) and (38) can now also be used:

ṡ2 = −k2 sign(s2), CRRL (63)

ṡ2 = −k2|s2|2m+1sign(
s2

φ
), Power law (64)

For the CRRL, equating Equations (62) to Equation (63) and solving for the control
input yields:

u(t) =
1

c1LgL2
f h(xd)

(
−c1L3

f h(xd)− c2ξ3 − c2ξ2 − k2 sign(s)
)

(65)

Similarly, equating the power law equation and solving for the control input yields:

u(t) =
1

c1LgL2
f h(xd)

(
−c1L3

f h(xd)− c2ξ3 − c2ξ2 − k2 |s2|2m+1sign(s)
)

(66)

3.2.3. Stability Analysis of Closed-Loop System

To investigate the stability of the closed-loop system, let us again define a Lya-
punov candidate:

V2 =
1
2

s2
2 (67)
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Its time derivative is simply s2 ṡ2. Substituting the derived control law yields, after
simplification, for the CRRL:

V̇2 = −k2|s2| < 0

Thus ensuring the asymptotic stability of the closed loop system. For the power law,
the time derivative of the Lyapunov function then becomes:

V̇2 = −k2|s2|2m < 0,

which again ensures the asymptotic stability of the closed loop system.

4. Results and Discussion
4.1. Governmental Interaction Strategy

It is well known that an effective method of controlling the infectious disease spread
is through cutting the source of the infection through governmental interaction. In this
light, the effect of the nonlinear control inputs designed in Equations (39) and (40) are
investigated. The desired fraction of the exposed population is set to Ed = 0.01. The initial
conditions used are still given by Equation (24). The values of the design parameters for the
CRRL are chosen as c1 = 2 and k1 = 0.4. Our first test is simply to compare the uncontrolled
population trajectories against the controlled ones with both reaching laws. Due to the lack
of space, only the exposed (E), the infected (I), and the media efforts (M) compartments
are shown.

Figure 3 shows the comparison between the controlled and uncontrolled responses
for the (CRRL). It is seen from Figure 3a that the exposed individuals’ trajectory E quickly
reaches the desired level Ed = 0.01 and stays there for the rest of the simulation. Note that
the expected chattering effect is also seen here. The fraction of the infected individuals I
also reaches about 0.01 at around Day 10 and stay at that point onward. Note that the final
value of the infected individuals compartment is also the same as Ed. The uncontrolled
trajectories for the E and I populations exponentially increase after Day 60, reaching a
peak of 0.15 and decays down to about 0.1, as was described in Section 2.4. The media
efforts appear to increase somewhat linearly during control, suggesting that governmental
interaction control also keeps the rate of expending the media efforts constant. This is in
contrast to the uncontrolled system, where the media efforts largely stay at a constant level
initially, then increases without bound.

(a) Exposed individuals E (b) Infected individuals I

Figure 3. Cont.
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(c) Media efforts M

Figure 3. Numerical simulation for the constant rate reaching law (CRRL) sliding mode control for
the governmental interaction policy against the uncontrolled system.

Figure 4 compares the trajectories between the controlled and uncontrolled responses
for the power law with m = 1. Notice that the responses are similar to Figure 3 with respect
to the general trend. However the chattering effect seen in Figure 3a is eliminated with
application of the power law. In practice, this chattering effect does not affect the actuation
process, which in this case is governmental interaction, rather than an electrical motor or a
control valve that could be subjected to wear and tear.

(a) Exposed individuals E (b) Infected individuals I

(c) Media efforts M

Figure 4. Numerical simulation for the power reaching law sliding mode control for the governmental
interaction policy with m = 1 against the uncontrolled system.
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4.2. Vaccination Strategy

Having seen the governmental interaction strategy in terms of how it would affect the
system, we now turn our attention to the vaccination strategy. The initial condition used is
[0.5,0,0,0,0]T . The parameters c1, c2, and c3 are chosen as:

c1 = 0.5, c2 = 0.3, c3 = 0.1 (68)

The k2 parameter is chosen to be k2 = 2. Note that only the power reaching law
case with m = 1 is shown for ease of implementation and demonstration. The desired
infected population level is set at Id = 0.05. Figure 5 plots the control results for the
vaccination strategy. Figure 5a plots the proportion of the infected population I for the
vaccination control strategy. It is seen that the infected population quickly reaches the
reference level as desired, with no apparent overshooting. Note that no apparent chattering
effect is seen due to the use of the power law instead of the CRRL. The media efforts,
as depicted in Figure 5b, is quite huge at first, which coincides with the trajectory of the
infected individuals. Once the desired value is reached, the media efforts are minimal. This
result suggests that enormous media efforts are required to usher the population to receive
their vaccination. Once critical vaccination threshold is reached, the efforts required would
be minimal. This scenario does not consider the effect of public disinformation as well
as vaccine debasements. Studies into the effects of public disinformation is best left for
future work.

