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Abstract: In this article, we study the properties of PR-pseudo-slant submanifold of para-Kenmotsu
manifold and obtain the integrability conditions for the slant distribution and anti-invariant distribu-
tion of such submanifold. We derived the necessary and sufficient conditions for a PR-pseudo-slant
submanifold of para-Kenmotsu manifold to be aPR-pseudo-slant warped product which are in terms
of warping functions and shape operator. Some examples of PR-pseudo-slant warped products of
para-Kenmotsu manifold are also illustrated in the article.

Keywords: paracontact manifold; para-Kenmotsu manifold; pseudo-slant submanifold; warped
product

1. Introduction

At the end of the twentieth century, B.Y. Chen initiated the study of slant submanifold
as a generalization of CR-submanifolds [1]. Later, A. Carriazo studied slant submanifolds
in contact metric manifold as a special case of bi-slant submanifolds [2]. Thereafter, he
studied pseudo-slant submanifolds under the name anti-slant [3]. The slant submanifold
with pseudo-Riemannian metric was also initiated by B.Y. Chen et al. [4,5]. The authors
of [6,7] studied slant submanifold of Kaehler and contact manifolds with respect to the
pseudo-Riemannian metric. P. Alegre and A. Carriazo studied slant submanifolds in para-
Hermitian manifold and provided detailed descriptions of such type of submanifolds in
pseudo-Riemannian metric.

On the other hand, the study of warped product manifold is one of the most significant
generalizations of Cartesian product of pseudo-Riemannian manifolds (or Riemannian
manifolds). This fruitful generalization was initiated by R. L Bishop and B. O’Neill in
1969 (see [8]). The notion of warped products appeared in the physical and mathematical
literature before 1969, for instance, semi-reducible space, which is used for warped product
by Kruchkovich in 1957 [9]. It has been successfully utilized in general theory of relativity,
black holes, and string theory. The warped product is defined as follows:

Assume that B and F are two pseudo-Riemannian manifolds with pseudo-Riemannian
metric gB and gF, respectively and f is a smooth function defined by f : B −→ (0, 1). Then,
a pseudo-Riemannian manifold M = B× f F is said to be a warped product [8,10] if it is
furnished a pseudo-Riemannian warping metric g fulfilling for any tangent vector U to M
as the following:

g(U, U) = g(π∗U, π∗U) + ( f ◦ π)2g(π′∗U, π′∗U), (1)
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where π : B× F −→ B and π′ : B× F −→ F are natural projections on M, and ∗ denotes
the push-foreword map (or differential map). The smooth function f is called warping
function. Moreover, the above relation is equivalent to

g = gB + f 2gF. (2)

If f : B −→ (0, 1) is non-constant, then M is called a non-trivial (or proper) warped
product, otherwise it is trivial. Now, consider any U1, U2 ∈ Γ(TB) and V1, V2 ∈ Γ(TF),
then from the Proposition 3.1 of [10] (page no. 49), we obtain that

∇U1U2 ∈ Γ(TB), (3)

∇U1 V1 = ∇V1U1 = U1(ln f )V1, (4)

tan(∇V1 V2) = ∇
′
V1

V2, (5)

nor(∇V1 V2) = hF(V1, V2) = −
g(V1, V2)∇ f

f
. (6)

where the symbols ∇′ and h indicates are Levi–Civita connection on B and second funda-
mental form, respectively. By the consequence (3)–(6), we can conclude that for a warped
product manifold M = B× f F, the submanifold F is a totally umbilical and the submanifold
B is a totally geodesic in M.

In 1956, J.F. Nash derived a very useful theorem in Riemannian geometry known
as Nash embedding theorem. The theorem states “every Riemannian manifold can be
isometrically embedded in some Euclidean space” (see [11]). This theorem shows that
any warped product of Riemannian (or pseudo-Riemannian) manifolds can be realized
(or embedded) as a Riemannian (or pseudo-Riemannian) submanifold in Euclidean space.
Due to this fact, B.Y. Chen asked a very interesting question in 2002. The question is
“What can we conclude from an isometric immersion of an arbitrary warped product into a
Euclidean space or into a space form with arbitrary codimension?” (see [10]). Thereafter,
B.Y. Chen published the numerous articles on the CR-warped products in Kähler manifold
(see [12,13]). Thereafter, several authors of [14–20] studied pseudo-slant warped product in
different ambient manifolds. In 2015, A. Ali et al. derived some useful inequalities for a
pseudo-slant warped product submanifold in nearly-Kenmotsu manifold [21]. Recently,
the authors of [22–24] studied pseudo-slant warped product submanifold of Kenmotsu
manifold and derived some characterizations and inequalities.

However, in 2014, B.Y. Chen initiated a new class of warped product called PR-
warped product and found the exact solutions of the system partial differential equations
associated with PR-warped products [25]. Recently, S.K. Srivastava and A. Sharma stud-
ied PR-semi-invariant, PR-pseudo-slant, and PR-semi-slant warped product of para-
cosymplectic manifold in [26–29]. In the last two decades, several geometrists studied
warped product submanifolds and other submanifolds in different ambient space [26–37].
Motivated by them, we analyze the geometry of PR-pseudo-slant warped product sub-
manifolds of para-Kenmotsu manifold which are not studied yet.

This paper is formulated as follows. The second section includes some necessary infor-
mation related to para-contact and para-Kenmotsu manifold and also contains some impor-
tant information about the basics of submanifolds in para-Kenmotsu manifold. Section 3
includes some useful results related to integrability of PR-pseudo-slant submanifold in
para-Kenmotsu manifold and gives examples of such submanifolds. In Section 4, we ana-
lyze the geometry of PR-pseudo-slant warped product submanifolds in para-Kenmotsu
manifold and provide some characterization results allied to shape operator and endomor-
phism t, and also give some examples of PR-pseudo-slant warped product submanifold
of para-Kenmotsu manifold.
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2. Preliminaries

A smooth manifold M̃2n+1 of dimension (2n + 1) furnished an almost paracontact
(see [26,38,39]) structure (ϕ, ξ, η) which includes a (1, 1)-type tensor field ϕ, a vector field
ξ, and a 1-form η globally defined on M̃2n+1 which satisfies the accompanying relation for
all U ∈ Γ(TM2n+1):

ϕ2U = U − η(U)ξ, η(ξ) = 1. (7)

The tensor field ϕ induces an almost paracomplex structure J on a 2n-dimensional
horizontal distribution D described as the kernel of 1-form η, i.e., D = ker(η). The
horizontal distribution D can be expressed as an orthogonal direct sum of the two eigen
distribution D+ and D−, the eigen distributions D+ and D− having eigenvalue +1 and −1,
respectively, and each has dimension n. Moreover, D is invariant distribution, therefore
TM̃2n+1 can be expressed in the following form;

TM̃2n+1 = D⊕ 〈ξ〉. (8)

