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Abstract: Many lifetime distribution models have successfully served as population models for risk
analysis and reliability mechanisms. We propose a novel estimation procedure of stress–strength
reliability in the case of two independent unit-half-normal distributions can fit asymmetrical data
with either positive or negative skew, with different shape parameters. We obtain the maximum
likelihood estimator of the reliability, its asymptotic distribution, and exact and asymptotic confidence
intervals. In addition, confidence intervals of model parameters are constructed by using bootstrap
techniques. We study the performance of the estimators based on Monte Carlo simulations, the mean
squared error, average bias and length, and coverage probabilities. Finally, we apply the proposed
reliability model in data analysis of burr measurements on the iron sheets.

Keywords: bootstrap confidence intervals; bootstrap methods; entropy; exact and asymptotic
confidence interval; mean residual life; simulation studies; strength–stress model; unit-half-normal
distribution

1. Introduction

Recently, ref. [1] introduced a new distribution defined on the unit interval with
one parameter and simple structure based on the half normal distribution, called the
unit-half-normal distribution, as a good alternative to the Topp–Leone distribution [2],
Kumaraswamy distribution [3], unit-logistic distribution [4], beta distribution of two pa-
rameters (or the Pearson type IV distribution) [5], unit-Birnbaum–Saunders distribution [6],
and unit-Lindley distribution [7], among others. The probability density function (PDF) of
the unit-half-normal distribution is as follows

fX(x; η) =
2

η(1− x)2 φ

(
x

η(1− x)

)
, 0 ≤ x < 1, (1)

where η > 0 is a scale parameter and φ(·) is the PDF of the standard normal distribution.
From now on, a random variable X with PDF defined in (1) will be denoted by UHN(η).
The corresponding cumulative distribution function (CDF) is

FX(x; η) = 2Φ
(

x
η(1− x)

)
− 1, (2)

where Φ(·) is the CDF of the standard normal distribution. Figures 1 and 2 illustrate
some of the possible shape of the unit-half-normal distribution for selected values of the
parameter η. From these figures, we observed that, the PDF shapes are unimodal and
asymmetric (left and right skewed). As showed by [1], the unit-half-normal distribution
belongs the exponential family of probability distributions.
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Figure 1. Plot of density function of UHN distribution for 0 < η < 1.
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Figure 2. Plot of density function of UHN distribution for η > 1.

The literature demonstrates that estimation of the stress–strength model, R = P(Y < X),
has already been performed assuming that X and Y are independent random variables
with positive support and different degrees of skewness and kurtosis described by the same
kind of probability distribution. We refer the reader to [8] for a review and the references
therein for more information on this claim. Much less attention is given when X and Y take
values in a limited range, such as proportions, percentages and fractions. The main goal of
this work is to develop the inferential procedure of the stress–strength parameter R, when
X and Y are independent UHN(η) and UHN(λ), respectively. We can note the important
role in the reliability analysis played the stress–strength parameter. Let X and Y denote,
respectively, the stress and the strength. We say that the system is failed if the used stress is
greater than its strength, in one active system.

The rest of the paper is structured as follows. The next section presents the entropy
and mean residual life of a random variable with UHN distribution. Then, we present an
expression for the stress–strength reliability (R), MLE of R, its exact distribution and some
properties, and three algorithms to simulate random variables from R. In the subsequent
section, confidence intervals for R are developed by means of exact, asymptotic and
bootstrap approaches. Next, the computational simulations are presented to evaluate the
performance of the MLE and exact, asymptotic and bootstrap confidence intervals, followed
by the section containing an application in the context burr measurements on the iron
sheets. Finally, some concluding remarks are presented in the last section.
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2. Entropy and Mean Residual Life

In this section, we present the entropy and mean residual life for a random variable
with UHN distribution.

2.1. Entropy

The entropy of a random variable X with PDF (1) is a measure of variation of the
uncertainty. A large value of entropy indicate the grater uncertainty in the data. Using
U = X

η(1−X)
and numerical integration, it is possible to calculate the entropy as a function of

the scale parameter η. Then the Shannon entropy [9], defined by E(− log fX(x)), is equal to

ξ := E(− log fX(x)) =
1
2
+

1
2

log
(

πη2

2

)
− 4

∫ ∞

0
log(1 + ηu)φ(u)du.

Using the Taylor expansion for log(1 + x) around zero, but instead of x, we have
0 < ηu < 1.

ξ =
1
2
+

1
2

log
(

πη2

2

)
− 4

∫ ∞

0
φ(u)

∞

∑
k=1

(−1)k+1

k
ηkukdu.

Thus, by interchanging the order of the summation and the integration, the final form
of the entropy is given by

ξ ' 1
2
+

1
2

log
(

πη2

2

)
− 1√

π

∞

∑
k=1

(−1)k+1 21+ k
2

k
ηkΓ
(

1 + k
2

)
. (3)

Figure 3 shows the value of (3) for true value for η from zero to one. The real value
was computed by numerical integration. The software R [10] provides this option with the
function integrate.
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Figure 3. Entropy values for a range of values of η.