(a) Infected individuals I (b) Media efforts M

Figure 5. The infected population I(t) and required media efforts M for the vaccination control strategy.

To investigate the effect of the imperfect vaccination, we suppose that the efficacy
constant εa is 0.85–0.95. That is, the vaccine is only 88–95% effective, based on recent
studies [46–49]. Figure 6 plots the proportion of the infected population I for the sliding
mode vaccination control, with the constant εa assumed to be 0.85. As is seen, the controlled
population again quickly reaches the desired value, albeit experiencing a little oscillation on
the way. The media efforts M is again quite large initially and diminishes as the controlled
population reaches its desired value. Nevertheless, these results also show that the designed
controller is largely robust to input changes as well.
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(a) Infected individuals I (b) Media efforts M

Figure 6. The infected population I(t) and required medis efforts M(t) for the vaccination control
strategy under the assumption of imperfect vaccination with efficacy constant εa = 0.85.

To test the robustness of the control algorithm in face of disturbances, let us suppose
that a new cluster of individuals at up to twice the sum of the exposed and infected classes
are now exposed to the disease. This new cluster of individuals are treated as disturbances.
Figure 7 plots the proportion of the infected population I and the media efforts M for
the vaccination control in the presence of such a significant disturbance. As is seen, the
infected population response exhibits some significant transients as it converges towards
the reference. The media efforts signal M is again enormous initially but exponentially
decays to zero just before the infected trajectory reaches the desired level. This result
validates the robustness of the nonlinear sliding mode control that even though significant
disturbances are present, the desired control is still achieved effectively. Note also that
these disturbances can also arise from stochastic sources. The use of the sliding mode
control would also compensate for these effects as well. As an extension to the stochastic
phenomenon, a full stochastic SEIR model has previously been proposed in [15], while
the sliding mode control for a Markov jump system was previously explored in [33,34].
It would indeed be of interest to design a sliding mode control for the Markov jump
SEIR model.

(a) Infected individuals I (b) Media efforts M

Figure 7. The infected population I(t) and associated media efforts M for the vaccination control
strategy in the presence of disturbances to the system.
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5. Conclusions

In the face of COVID-19, a terrifying disease, governmental administrations all over
the world are actively attempting to combat the deadly disease in their own way, with
varying successes. In this work, a simple mathematical model that is based on the basic
SEIR framework, whilst incorporating nonlinear incidence, along with governmental
interactions and media effects is detailed. The main dynamical properties of the model
such as positivity, stability, and sensitivity were investigated first. The proposed control
algorithm followed the sliding mode control framework. The main control objective is
to simply contain the number of infected individuals at a desired level, so that extreme
measures such as lockdowns could be relaxed. Two policies were investigated. The first
policy centered on governmental interaction, where the control actively determined an
appropriate value of measure based on the intensity of the infection. The second policy
centered on inoculation, which necessitated a transformation of the original model into
the normal form to allow for the sliding mode controller to be designed. For both control
policies, two widely used sliding mode reaching laws were considered: the constant rate
reaching law (CRRL) and the power law. Simulation results showed that both control
policies were effective in containing the disease, while keeping the rate of media efforts
expenses constant. Note that with the age of social media, public disinformation resulting
from the spread of rumors is an integral factor determining the success of a vaccination
program. Such phenomenon will form the subject of our future work.
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Appendix A. Derivations and Proofs

Appendix A.1

Following the definition of the states introduced in Equation (58), differentiating ξ1
with respect to time yields:

ξ̇1 = ẋ4 = σx2 − (µ + µd + r)x4 = ξ2 (A1)

The time derivative of ξ2 is:

ξ̇2 = σẋ2 − (µ + µd + r)ẋ4 = ξ3 (A2)

To obtain the time derivative of ξ3, we first need the definition of x2 in terms of ξ1 and
ξ2. This is simply attained from the solving of the L f h(x) equation:

x2 =
(µ + µd + r)ξ1 + ξ2

σ
(A3)

Substituting the result of Equation (A3) for x2 and solving the ξ3 equation for x1
now yields:

x1 =
1

β0σξ1
(1 + αξ2

1)(−(µ + µd + r)(µ− σ)ξ1 + (µd + r + σ)ξ2 + ξ3) (A4)

The time derivative of ξ3, including the definitions of x1 and x2 in Equations (A3)
and (A4) is:
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ξ̇3 =
1

1 + αξ2
1

(
(2µ + µd + r + σ)(1 + αξ2

1)(2µ(µ + µd + r)ξ1 + (µ− µd − r)ξ2 − ξ3)

+ ξ2((µ + µd + r)2(1 + αξ2
1) + ((1− αξ2

1)
(−(µ + µd + r)(µ− σ)ξ1 + (µd + r + σ)ξ2 + ξ3))

ξ1

+ β0σξ1(µ− (−(µ + µd + r)(µ− σ)ξ1 +
(µd + r + σ)ξ2 + ξ3)

σ
+ (µ(1 + αξ2

1) (A5)

× (−(µ + µd + r)(µ− σ)ξ1 +
(µd + r + σ)ξ2 + ξ3)

(β0σξ1)
+ δ3z1 − (β(1 + αξ2

1)

×
(
−(µ + µd + r)(µ− σ)ξ1 +

(µd + r + σ)ξ2 + ξ3)z2)

β0σξ1(1 + γz2)

))
+

β0σξ1

1 + αξ2
1

u(t)

The derivative of z1 with respect to time is simply:

ż1 = −(δ3 + µ)z1 + (β(1 + αξ2
1)(−(µ + µd + r)(µ− σ)ξ1 +

(µd + r + σ)ξ2 + ξ3)z2)

(β0σξ1(1 + γz2)
(A6)

Finally, the time derivative of z2 is:

ż2 = ẋ5 = µmξ1 − µ0z2 (A7)

Appendix A.2

Zeroing the ξ1, ξ2 and ξ3 terms, the resulting zero dynamics in Equation (59) are
written as:

ż(t) = A z (A8)

where the transition matrix A is:

A =

[
−(δ3 + µ) 0

0 −µ0

]
(A9)

It is obvious that this matrix has only negative eigenvalues, implying that the solution
to the matrix differential equation in Equation (A8) is exp(A t)z(0), which is exponentially
stable for any initial zero state z(0) = [z1(0), z2(0)]T .

References
1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries, 1990–2019: A systematic analysis for

the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [CrossRef]
2. Centers for Disease Control and Prevention. Diseases and Vaccines Included. Available online: www.cdc.gov (accessed on 10

March 2022).
3. Kermack, W.O.; McKendrick, A.G. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 1927, 115,

700–721.
4. Huang, S.Z. A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and to the

calculation of R0. Math. Biosci. 2008, 215, 84–104. [CrossRef] [PubMed]
5. Pongsumpun, P.; Tang, I.M.; Wongvanich, N. Optimal control of the dengue dynamical transmission with vertical transmission.

Adv. Diff. Eqn. 2019, 176. [CrossRef]
6. Lamwong, J.; Wongvanich, N.; Tang, I.M.; Changpuek, K.; Pongsumpun, P. Global Stability of the Transmission of Hand-Foot-

Mouth Disease According to the Age Structure of the Population. Curr. Appl. Sci. Tech. 2021 2, 351–369.
7. Xiao, D.; Ruan, S. Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 2007, 208, 419–429.
8. Upadhyay, R.K.; Pal, A.K.; Kumari, S.; Roy, P. Dynamics of an SEIR epidemic model with nonlinear incidence and treatment rates.