If M̃2n+1 admits an almost paracontact structure (ϕ, ξ, η), then it is said to be an almost
paracontact manifold [26,39]. In view of (7), we obtain

η ◦ ϕ = 0, ϕ ◦ ξ = 0 and rank(ϕ) = 2n. (9)

An almost paracontact manifold M̃2n+1 is called an almost paracontact pseudo-metric
manifold if it admits a pseudo-Riemannian metric of index n compatible with the triplet
(ϕ, ξ, η) by the following relation:

g(ϕU, ϕV) = η(U)η(V)− g(U, V), (10)

for all U, V ∈ Γ(TM̃2n+1); Γ(TM̃2n+1) denotes the Lie algebra on M̃2n+1. The dual of the
unitary structural vector field ξ allied to g is η, i.e.,

η(U) = g(U, ξ). (11)

By the utilization of (7)–(10), we attain

g(U, ϕV) + g(ϕU, V) = 0. (12)

Definition 1. An almost paracontact pseudo-metric manifold M̃2n+1 is said to be a para-Kenmotsu
manifold [38] if it satisfies

(∇̃U ϕ)V = η(V)ϕU + g(U, ϕV)ξ. (13)

In the relation (13), the symbol ∇̃ indicates for the Levi–Civita connection with respect to g.

In (13) replacing V by ξ and then applying (7), we achieve that

∇̃Uξ = −ϕ2U. (14)

Proposition 1. On para-Kenmotsu pseudo-Riemannian manifold, the following relations holds:

η(∇̃Uξ) = 0, ∇̃η = −η ⊗ η + g, (15)

Lξ ϕ = 0, Lξ η = 0,Lξ g = −2(g− η ⊗ η), (16)

where L denotes the Lie differentiation.
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Geometry of Submanifolds

Let M be a m-dimensional paracompact and connected smooth pseudo-Riemannian
manifold and M̃2n+1 be a para-Kenmotsu manifold. Assume that ψ : M −→ M̃2n+1 is an
isometric immersion. Then ψ(M) is known as an isometrically immersed submanifold of a
para-Kenmotsu manifold. Let us denote that ψ∗ for the differential map (or push forward
map) of immersion ψ is characterized by ψ∗ : Tp M −→ Tψ(p)M̃2n+1. Therefore, the induced
pseudo-Riemannian metric g on ψ(M) is defined as follows: g(U, V)p = g(ψ∗U, ψ∗V), for
all U, V ∈ Tp M. For our convenience, we use M and p in the place of ψ(M) and ψ(p).
Now, we denote Γ(TM) for set of all tangent vector fields on M, Γ(TM⊥) for the set of
all normal vector fields of M, ∇ for induced Levi–Civita connection on TM, and ∇⊥ for
normal connection on the normal bundle Γ(TM⊥). Then, Gauss and Weingarten formulas
are characterized by the relation

∇̃UV =∇UV + h(U, V), (17)

∇̃Uζ =− AζU +∇⊥Uζ, (18)

for any U, V ∈ Γ(TM) and ζ ∈ Γ(TM⊥), where Aζ is a shape operator and h is a second
fundamental form which are allied to the normal section ζ by the following relation:

g(h(U, V), ζ) = g(AζU, V). (19)

The mean curvature vector H on M is described by H = 1
m trace(h). Let p ∈ M

and {U1, U2, · · · , Um, Um+1, · · · , U2n+1} be an orthonormal basis of the Tp M̃2n+1 in which
{U1, U2, · · · , Um} are the tangent to M and {Um+1, Um+2, · · · , U2n+1} are normal to M.
Now, we set

hk
ij = g(h(Ui, Uj), Uk), (20)

for i, j ∈ {1, 2, · · · , m} and k ∈ {m + 1, m + 2, · · · , 2n + 1}. The norm of h is defined by the
following relation:

‖h‖ =

√√√√( m

∑
i,j=1

g(h(Ui, Uj), h(Ui, Uj))

)
. (21)

An isometrically immersed submanifold M of a para-Kenmotsu manifold M̃2n+1

(ϕ, ξ, η, g) is said to be (see [26,39])

• Totally geodesic if h vanishes identically, i.e., h ≡ 0.
• Umbilical if for a normal vector field ζ, shape operator Aζ is proportional to identity

transformation.
• Totally umbilical if M satisfies for every U, V ∈ Γ(TM)

h(U, V) = g(U, V)H. (22)

• Minimal if trace of h (or H) vanishes identically.
• Extrinsic sphere if M satisfies (22) and H is parallel with respect to ∇⊥.

From now on, we denote para-Kenmotsu manifold by K2n+1 and its pseudo-Riemannian
submanifold by N . For any U ∈ Γ(TN ), we substitute tU = tan(ϕU) and nU = nor(ϕU),
where tan and nor are natural projections associated with the following direct sum:

TpK2n+1 = TpN ⊕ TpN⊥. (23)
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Thus, we can write

ϕU = tU + nU. (24)

Similarly, for any ζ ∈ Γ(TN⊥), we have

ϕζ = t
′
ζ + n

′
ζ, (25)

where t
′
ζ = tan(ϕζ) and n

′
ζ = nor(ϕζ). In view of (12) and (22)–(25), we attain for any

U, V ∈ Γ(TN ) and ∀ζ1, ζ2 ∈ Γ(TN⊥) that

g(n
′
ζ1, ζ2) = −g(ζ1, n

′
ζ2), g(tU, V) = −g(U, tV). (26)

Moreover, by the consequences of Equations (12) and (24)–(25), we have

g(nU, ζ) = −g(U, t
′
ζ). (27)

Further, the covariant derivative of ϕ, t and n are characterized by, respectively,

(∇̃U ϕ)V =∇̃U ϕV − ϕ∇̃UV, (28)

(∇Ut)V =∇UtV − t∇UV, (29)

(∇Un)V =∇⊥UnV − n∇UV, (30)

for some U, V ∈ Γ(TN ).

Proposition 2. Let N be tangent to ξ in K2n+1. Then, we obtain

(∇Ut)V =AnVU + t
′
h(U, V) + η(V)tU − g(tU, V)ξ, (31)

(∇Un)V =n
′
h(U, V) + η(V)nU − h(U, tV), (32)

for every U, V ∈ Γ(TN ).

Proof. By the consequence of (17)–(18), (24), (28)–(30), we arrive at

(∇̃U ϕ)V + AnVU = −t
′
h(U, V) + (∇Ut)V − n

′
h(U, V) + h(U, tV) + (∇Un)V,

for any U ∈ Γ(TN ). Employing (13) and (24) into the above expression, then consider-
ing tangential part and normal part of the obtained expression, we have (31) and (32),
respectively.

Proposition 3. If ξ is normal to N in K2n+1, then we acquire that

(∇Ut)V =t
′
h(U, V) + AnVU, (33)

(∇Un)V =n
′
h(U, V) + g(U, tV)ξ − h(U, tV), (34)

for all U, V ∈ Γ(TN ).