We can note that the second and third order approximation is not as good as the fourth
order ones. However, all approximations are good especially for values of 0 < η < 1/2.

2.2. Mean Residual Life

The mean residual life or life expectancy is an important characteristic of the model.
It gives the expected additional lifetime given that a component has survived until time



Symmetry 2022, 14, 837 4 of 17

t. For a non-negative continuous random variable X ∼ UHN(η) the mean residual life
function is defined as

E(X− t|X > t) = E(X|X > t)− t,

where t ∈ (0, 1). The above conditional expectation is given by

E(X|X > t) =
∫ 1

t

x fX(x)
P(X > t)

dx

=
∫ 1

t

x fX(x)
1− FX(t)

dx. (4)

Calculation of the numerator is done in the same way as the calculation of the
mean. Thus ∫ 1

t
x fX(x)dx = 2

∫ 1

t

x
η(1− x)2 φ

(
x

η(1− x)

)
dx

= 2
∫ ∞

t
η(1−t)

ηu
1 + ηu

φ(u)du,

where ηu = x/(1− x).
Finally, Equation (4) can be written as

E(X− t|X > t) =

∫ ∞
t

η(1−t)

ηu
1+ηu φ(u)du

Φ
(

t
η(t−1)

) − t.

The integral of the numerator can be calculated with numerical methods. More on
mean residual life, we refer our readers to [11], among others

3. Stress–Strength Reliability Model

An expression for the stress–strength reliability R is given by the following theorem.

Theorem 1. Suppose X and Y are random variables independently distributed as X ∼ UHN(η)
and Y ∼ UHN(λ), the reliability of the system with stress variable (Y) and strength variable (X)
is given by

R = P(Y < X) =
2
π

arctan
( η

λ

)
, η > 0, λ > 0. (5)

Proof of Theorem 1. Using the Equations (1) and (2) with x/(1− x) = η u we have

P(Y < X) =
∫ 1

0
FY(x) fX(x)dx

=
∫ 1

0

[
2Φ
(

x
λ(1− x)

)
− 1
]

× 2
η(1− x)2 φ

(
x

η(1− x)

)
dx

= 2
∫ 1

0

2
η(1− x)2 φ

(
x

η(1− x)

)
×Φ

(
x

λ(1− x)

)
dx− 1

= 2
∫ ∞

0
2φ(u)Φ

( η

λ
u
)

du− 1

=
2
π

arctan
( η

λ

)
.



Symmetry 2022, 14, 837 5 of 17

Since η ≥ λ (η ≤ λ) then P(Y > X) ≥ 0.5 (P(Y > X) ≤ 0.5). We can note that
P(Y > X) can be computed by Equation (5) when η and λ are known. We then focus on
estimating η and λ.

3.1. Maximum Likelihood Estimation of R

Before we move on to calculate the maximum likelihood estimation of R, some results
are necessary.

Lemma 1. If X ∼ UHN(η) then X
1−X ∼ HN(η).

Proof of Lemma 1. See [1].

Corollary 1. If X
1−X ∼ HN(η) then 1

η2

(
X

1−X

)2
∼ χ2

(1), where χ2
(1) denotes the chi-squared

distribution with 1 degree of freedom.

Proof of Corollary 1. Let Z = 1
η2

(
X

1−X

)2

P(Z ≤ z) = P

((
X

1− X

)2
≤ η2z

)
= P

(
X

1− X
≤ η
√

z
)

= 2Φ(
√

z)− 1.

The derivative of P(Z ≤ z) gives the PDF of χ2
(1).

Corollary 2. If Ui =
Xi

1−Xi
∼ HN(η), i = 1, . . . , n, and Vj =

Yj
1−Yj

∼ HN(λ), j = 1, . . . , m,
with Ui independent of Vi, then

1. ∑n
i=1

(
Ui
η

)2
∼ χ2

(n) and ∑m
j=1

(Vj
λ

)2
∼ χ2

(m)

2. E(η̂2) = η2 and E(λ̂2) = λ2

3.
(

η̂

λ̂

)2(
λ
η

)2
∼ F(n,m)

4. E
(

η̂2

λ̂2

)
= m

m−2

(
η2

λ2

)
, m > 2.

Now, suppose (X1, X2, . . . , Xn)′ is a random sample of size n from UHN(η) and
(Y1, Y2, . . . , Ym)′ is a independent random sample of size m from UHN(λ) with η > 0 and
λ > 0. The log-likelihood is given by

l(η, λ) =
n

∑
i=1

log fX(xi; η) +
n

∑
j=1

log fY(yj; λ)

= −n log η −m log λ− 2
n

∑
i=1

log(1− xi)

− 2
m

∑
j=1

log(1− yj)−
1

2η2

n

∑
i=1

(
xi

1− xi

)2

− 1
2λ2

m

∑
j=1

(
yj

1− yj

)2

.
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The maximum likelihood estimators (MLEs) η̂ and λ̂ of η and λ, respectively, are the
solutions of the following system of linear equations:

∂l(η, λ)

∂η
=
−n
η

+
1
η3

n

∑
i=1

(
xi

1− xi

)2
= 0

∂l(η, λ)

∂λ
=
−m

λ
+

1
λ3

m

∑
j=1

(
yj

1− yj

)2

= 0.