Nonlinear Dyn. 2019, 96, 2351–2368. [CrossRef]
9. Gao, D.P.; Huang, N.J. Threshold dynamics of an SEIR epidemic model with a nonlinear incidence rate and a discontinuous

treatment function. RACSAM 2020, 114, 5. [CrossRef]

http://doi.org/10.1016/S0140-6736(20)30925-9
www.cdc.gov
http://dx.doi.org/10.1016/j.mbs.2008.06.005
http://www.ncbi.nlm.nih.gov/pubmed/18621064
http://dx.doi.org/10.1186/s13662-019-2120-6
http://dx.doi.org/10.1007/s11071-019-04926-6
http://dx.doi.org/10.1007/s13398-019-00751-z


Symmetry 2022, 14, 1010 23 of 24

10. Chen, L.; Wei, F. Study on a susceptible–exposed–infected–recovered model with nonlinear incidence rate. Adv. Differ. Equ. 2020,
206. [CrossRef]

11. Casagradi, R.; Bolzoni, L.; Levin, S.A.; Andreasen, V. The SIRC model and influenza A. Math. Biosci. 2006, 200, 152169.
12. Morrison, R.E.; Cunha, A., Jr. Embedded model discrepancy: A case study of Zika modeling. Chaos 2020, 30, 051103. [CrossRef]

[PubMed]
13. Lipsitch, M.; Cohen, T.; Cooper, B.; Robins, J.M.; Ma, S.; James, L.; Gopalakrishna, G.; Chew, S.K.; Tan, C.C.; Samore, M.H.; et al.

Transmission dynamics and control of severe acute respiratory syndrome. Science 2003, 300, 19661970. [CrossRef] [PubMed]
14. Ingemar, N. Stochastic models of some endemic infections. Math. Biosci. 2002, 179, 1–19.
15. Guy, R.; Laredo, C.; Vergu, E. Approximation of epidemic models by diffusion processes and their statistical inference. J. Math.

Biol. 2015, 70, 621–646. [CrossRef] [PubMed]
16. Misra, A.K.; Sharma, A.; Shukla, J.B. Modeling and analysis of effects of awareness programs by media on the spread of infectious

diseases. Math. Comput. Model 2011, 53, 1221–1228. [CrossRef]
17. Tchuenche, J.M.; Dube, N.; Bhunu, C.P.; Smith, R.J.; Bauch, C.T. The impact of media coverage on the transmission dynamics of

human influenza. BMC Publ. Health 2011, 11 (Suppl. S1), S5. [CrossRef]
18. Dubey, B.; Dubey, P.; Dubey, U. Role of media and treatment on SIR model. Nonl. Anal. Model. Control. 2015, 21, 185–200.

[CrossRef]
19. Ding, Y.; Jiao, J.; Zhang, Q.; Zhang, Y.; Ren, X. Stationary Distribution and Extinction in a Stochastic SIQR Epidemic Model

Incorporating Media Coverage and Markovian Switching. Symmetry 2021, 13, 1122. [CrossRef]
20. Rodrigues, H.S.; Monteiro, M.T.; Torres, D.F.M. Dynamics of Dengue epidemics when using optimal control. Math Comput. Model.

2010, 52, 1667–1673. [CrossRef]
21. Imran, M.;Usman, M.; Malik, T.; Ansari, A.R. Mathematical analysis of the role of hospitalization/isolation in controlling the

spread of Zika fever. Virus Res. 2018, 255, 95–104. [CrossRef]
22. Momoh, A.A.; Fuegenschuh, A. Optimal control of intervention strategies and cost effectiveness analysis for a Zika virus model.

Oper. Res. Health. Care 2018, 18, 99–111. [CrossRef]
23. Wongvanich, N.; Tang, I.-M.; Dubois, M.-A.; Pongsumpun, P. Mathematical Modeling and Optimal Control of the Hand Foot

Mouth Disease Affected by Regional Residency in Thailand. Mathematics 2021, 9, 2863. [CrossRef]
24. Agarwal, R.P.; Mofarreh, F.; Shah, R.; Luangboon, W.; Nonlaopon, K. An Analytical Technique, Based on Natural Transform to

Solve Fractional-Order Parabolic Equations. Entropy 2021, 23, 1086. [CrossRef] [PubMed]
25. Levant A. Sliding order and sliding accuracy in sliding mode control. Int. J. Control. 1993, 58, 1247–1263 [CrossRef]
26. Shtessel, Y.; Edwards, C.; Fridman, L.; Levant, A. Sliding Mode Control and Observation. In Control Engineering; Springer

Science+Business Media: New York, NY, USA, 2014; Volume 10.
27. Zhang, B.; Yang, X.; Zhao, D.; Spurgeon, S.K.; Yan, X. Sliding Mode Control for Nonlinear Manipulator Systems. IFAC-Pap. Online

2017, 50, 5127–5132. [CrossRef]
28. Fang, Y.; Fu, W.; An, C.; Yuan, Z.; Fei, J. Modelling, Simulation and Dynamic Sliding Mode Control of a MEMS Gyroscope.