Proof. Immediately, from (13), (17)–(18), (24), (28)–(30), we derive (33) and (34).

Proposition 4. Let N be tangent to ξ in K2n+1. Then, we receive that

(∇Ut
′
)ζ =An′ ζU − g(nU, ζ)ξ − tAζU, (35)

(∇Un
′
)ζ =− h(U, t

′
ζ)− nAζU, (36)

for any U ∈ Γ(TN ) and ζ ∈ Γ(TN⊥).
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Proof. Employing (17)–(18), (25), (29), and (30) into (28), we achieve that

(∇̃U ϕ)ζ = (∇Un
′
)ζ − An′ ζU + tAζU + nAζU + h(U, t

′
ζ) + (∇Ut

′
)ζ,

for any U ∈ Γ(TN ). Utilizing (13) and (24) into the above expression, we achieve (35)
and (36).

Proposition 5. If N is normal to ξ in K2n+1, then we achieve for any U ∈ Γ(TN ) and ζ ∈
Γ(TN⊥) that

(∇Ut
′
)ζ = An′ ζU − tAζU + η(ζ)tU, (37)

(∇Un
′
)ζ = −nAζU + η(ζ)nU + g(U, t′ζ)ξ − h(U, tV). (38)

Proof. The process is similar to Proposition 4.

Consider U, ξ ∈ Γ(TN ) as two vector fields; thus, by the direct application of (14) and
(17)–(18), we gain

∇Uξ =− ϕ2U, h(U, ξ) = 0. (39)

If ξ ∈ Γ(TN⊥), then by the consequence of (14) and (18), we have

AξU =U, ∇⊥Uξ = 0. (40)

In view of (39) and (40), we give the following remarks:

Remark 1. Let ξ be tangent to N in K2n+1. Then relation (39) holds on N .

Remark 2. Let ξ be normal to N in K2n+1. Then Equation (40) holds in N .

Proposition 6. Let ξ be tangent to N in K2n+1. Then, the endomorphism t and bundle 1-form
n satisfies

t2 + t
′
n = I − η ⊗ ξ, (41)

nt + n
′
n = 0. (42)

Proof. Operating ϕ on (24), we have

ϕ2U = ϕ(tU) + ϕ(nU).

Employing (7) and (24) into the above expression, we achieve

U − η(U)ξ = t2U + ntU + t
′
nU + n

′
nU.

Comparing tangential and normal parts of the above expression, we obtain (41) and
(42).

In similar way, we prove the following result:

Proposition 7. Let ξ be normal to N in K2n+1. Then, the following relations holds:

tt
′
+ t

′
n
′
= 0, (43)

nt
′
+ n

′2
= I . (44)
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3. PR-Pseudo-Slant Submanifolds

Definition 2. Let N be tangent to ξ in K2n+1. Then N is called a slant [40] if the quotient
g(tU,tU)

g(ϕU,ϕU)
= λ(θ) is constant for any non-zero spacelike or timelike vector U ∈ TpN and for any

p ∈ N . The symbol θ is used for slant angle and λ(θ) for slant coefficient or function. In other
words, if N is slant then λ does not depend on the vector field and point.

Remark 3. The value of λ(θ) can be

(i) λ = cosh2 θ ∈ [1, ∞) for ‖tU‖‖ϕU‖ > 1, tU is timelike or spacelike for any spacelike or timelike
vector field U and θ > 0.

(ii) λ(θ) = cos2 θ ∈ [0, 1] for ‖tU‖‖ϕU‖ < 1, tU is timelike or spacelike for any spacelike or timelike
vector field U and 0 ≤ θ ≤ 2π.

(iii) λ(θ) = − sinh2 θ ∈ (−∞, 0] for tU is timelike or spacelike for any timelike or spacelike
vector field U and θ < 0.

Remark 4. If λ = 0, then N is an anti-invariant submanifold.

Remark 5. If λ = 1, then N is an invariant submanifold.

Example 1. Let us consider M̃ = R4 × R+ together with the the usual Cartesian coordinates
(x1, x2, y1, y2, s). Then the structure (ϕ, ξ, η) over M̃ is defined by

ϕ

(
∂

∂xi

)
=

∂

∂yi
, ϕ

(
∂

∂yi

)
=

∂

∂xi
, ϕ

(
∂

∂s

)
= 0, η = ds, (45)

where i, j ∈ {1, 2} and the pseudo-Riemannian metric tensor g is defined as

g
(

∂

∂xi
,

∂

∂xi

)
= e−2s, g

(
∂

∂yi
,

∂

∂yi

)
= −e−2s, g

(
∂

∂s
,

∂

∂s

)
= 1, (46)

g
(

∂

∂xi
,

∂

∂xk

)
= 0, g

(
∂

∂xi
,

∂

∂yk

)
= 0, g

(
∂

∂yi
,

∂

∂yk

)
= 0. (47)

Then, by simple computation, we can easily see that M̃ is para-Kenmotsu manifold. Suppose
M1, M2, and M3 are immersed submanifolds into M̃ by the immersions σ, σ

′
, and σ

′′
respectively,

defined by

σ(u, v, α) =

(
u,
√

3v,
3
2

v, v, α

)
,

σ(u, v, α) =

(
u,

1
2

v,
√

2v, v, α

)
,

σ(u, v, α) = (u, 3v, 2v, v, α).

By simple computation, we conclude that M1, M2, and M3 are slant submanifolds of type I,
type II, and type III of para-Kenmotsu manifold, respectively.

Theorem 1 ([40]). Let ξ be tangent to N in K2n+1. Then N is slant if and only if there exists a
constant λ ∈ R such that

t2 = λ(I − η ⊗ ξ). (48)

In particular, λ is either cos2 θ or cosh2 θ or − sinh2 θ.
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Theorem 2 ([40]). Let N be a slant submanifold in K2n+1 with ξ ∈ Γ(TN ). Then, for any
U, V ∈ Γ(TN ), we have

g(tU, tV) = λg(ϕU, ϕV), (49)

g(nU, nV) = (1− λ)g(ϕU, ϕV). (50)

Proposition 8. Let N be a slant submanifold in K2n+1 with slant coefficient λ(θ) if and only if

(i) t′nU = (1− λ)U and n tU = −n′nU for non-lightlike tangent vector field U on N .
(ii) (n′)2

ζ = λζ for non-lightlike normal vector field ζ.

Proof. Assume N to be slant submanifold of K2n+1.

(i) Then for every p ∈ N and U ∈ TN , we find

ϕU =tU + nU,

ϕ2U =ϕ(tU + nU),

U − η(U)ξ =t2U + ntU + t′nU + n′nU.

Equating tangential and normal parts and using (51), we can attain the result.
(ii) Since, ζ ∈ Γ

(
TN⊥

)
, there exists U ∈ Γ(TN ) as N is slant submanifold such that

nU = ζ.
Now, (n′)2

ζ = n′ n′ nU = −n′ n tU = n t2U = λζ.

The converse can be easily derived using the same equations.

Definition 3. Let N be tangent to ξ in K2n+1. Then N is said to be a PR-pseudo-slant subman-
ifold in K2n+1 if its tangent bundle TN can orthogonally be decomposed as a direct sum of an
anti-invariant distribution D⊥ and a slant distribution Dλ i.e., TN = Dλ ⊕D⊥ ⊕ 〈ξ〉, where ξ
is a one-dimensional real distribution.

Let P and Q be two orthogonal projections on the slant Dλ and anti-invariant distribu-
tion D⊥, respectively. Then, for any U ∈ Γ(TN ) can be expressed as follows:

U = PU + QU + η(U)ξ. (51)

From (51), we have

P2 = P, Q2 = Q, PQ = QP = 0. (52)

From (24) and (51), we obtain

ϕU = tPU + nPU + tQU + nQU,

using the fact M is PR-pseudo-slant, we find

ϕPU = tPU + nPU + nQU, tQU = 0, tPU ∈ Γ(Dλ). (53)

This leads to the following proposition:

Proposition 9. LetN be a PR-pseudo-slant submanifold in K2n+1. Then the Equation (53) holds.

Theorem 3. Let N be a PR-pseudo-slant submanifold in K2n+1. Then the endomorphism n is
parallel if and only if

AζV1 = − 1
λ

An′ζ tV1, (54)



Symmetry 2022, 14, 1001 9 of 21

for all V1 ∈ Γ(Dλ) and ζ ∈ Γ(TN⊥).

Proof. Firstly, assume that the endomorphism n is parallel, then from (32), we obtain

n
′
h(V1, V2)− h(V1, tV2)− η(V2)nV1 = 0.

Replacing V2 with tV2 in the above equation, we obtain

n′h(V1, tV2)− h(V1, t2V2) = 0

Now, using (32) in the above equation, we have n′h(V1, tV2)− λh(V1, V2) = 0. Now,
taking inner product with ζ ∈ Γ(TN⊥) and using (19) and (26), we compute

g(AζV2, V1) = −
1
λ

g(An′ζ tV2, V1).

Theorem 4. Let N be a PR-pseudo-slant submanifold in K2n+1. Then the slant distribution Dλ

is always integrable.

Proof. Considering W1 ∈ Γ(D⊥) and V1, V2 ∈ Γ(Dλ), the utilization of (10) and (17) gives
g(∇V1 V2, W1) = −g(ϕ∇̃V1 V2, ϕW1) + η(∇̃V1 V2)η(W1). By the consequences of (14), (17),
(18), and (22), the above expression takes the following form:

g(∇V1 V2, W1) = −g(h(V1, tV2), nW1)− g(∇⊥V1
nV2, nW1).

In the light of Equations (36) and (40), we compute

g(∇V1 V2, W1) = −g(n′h(V1, V2), nW1)− g(n∇V1 V2, nW1). (55)

By interchange V1 and V2 into (55), we obtain

g(∇V2 V1, W1) = −g(n′h(V1, V2), nW1)− g(n∇V2 V1, nW1). (56)

In the light of (55) and (56), we achieve g([V1, V2], W1) = −g(n[V1, V2], nW1), now
using (50), thus, we find

g([V1, V2], W1) = (1− λ)(g([V1, V2], W1)− η([V1, V2])η(W1)). (57)

By the relation (57) we conclude that Dλ is integrable. This completes the proof.

Remark 6. The one-dimensional real distribution of PR-pseudo-slant submanifold in K2n+1 is
always integrable.

Theorem 5. Let N be a PR-pseudo-slant submanifold in K2n+1. Then, the distribution D⊥ is
integrable if and only if the shape operator satisfies

AnW1W2 = AnW2W1, (58)

∀W1, W2 ∈ Γ(D⊥).

Proof. By the direct consequence of Equation (22), we obtain

Φ[W1, W2] = t[W1, W2] + n[W1, W2] =t∇̃W1W2 − t∇̃W2W1 + n∇̃W1W2 − n∇̃W2W1.
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Since D⊥ is anti-invariant distribution then [W1, W2] ∈ Γ(TD⊥) if and only if t∇̃W1W2−
t∇̃W2W1 = 0. By the application of (29) and (53), we observe that−(∇W2 t)W1 +(∇W1 t)W2 =
0. In view of (31), we obtain (58). This completes the proof.

Corollary 1. Let N be a PR-pseudo-slant submanifold in K2n+1. Then, the distribution D⊥ is
integrable if and only if the endomorphism t satisfies

(∇W2 t)W1 = (∇W1 t)W2, (59)

∀W1, W2 ∈ Γ(D⊥).

Lemma 1. For a PR-pseudo-slant submanifold N in K2n+1, we have

g(∇V1 V2, W1) =
1
λ

g(h(V1, W1), ntV2)− g(h(V1, tV2), ϕW1), (60)

for all W1 ∈ Γ(D⊥) and V1, V2 ∈ Γ(Dλ ⊕ 〈ξ〉).

Proof. By the consequence of (10) and (17), we have

g(∇V1 V2, W1) = η(∇̄V1 V2)η(W1)− g(ϕ∇̃V1 V2, ϕW1).

In view of (12) and (28), we obtain

g(∇V1 V2, W1) = −g(∇̄V1 nV2, ϕW1)− g(∇̃V1 tV2, ϕW1).

Now using (13), (17), and (29) in the above relation,

g(∇V1 V2, W1) = −g(h(V1, tV2), ϕW1) + g(∇̃V1 t′nV2, ϕW1) + g(∇̃V1 n′nV2, ϕW1)

The above expression reduces into the following form by the use of first part of
Proposition 8 and (14):

g(∇V1 V2, W1) = −g(h(V1, tV2), ϕW1) + (1− λ)g(∇V1 V2, W1)− g(∇̃V1 ntV2, ϕW1).

By the virtue of (18) and (19), we have (60).

Theorem 6. LetN be a PR-pseudo-slant submanifold inK2n+1. Then, the distribution Dλ⊕ 〈ξ〉
is integrable if and only if the shape operator A satisfies

g(AntV2W1, V1)− g(AntV1W1, V2) + g(AϕW1 tV1, V2)− g(AϕW1 V1, tV2) = 0, (61)

∀W1, W2 ∈ Γ(D⊥) and V1, V2 ∈ Dλ ⊕ 〈ξ〉.