Micromachines 2021, 12, 190. [CrossRef]
29. Zhou, K.; Yuan, C.; Sun, D.; Jin, N.; Wu, X. Parameter adaptive terminal sliding mode control for full-bridge DC-DC converter.

PLoS ONE 2021, 16, e0247228. [CrossRef]
30. Zheng, B.; Wu, Y.; Li, H.; Chen, Z. Adaptive Sliding Mode Attitude Control of Quadrotor UAVs Based on the Delta Operator

Framework. Symmetry 2022, 14, 498. [CrossRef]
31. Shi, P.; Xia, Y.; Liu, G.P.; Rees, D. On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control.

2006, 51, 97–103. [CrossRef]
32. Niu, Y.; Ho, D.W.C.; Wang, X. Sliding mode control for Itô stochastic systems with Markovian switching. Automatica 2007, 43,

1784–1790. [CrossRef]
33. Zhang, H.; Shen, M. Sliding mode H-∞ control of time-varying delay Markov jump with quantized output. Optim. Control. Appl.

Meth. 2019, 40 226–240. [CrossRef]
34. Shen, M.; Zhang, H.; Park, J.H. Observer-based quantized sliding mode H-∞ control of Markov jump systems. Nonlinear Dyn.

2018, 92, 415–427. [CrossRef]
35. Khalili, Amirabadi, R.; Heydari, A.; Zarrabi, M. Analysis and control of SEIR epedemic model via sliding mode control. Adv.

Model. Optim. 2016, 18, 153–162.
36. Sharifi, M.; Moradi, H. Nonlinear robust adaptive sliding mode control of influenza epidemic in the presence of uncertainty. J.

Process Control 2017, 56, 48–57. [CrossRef]
37. van den Driessche, P.; Watmough, J. Reproduction number and subthreshold endemic equilibria for compartment models of

disease transmission. Math Biosci. 2002, 180, 29–48. [CrossRef]
38. Rohith, G.; Devika, K.B. Dynamics and control of COVID-19 pandemic with nonlinear incidence rates. Nonlinear Dyn. 2020, 101,

2013–2026. [CrossRef]
39. Chitnis, N.; Hyman, J.M.; Cushing, J.M. Determining important parameters in the spread of malaria through the sensitivity

analysis of a mathematical model. Bullet. Math. Biol. 2008, 70, 1272–1296. [CrossRef]
40. Silva, C.J.; Torres, D.F.M. Optimal control for a tuberculosis model with reinfection and post-exposure interventions. Math. Biosci.

2013, 244, 154–164. [CrossRef]

http://dx.doi.org/10.1186/s13662-020-02662-5
http://dx.doi.org/10.1063/5.0005204
http://www.ncbi.nlm.nih.gov/pubmed/32491876
http://dx.doi.org/10.1126/science.1086616
http://www.ncbi.nlm.nih.gov/pubmed/12766207
http://dx.doi.org/10.1007/s00285-014-0777-8
http://www.ncbi.nlm.nih.gov/pubmed/24671428
http://dx.doi.org/10.1016/j.mcm.2010.12.005
http://dx.doi.org/10.1186/1471-2458-11-S1-S5
http://dx.doi.org/10.15388/NA.2016.2.3
http://dx.doi.org/10.3390/sym13071122
http://dx.doi.org/10.1016/j.mcm.2010.06.034
http://dx.doi.org/10.1016/j.virusres.2018.07.002
http://dx.doi.org/10.1016/j.orhc.2017.08.004
http://dx.doi.org/10.3390/math9222863
http://dx.doi.org/10.3390/e23081086
http://www.ncbi.nlm.nih.gov/pubmed/34441226
http://dx.doi.org/10.1080/00207179308923053
http://dx.doi.org/10.1016/j.ifacol.2017.08.781
http://dx.doi.org/10.3390/mi12020190
http://dx.doi.org/10.1371/journal.pone.0247228
http://dx.doi.org/10.3390/sym14030498
http://dx.doi.org/10.1109/TAC.2005.861716
http://dx.doi.org/10.1016/j.automatica.2007.02.023
http://dx.doi.org/10.1002/oca.2475
http://dx.doi.org/10.1007/s11071-018-4064-x
http://dx.doi.org/10.1016/j.jprocont.2017.05.010
http://dx.doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/10.1007/s11071-020-05774-5
http://dx.doi.org/10.1007/s11538-008-9299-0
http://dx.doi.org/10.1016/j.mbs.2013.05.005