Proof. By the consequence of Lemma 1, we have

g([V1, V2], W1) =
1
λ
(g(h(V1, W1), ntV2)− g(h(V2, W1), ntV1)

+ g(h(tV1, V2), ϕW1)− g(h(V1, tV2), ϕW1))

for every V1, V2 ∈ Γ(Dλ ⊕ 〈ξ〉) and W1 ∈ Γ(D⊥). In light of (19), we have

λ(g([V1, V2], W1)) =g(AntV2W1, V1)− g(AntV1W1, V2)

+ g(AϕW1 tV1, V2)− g(AϕW1 V1, tV2). (62)

By the relation (62), we conclude that Dλ ⊕ 〈ξ〉 is integrable if and only if the relation
(61) holds. This completes the proof.
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Theorem 7. LetN be a mixed totally geodesic PR-pseudo-slant submanifold in K2n+1. Then, the
distribution Dλ ⊕ 〈ξ〉 is integrable if and only if the shape operator A satisfies

AnW1 tV1 + tAnW1 V1 = 0, (63)

∀W1, W2 ∈ Γ(D⊥) and V1, V2 ∈ Γ(Dλ ⊕ 〈ξ〉).

Proof. By the consequence of (10), (13), (28), and (53), we have g([V1, V2], W1) = g(∇̃V1 ϕW1,
ϕV2)− g(∇̃V2 ϕW1, ϕV1), for every V1, V2 ∈ Γ(Dλ ⊕ 〈ξ〉) and W1 ∈ Γ(D⊥). Now, using
(17), (18), and (26) in the above expression, we have

g([V1, V2], W1) =− g(AnW1 V1, tV2) + g(AnW1 V2, tV1)

+ g(∇⊥V1
nW1, nV2)− g(∇⊥V2

nW1, nV1). (64)

Furthermore, by the virtue of (13), (17), (18), (26), (28), and (53), we find

t∇V1W1 + n∇V1W1 + AnW1 V1 = ∇⊥V1
nW1 − t

′
h(V1, W1)− n

′
h(V1, W1). (65)

By comparing normal components of (65), we obtain

∇⊥V1
nW1 − n

′
h(V1, W1) = n∇V1W1. (66)

Now utilizing (65) and (66) in (64), we obtain

g([V1, V2], W1) =− g(AnW1 V1, tV2) + g(AnW1 V2, tV1) + g(n∇V1W1), nV2)

+ g(n
′
h(V1, W1), nV2)− g(n∇V2W1), nV1)− g(n

′
h(V2, W1), nV1).

By the application of (8), we have

λg([V1, V2], W1) = g(tAnW1 V1, V2) + g(AnW1 tV1, V2). (67)

By the above expression, we conclude that Dλ is integrable if and only if (63) holds.

Theorem 8. LetN be a PR-pseudo-slant submanifold inK2n+1. Then, the distribution Dλ⊕ 〈ξ〉
is integrable if and only if

g(AnW1 V1, tV2)− g(AnW1 tV1, V2)+g(∇⊥V1
nV2, nW1)− g(∇⊥V2

nV1, nW1) = 0, (68)

for every V1, V2 ∈ Γ(Dλ ⊕ 〈ξ〉) and W1 ∈ Γ(D⊥).

Proof. By the consequence of (17), (18), and (22), we have

ϕ[U, V] =t∇V1 V2 + n∇V1 V2 − t∇V2 V1 − n∇V2 V1.

In light of (29), (30) and (31), we observe that

ϕ[V1, V2] = ∇V1 tV2 +∇⊥V1
nV2 −∇V2 tV1 −∇⊥V2

nV1 + AnV1 V2 − AnV2 V1

+ η(V1)ϕV2)− η(V2)ϕV1 + 2g(tV1, V2)ξ + h(V1, tV2)− h(tV1, V2). (69)

Now, taking the inner product in the above expression with nW1 and using (12), where
W1 ∈ Γ(D⊥);

g(ϕ[V1, V2], nW1) =g(h(V1, tV2), nV1)− g(h(tV1, V2), nW1) + g(∇⊥V1
nV2, nW1)

− g(∇⊥V2
nV1, nW1).
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From using (25) and (26) in the above equation, we arrive that

g(t
′
n[V1, V2], W1) =g(h(tV1, V2), nW1)− g(h(V1, tV2), nV1)− g(∇⊥V1

nV2, nW1)

+ g(∇⊥V2
nV1, nW1).

In light of Lemma 8, we have

(1− λ)g([V1, V2], W1) =g(h(tV1, V2), nW1)− g(h(V1, tV2), nV1)− g(∇⊥V1
nV2, nW1)

+ g(∇⊥V2
nV1, nW1). (70)

Thus, Equation (70) concludes that Dλ ⊕ 〈ξ〉 is integrable if and only if (68) holds.

Theorem 9. Let N be a pseudo-slant submanifold in K2n+1. Then, the distribution D⊥ is inte-
grable if and only if it A satisfies

AnW1W2 = 0, (71)

∀W1, W2 ∈ Γ(D⊥).

Proof. First of all, suppose D⊥ is integrable distribution, then tW2 = tW1 = 0; this im-
plies that ∇W2 tW1 = ∇W1 tW2 = 0. Therefore, relation (31) reduces g((∇V1 t)W2, W1) =
g(AnW2 V1, W1) + g(t′h(V1, W2), W1), for every V1 ∈ Γ(Dλ⊕ < ξ >); this implies that
g(AnW2 V1, W1) = −g(t′h(V1, W2), W1). Now, in the light of (19) and (27), the above expres-
sion turns into g(AnW2W1, X) = −g(AnW1W2, V1). Thus, from (58), we obtain (71).

Conversely: suppose thatN satisfies (71), then by utilization of (19) we have g(t′h(V1,
W2), W1) = 0. Now, employing (29) and (31) into the above expression, we achieve that
g(∇W2W1, V1) = 0, which implies that∇W2W1 ∈ Γ(D⊥). This shows that D⊥ is a integrable
distribution.

4. PR-Pseudo-Slant Warped Product Submanifolds

Let N be tangent to ξ in K2n+1. Then, N is said to be a PR-pseudo-slant warped
product if it is a warped product of type N⊥ × f Nλ or Nλ × f N⊥, where Nλ is slant
submanifold andN⊥ is a anti-invariant submanifold inN . In this paper, we only study the
warped product whose base is slant, i.e., Nλ × f N⊥.

Proposition 10. Let N = Nλ × f N⊥ be a PR-pseudo-slant submanifold warped product in
K2n+1 such that ξ ∈ Γ(TN⊥). Then N is a PR-product.

Proof. From Equation (4), we have ∇V1W1 = ∇W1 V1 = V1(ln f )W1, for V1 ∈ Γ(TNλ) and
W1 ∈ Γ(TN⊥). Replacing by W1 by ξ into the above expression, we have∇V1 ξ = V1(ln f )ξ.
With the help of (39), the above expression reduces into the given form V1(ln f ) = 0. This
completes the proof.

Proposition 11. There exists a non-trivial PR-pseudo-slant submanifold warped product N =
Nλ × f N⊥ in K2n+1 such that ξ ∈ Γ(TNλ).

Proof. From Equation (4), we have ∇V1W1 = ∇W1 V1 = V1(ln f )W1, for V1 ∈ Γ(TNλ) and
W1 ∈ Γ(TN⊥). Replacing by V1 by ξ into the above expression, we have∇W1 ξ = ξ(ln f )W1.
In the light of (39), the above expression reduces into the following form ξ(ln f )W1 = −W1.
By the definition of gradient, we have

∇ f
f

= −ξ. (72)
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By the theory of differential equations we observe that Equation (72) has a solution.
This shows that f is non-constant. This completes the proof.

Remark 7. Let N = Nλ × f N⊥ be PR-pseudo-slant warped product submanifold in K2n+1.
Then, we have

ξ(ln f ) = −1. (73)

Now, we give some examples of PR-pseudo-slant submanifold of type N = Nλ × f
N⊥.

Example 2. Choose M̃ = R8×R+ together with the usual Cartesian coordinates (x1, x2, x3, x4, y1,
y2, y3, y4, s). Then the structure (ϕ, ξ, η) over M̃ is defined by

ϕ

(
∂

∂xi

)
=

∂

∂yi
, ϕ

(
∂

∂yi

)
=

∂

∂xi
, ϕ

(
∂

∂s

)
= 0, η = ds. (74)

where i, j ∈ {1, · · · , 4} and the pseudo-Riemannian metric tensor g is defined as

g
(

∂

∂xi
,

∂

∂xi

)
= e−2s, g

(
∂

∂yi
,

∂

∂yi

)
= −e−2s, g

(
∂

∂s
,

∂

∂s

)
= 1, (75)

g
(

∂

∂xi
,

∂

∂xk

)
= 0, g

(
∂

∂xi
,

∂

∂yk

)
= 0, g

(
∂

∂yi
,

∂

∂yk

)
= 0, (76)

for all k ∈ {1, · · · , 4}. Then by simple computation, we can easily see that M̃ is para-Kenmotsu
manifold. Suppose N is an immersed submanifold into M̃ by an immersion σ which is defined by

x1 = u, x2 = kv sinh α, x3 = α2, x4 = 0, y1 = v,

y2 = kv cosh α, y3 = 0, y4 = α2 − 2, s = s,

for k ∈ R. Thus, we can easily provide the generating set for the tangent bundle of submanifold as
follows:

Zα = kv cosh α
∂

∂x2
+ 2α

∂

∂x3
+ kv sinh α

∂

∂y2
+ 2α

∂

∂y4
,

Zu =
∂

∂x1
,

Zv = k sinh α
∂

∂x2
+

∂

∂y1
+ k cosh α

∂

∂y2
,

Zs = ξ.

for s ∈ R. The basis vector for ϕ(TM) is given by

ϕZα = kv sinh α
∂

∂x2
+ 2α

∂

∂x4
+ kv cosh α

∂

∂y2
+ 2α

∂

∂y3
,

ϕZu =
∂

∂y1
,

ϕZv =
∂

∂x1
+ k cosh α

∂

∂x2
+ k sinh α

∂

∂y2
,

ϕZs = 0.
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By simple calculation, we obtain that the distributionDλ = span{Zu, Zv} is slant distribution
with slant function λ = 1

1+k2 and the distribution D⊥ = span{Zα} is anti-invariant under ϕ.
The induced metric tensor gN on N = Nλ × f N⊥ is given by

gN = ds2 + (du2 − (1 + k2)dv2)e−2s + e−2sv2dα2. (77)

The above calculation manifests that the submanifold N is a form of PR-pseudo-slant warped
product of type II with warping function f = e−sv of para-Kenmotsu manifold.

Example 3. Choose M̃ = R8×R+ together with the usual Cartesian coordinates (x1, x2, x3, x4, y1,
y2, y3, y4, s). Then, the structure (ϕ, ξ, η) over M̃ is defined by

ϕ

(
∂

∂xi

)
=

∂

∂yi
, ϕ

(
∂

∂yi

)
=

∂

∂xi
, ϕ

(
∂

∂s

)
= 0, η = ds. (78)

where i, j ∈ {1, · · · , 4} and the pseudo-Riemannian metric tensor g is defined as

g
(

∂

∂xi
,

∂

∂xi

)
= e−2s, g

(
∂

∂yi
,

∂

∂yi

)
= −e−2s, g

(
∂

∂s
,

∂

∂s

)
= 1, (79)

g
(

∂

∂xi
,

∂

∂xk

)
= 0, g

(
∂

∂xi
,

∂

∂yk

)
= 0, g

(
∂

∂yi
,

∂

∂yk

)
= 0, (80)

for all k ∈ {1, · · · , 4}. Then, by simple computation, we can easily see that M̃ is para-Kenmotsu
manifold. Suppose N is an immersed submanifold into M̃ by an immersion σ which is defined by

x1 = ku sinh α, x2 = α, x3 = u, x4 = 0, y1 = ku cosh α,

y2 = 0, y3 = v, y4 = α + 1, s = s,

for k ∈ R ∼ {1}. Thus, we can easily provide the generating set for the tangent bundle of
submanifold as follows:

Zα = ku cosh α
∂

∂x1
+

∂

∂x2
+ ku sinh α

∂

∂y1
+

∂

∂y4
,

Zu = k sinh α
∂

∂x1
+

∂

∂x3
+ k cosh α

∂

∂y1
,

Zv =
∂

∂y3
,

Zs = ξ.

for s ∈ R. The basis vector for ϕ(TN ) is given by

ϕZα = ku cosh α
∂

∂y1
+

∂

∂y2
+ ku sinh α

∂

∂x1
+

∂

∂x4
,

ϕZu = k sinh α
∂

∂y1
+

∂

∂y3
+ k cosh α

∂

∂x1
,

ϕZv =
∂

∂x3
,

ϕZs = 0.

By simple calculation, we obtain that the distributionDλ = span{Zu, Zv} is slant distribution
of with slant function λ = 1

1−k2 and the distribution D⊥ = span{Zα} is anti-invariant under ϕ.
The induced metric tensor gN on N = Nλ × f N⊥ is given by

gN = ds2 + e−2s((1− k2)du2 − dv2) + e−2su2dα2. (81)
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The above calculation manifests that the submanifold N is a form of PR-pseudo-slant warped
product of type I if k < 1 andPR-pseudo-slant warped product of type III if k > 1 of para-Kenmotsu
manifold with warping function f = e−su .

Lemma 2. For a PR-pseudo-slant warped product submanifold N = Nλ × f N⊥ in K2n+1, we
receive for all V1, V2 ∈ Γ(TNλ) and W1, W2 ∈ Γ(TN⊥) that

g(h(V1, V2), nW1) = g(h(V1, W1), nV2), (82)

g(h(V1, W1), nW2) = g(h(V1, W2), nW1). (83)

Proof. By the consequence of (17) and (28), we have

g(h(V1, V2), nW1) = g(∇̃V1 V2, ϕW1)− g(∇̃V1 V2, tW1).