Symmetry 2022, 14, 1010 24 of 24

41. Gao, W.; Hung, J.C. Variable structure control of nonlinear systems: A new approach. IEEE Trans. Ind. Electron. 1993, 40, 45–55.
42. Spooner, J.T.; Maggione, M.; Ordonez, R.; Passino, K.M. Stable Adaptive Control and Estimation for Nonlinear Systems: Neural

and Fuzzy Approximator Techniques, ser. In Adaptive and Cognitive Dynamic Systems: Signal Processing, Learning, Communications
and Control; Wiley: New York, NY, USA, 2002; pp. 141–153.

43. Hangos, K.; Bokor, J.; Szederkenyi, G. Analysis and Control of Nonlinear Process Systems, ser. Advanced Textbooks in Control and Signal
Processing; Springer: London, UK, 2006.

44. Brockett, R.W. Nonlinear systems and differential geometry. Proc. IEEE 1976, 64, 61–72. [CrossRef]
45. Zabczyk, J. Mathematical Control Theory: An Introduction, ser. Modern Birkhauser Classics; Birkhauser: Boston, MA, USA, 2009.
46. Ledlord, H. Six months of COVID vaccines: What 1.7 billion doses have taught scientists. Nature 2021, 594, 164–167. [CrossRef]

[PubMed]
47. Hass, E.J.; Angulo, F.J.; McLaughlin, J.M.; Anis, E.; Singer, S.R.; Khan F.; Brooks, N.; Smaja, M.; Mircus, G.; Pan, K.; et al. Impact

and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths
following a nationwide vaccination campaign in Israel: An observational study using national surveillance data. Lancet 2021, 397,
1819–1829. [CrossRef]

48. Frenck, R.W.; Klein, N.P.; Kitchin, N.; Gurtman, A.; Absalon, J.; Lockhart, S.; Perez, J.L.; Walter, E.B.; Senders, S.; Bailey, R. et al.
Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. N. Engl. J. Med. 2021, 385, 239–250.
10.1056/NEJMoa2107456. [CrossRef] [PubMed]

49. Bernal, J.L.; Andrews, N.; Gower, C.; Robertson, C.; Stowe, J.; Tessier, E.; Simmons, R.; Cottrell, S.; Roberts, R.; O’Doherty, M.; et al.
Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on COVID-19 related symptoms, hospital admissions, and
mortality in older adults in England: Test negative case-control study. Br. Med. J. 2021, 373, n1088. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/PROC.1976.10067
http://dx.doi.org/10.1038/d41586-021-01505-x
http://www.ncbi.nlm.nih.gov/pubmed/34089016
http://dx.doi.org/10.1016/S0140-6736(21)00947-8
http://dx.doi.org/10.1056/NEJMoa2107456
http://www.ncbi.nlm.nih.gov/pubmed/34043894
http://dx.doi.org/10.1136/bmj.n1088
http://www.ncbi.nlm.nih.gov/pubmed/33985964

	Introduction
	Modeling and Dynamical System Analysis 
	The Model
	Equilibrium Analysis
	Stability Analysis of Open Loop System
	Numerical Analysis with Baseline Parameter Values
	Sensitivity Analysis

	Sliding Mode Control Designs
	Policy 1: Governmental Interaction
	Policy 2: Vaccination Strategy
	Relative Degree of the SEIRM System and Asymptotic Stability of the Zero Dynamics
	Control Design
	Stability Analysis of Closed-Loop System


	Results and Discussion
	Governmental Interaction Strategy
	Vaccination Strategy

	Conclusions
	Derivations and Proofs
	
	

	References