Now, applying (12) and (13) into the above expression, we achieve

g(h(V1, V2), nW1) = −g(∇̃V1 tV2, W1)− g(∇̃V1 nW1, V2)− g(∇̃V1 V2, tW1).

By the utilization of (4) and (17), we obtain (82). We proceed with a similar process to
prove (83).

Lemma 3. Let N = Nλ × f N⊥ be a PR-pseudo-slant warped product submanifold in K2n+1.
Then, we obtain for all V1, V2 ∈ Γ(TNλ) and U, V ∈ Γ(TN⊥) that

g(h(W1, W1), nV1) =g(h(V1, W1), nW1) + tV1(ln f )g(W1, W1), (84)

g(h(W1, W1), ntV1) =g(h(tV1, W1), nV) + λ(V1(ln f ) + η(V1))(W1, W1). (85)

Proof. By the consequence of (17) and (28), we have

g(h(W1, W1), nV1) = g(∇̃W1W1, ϕV1)− g(∇̃W1W1, tV1).

Now, applying (12) and (13) into the above expression, we achieve

g(h(W1, W1), nV1) = −g(∇̃W1 ϕW1, V1)− g(∇̃W1W1, tV1).

By the utilization of (4), (18) and (19), we obtain (84). If we replace V1 with tV1 in (84),
then we attain (85).

Theorem 10. LetN be a PR-pseudo-slant submanifold inK2n+1. Then,N is a PR-pseudo-slant
warped product submanifold if and only if

AntV1W1 − AϕW1 tV1 = λ(V1(µ) + η(V1))W1, (86)

for every V1 ∈ Γ(Dλ⊕ 〈ξ〉), W1 ∈ Γ(D⊥) and some smooth function µ onN satisfies W2(µ) = 0,
for every W2 ∈ Γ(D⊥).

Proof. Suppose thatN is a PR-pseudo-slant warped product submanifold inK2n+1. Then,
by the virtue of (19) and (85), we easily obtain (86) by taking µ = ln f .

Conversely, suppose N is PR-pseudo-slant submanifold in K2n+1 that satisfies (86).
Then, by the application of Lemma 1 and (86), we obtain g(∇V1 V2, W1) = (V1(µ) + η(V1))
g(W1, V2) = 0. This shows that the distribution Dλ ⊕ 〈ξ〉 is totally geodesic and integrable.
Now, let us denote h⊥ as the second fundamental form of D⊥. Then, by the use of (17), we
have g(h⊥(W1, W2), V1) = g(∇̃W1W2, V1). In view of (10), the above expression reduces into
the following form:

g(h⊥(W1, W2), V1) = −g(ϕ∇̃W1W2, ϕV1) + η(V1)g(∇̃W1W2, ξ).
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By the consequence of (13), (14), and (28), the above expression reduces into the
following form:

g(h⊥(W1, W2), V1) =− g(∇̃W1 ϕW2, ϕV1) + g((∇̃W1 ϕ)W2, ϕV1) + η(V1)g(W1, W2)

= −g(∇̃W1 ϕW2, ϕV1) + η(V1)g(W1, W2).

Now, using (17)–(19) and (27) in the above relation, we have

g(h⊥(W1, W2), V1) =g(h(W1, tV1), ϕW2)− g(W2, ∇̃W1 t
′
nV1)

− g(W2, ∇̃W1 n
′
nV1) + η(V1)g(W1, W2). (87)

In view of (86), (87), and Lemma 8, we have

g(h⊥(W1, W2), V1) =
1
λ
(g(h(W1, tV1), ϕW2)− g(h(W1, W2), ntV1))

+ η(V1)g(W1, W2) = −V1(µ)g(W1, W2). (88)

By definition of gradient and (88), we have

h⊥(W1, W2) = −∇(µ)g(W1, W2). (89)

The relation (89) shows that the distribution D⊥ is totally umbilical with mean curva-
ture H⊥ = −∇(µ), which is parallel with respect to ∇⊥. By Hiepko result and the above
discussion, we conclude that the N = Nλ × f N⊥ is a PR-pseudo-slant warped product
submanifold of K2n+1. This completes the proof.

Theorem 11. Let N be a PR-pseudo-slant submanifold in K2n+1. Then, N is a mixed totally
geodesic PR-pseudo-slant warped product submanifold if and only if

AϕW1 V1 = 0, and AntV1W1 = −λ(V1(µ) + η(V1))W1, (90)

for every V1 ∈ Γ(Dλ⊕ 〈ξ〉), W1 ∈ Γ(D⊥) and some smooth function µ onN satisfies W2(µ) = o,
for every W2 ∈ Γ(D⊥).

Proof. Suppose that N is a mixed totally geodesic PR-pseudo-slant warped product
submanifold in K2n+1, then h(V1, W1) = 0, for every V1 ∈ Γ(TNλ) and W1 ∈ Γ(TN⊥).
Therefore, by the virtue of (19) and (82), we achieve (90).

Conversely, suppose N is a PR-pseudo-slant submanifold in K2n+1 that satisfies (90).
From Lemma 1 and (90), we have

g(∇V1 V2, W1) = −(V1(µ) + η(X))g(W1, V2) = 0.

By this expression, we easily see that the leaves of Dλ ⊕ 〈ξ〉 are totally geodesic and
integrable. Let us denote h⊥ as the second fundamental form of D⊥. Then, by the use of
(17), we have g(h⊥(W1, W2), V1) = g(∇̃W1W2, V1). Now, utilizing (10), (13), (14), and (28)
in the above expression, we concede that

g(h⊥(W1, W2), V1) = −g(∇̃W1 ϕW2, ϕV1) + η(V1)g(W1, W2).

By using (17)–(19), (27), and the first part part of (90) into the above relation, we receive
that

g(h⊥(W1, W2), V1) =− g(W2, ∇̃W1 t
′
nV1)− g(W2, ∇̃W1 n

′
nV1) + η(V1)g(W1, W2). (91)
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In view of Lemma 8, (90) and (91), we have

g(h⊥(W1, W2), V1) = V1(µ)g(W1, W2). (92)

By definition of gradient and (92), we have

h⊥(W1, W2) = ∇(µ)g(W1, W2). (93)

The relation (93) shows that the distribution D⊥ is totally umbilical with mean cur-
vature H⊥ = ∇(µ) which is parallel with respect to ∇⊥. By Hiepko result and the above
discussion, we conclude that the N = Nλ × f N⊥ is a mixed totally geodesic PR-pseudo-
slant warped product submanifold of K2n+1 .

Theorem 12. Let N = Nλ × f N⊥ be a PR-pseudo-slant warped product submanifold in K2n+1.
Then, N is locally a PR-product if and only if

AntV1W1 = λη(V1)W1, (94)

for every V1 ∈ Γ(TNλ) and W1 ∈ Γ(TN⊥).

Proof. By the application of Equations (10), (17), and (28), we have g(∇W1 V1, W2) =

−g(∇̃W1 ϕV1,
ϕW2) + g((∇̃W1 ϕ)V1, ϕW2), for every V1 ∈ Γ(TNλ) and W1, W2 ∈ Γ(TN⊥). Now, using
(10) and (27), we concede that

g(∇W1 V1, W2) = −g(∇̃W1 tV1, ϕW2)− η(V1)g(W1, W2)− g(∇̃W1 nV1, ϕW2).

By the consequence of (12), (13), (14), (24), and (28), the above expression relation
reduces into the following form:

g(∇W1 V1, W2) = g(∇̃W1 t2V1, W2) + g(∇̃W1 ntV1, W2)

−η(V1)g(W1, W2)− g(∇⊥W1
nV1, ϕW2).

In light of (14), (17), (4), and Lemma 3, the above expression reduces into the following
form:

(1− λ)(V1(ln f )− η(V1))g(W1, W2) = g(h(W1, W2), ntV1)− g(∇⊥W1
nV1, ϕW2). (95)

Interchanging W1 and W2 into (95), we have

(1− λ)(V1(ln f )− η(V1))g(W1, W2) = g(h(W1, W2), ntV1)− g(∇⊥W2
nV1, ϕW1). (96)

In view of (95) and (96), we have

g(∇⊥W2
nV1, ϕW1) = g(∇⊥W1

nV1, ϕW2). (97)

On the other hand, by use of (13), (17), and (28), we observe that

g(∇⊥W1
nV1, ϕW2) = g(ϕ∇̃W1 V1, ϕW2)− η(V1)g(ϕW1, ϕW2)

−g(∇̃W1 tV1, ϕW2).

In light of (4) and (10), the above expression reduces into the following form:

g(∇⊥W1
nV1, ϕW2) = −V1(ln f )g(W1, W2) + η(V1)g(W1, W2)− g(∇̃W1 tV1, ϕW2). (98)
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Again, interchanging W1 and W2 into (98), we have

g(∇⊥W2
nV1, ϕW1) = −V1(ln f )g(W1, W2) + η(V1)g(W1, W2)− g(∇̃W2 tV1, ϕW1). (99)

By the virtue of (98) and (99), we conclude that (97) holds if and only if

g(∇̃W2 tV1, ϕW1) = 0 = −g(∇̃W1 tV1, ϕW2). (100)

By the utilization of (17), (24), (28), (100), and Lemma 3, we obtain

λ(V1(ln f ) + η(V1))g(W1, W2))− g(h(W1, W2), ntV1) = 0. (101)

By the above relation, we can observe that f is constant if and only if the relation (94)
holds. This completes the proof.

Lemma 4. Let N = Nλ × f N⊥ be a PR-pseudo-slant warped product submanifold in K2n+1.
Then, we obtain for all U ∈ Γ(TN ), V1 ∈ Γ(TNλ), and W1 ∈ Γ(TN⊥) that

(∇Ut)W1 =− g(W1, QU)t∇(ln f ), (102)

(∇Ut)V1 =η(U)AnV1 ξ + η(V1)tPU + g(PU, tV1)ξ + tV1(ln f )QU. (103)

(∇Ut)tV1 =η(U)AntV1 ξ + λη(V1)PU − λη(V1)g(PU, V1)ξ

+ λ(V1(ln f ) + η(V1))QU. (104)

Proof. By the use of (51), we have (∇Ut)W1 = (∇PUt)W1 + (∇QUt)W1 + η(U)(∇ξ t)W1.
By the virtue of (4) and Definition 3, we have (∇PUt)W1 = (∇ξ t)W1 = 0. In view of
(29) and (5), we observe that (∇QUt)W1 = −g(W1, QU)t∇(ln f ). By these observations,
we easily concede the relation (102). By reuse of (51), we have (∇Ut)V1 = (∇PUt)V1 +
(∇QUt)V1 + η(U)(∇ξ t)V1. Furthermore, by the virtue of (31), we attain (∇PUt)V1 =

AnV1 PU + t
′
h(PU, V1) + η(V1)tPU − g(tPU, V1)ξ. Since Nλ is totally geodesic, the above

expression reduces into the following form:

(∇PUt)V1 = η(V1)tPU − g(tPU, V1)ξ. (105)

By the utilization of (4) and (51), we have

(∇QUt)V1 = tV1(ln f )QU. (106)

Similarly, we find

(∇ξ t)V1 = AnV1 ξ. (107)

By the application of (105)–(107), we achieve (103). If we replace V1 with tV1 in (103),
we easily achieve (104).

Theorem 13. LetN be a PR-pseudo-slant submanifold inK2n+1. Then,N is a PR-pseudo-slant
warped product submanifold if and only if the endomorphism t satisfies

g((∇Ut)V, V1) = tV1(µ)g(QU, QV) + η(V1)g(PU, tPV), (108)

for every V1 ∈ Γ(Dλ ⊕ 〈ξ〉), U, V ∈ Γ(TN ), and some smooth function µ on N satisfies
W2(µ) = 0, for every W2 ∈ Γ(D⊥).

Proof. Suppose that M is a PR-pseudo-slant warped product submanifold in K2n+1, then
by (51), we obtain

(∇Ut)V = (∇Ut)QV + (∇Ut)PV + η(V)(∇Ut)ξ. (109)
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By the utilization of (14), (17), (102), and (103), we achieve that

(∇Ut)V = −η(V)tU − g(QU, QV)t∇(ln f ) + η(U)AnPVξ

+η(PV)tPU + g(PU, tPV)ξ + tPV(ln f )QU. (110)

By taking the inner product with V1 into (111), then using (39) and definition of
gradient, we achieve

g((∇Ut)V, V1) = tV1(ln f )g(QU, QV) + η(V1)g(PU, tPV), (111)

By taking µ = ln f into (111) and using the fact that N is a warped product, we
accomplished (108).

Conversely, assume that N is a PR-pseudo-slant submanifold in K2n+1 satisfying
(108). Now, replacing U with V2 and V with W1 in (108), we have g((∇V2 t)W1, V1) = 0,
V1 ∈ Γ(Dλ ⊕ 〈ξ〉) and W1 ∈ Γ(D⊥). In view of (26) and (29), we have g(hλ(tV1, V2), W1) =
0. This shows that Dλ ⊕ 〈ξ〉 is integrable and its leaves are totally geodesic in N . Fur-
thermore, replacing U with W1 and V with W2 in (108), we have g((∇W1 t)W2, V1) =
tV1(µ)g(W1, W2) + η(V1)g(W1, tV1), for every W1, W2 ∈ Γ(D⊥). By (26) and orthogonality
relation, we observe that

g((h⊥(W1, W2), tV1) = g(tV1,∇(ln f ))g(W1, W2). (112)

By the relation (112), we observe that the distribution D⊥ is totally umbilical with
mean curvature H⊥ = ∇(µ). By the application of Hiepko result [41], we can conclude
that M is a PR-pseudo-slant warped product submanifold in K2n+1. This completes the
proof.
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