The solution to the system of equations is

η̂ =

{
1
n

n

∑
i=1

(
xi

1− xi

)2
}1/2

(6)

λ̂ =

 1
m

m

∑
j=1

(
yj

1− yj

)2


1/2

. (7)

Therefore, under the invariance property of the MLE [12] and Equation (5), the MLE
of R becomes

R̂ =
2
π

arctan
(

η̂

λ̂

)
. (8)

Corollary 3. If Ui =
Xi

1−Xi
∼ HN(η), i = 1, . . . , n, and Vj =

Yj
1−Yj

∼ HN(λ), j = 1, . . . , m,
with Ui independent of Vi, then

1. χη =
√

n
η η̂ ∼ χ(n), then E(χη) =

√
2 Γ((n+1)/2)

Γ(n/2) and Var(χη) = n−E2(χη).

2. χλ =
√

m
λ λ̂ ∼ χ(m), then E(χλ) =

√
2 Γ((m+1)/2)

Γ(m/2) and Var(χλ) = m−E2(χλ),

where χ(s) denotes the chi-distribution with s degrees of freedom.

Remark 1. From Corollary 3 we have E(η̂) = η√
n

√
2Γ((n+1)/2)

Γ(n/2) and E(λ̂) = λ√
m

√
2Γ((m+1)/2)

Γ(m/2) .

Therefore, both η̂ and λ̂ are biased estimators of η and λ, respectively.

3.2. Confidence Intervals for η and λ

Let X1, . . . , Xn and Y1, . . . , Ym be random samples from UHN(η) and UHN(λ), re-
spectively. In addition, let the two samples be independent. From Corollary 3, we have
χ2

η = n
η2 η̂2 ∼ χ2

(n) and χ2
λ = m

λ2 λ̂2 ∼ χ2
(m). Taking χ2

η and χ2
λ as two pivotal quantities, the

100(1− α)% confidence intervals for η and λ are given by

(
η̂
√

n
χ2
(1−α/2,n)

, η̂
√

n
χ2
(α/2,n)

)
and(

λ̂
√

m
χ2
(1−α/2,m)

, λ̂
√

m
χ2
(α/2,m)

)
, respectively, where χ2

(α/2,a) and χ2
(1−α/2,a) are the lower and

upper (α/2)th percentiles of a chi-square distribution with a degrees of freedom.

3.3. Exact PDF for R

Lemma 2. Let W ∼ F(n,m) then the PDF of Z = η̂/λ̂ is given by

fZ(z; n, m, η, λ) = 2
λ2

η2 z fW

(
λ2

η2 z2
)

= 2
( n

m
λ2

η2 )
n
2

B( n
2 , m

2 )

zn−1

(1 + n
m

λ2

η2 z2)
n
2 +

m
2

, (9)
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for 0 < z < ∞, where n, m > 0, η, λ > 0 and B(n/2, m/2) = Γ(n/2)Γ(m/2)/Γ((n + m)/2).

Proof. Using the Corollary 2, let W = Z2
(

λ
η

)2
∼ F(n,m) then

P(Z ≤ z) = P
(

ηW1/2 ≤ λz
)
= P

(
W ≤ λ2

η2 z2
)
= FW

(
λ2

η2 z2
)

The derivative of P(Z ≤ z) gives the PDF in Equation (9).

Remark 2. Note that the random variable η̂

λ̂
is a ratio of independent generalized gamma random

variables, since we can write η̂

λ̂
= Z1

Z2
with Z1 ∼ GΓ(2, n, η

√
2/n) and Z2 ∼ GΓ(2, m, λ

√
2/m),

where GΓ(p, d, a) denotes a generalized gamma distribution. Following [13] the ratio of independent
generalized gamma random variables has a generalized F distribution.

Proposition 1. A random variable R follows a fR distribution, denoted as R ∼ fR(η, λ, n, m), if
its PDF is given by

fR(r; η, λ, n, m) =
π
(

n
m

λ2

η2

) n
2

B
( n

2 , m
2
)

×
sec2(π

2 r)(tan(π
2 r))n−1(

1 + n
m

λ2

η2 tan2(π
2 r)
) n+m

2
, (10)

for 0 < r < 1, where η, λ > 0 and n, m > 0.

Proof of Proposition 1. Using Lemma 2 and Equation (8) we have the result.

With a little algebraic handling and the help of Maple or Mathematica software, it can
be proved that the expectation of R is given by

E(R) =
π csc(π

2 n)
Γ( n

2 )Γ(1−
n
2 )
− 2

n

(
n
m

λ2

η2

) n
2 sec(π

2 n)
B( n

2 , m
2 )

× 2F1

([
n
2

,
n + m

2

]
,
[
1 +

n
2

]
,

n
m

λ2

η2

)

− 2
π

(
n
m

λ2

η2

) 1
2 Γ( n−1

2 )Γ(m+1
2 )

Γ( n
2 )Γ(

m
2 )

× 3F2

([
1
2

, 1,
m + 1

2

]
,
[

3
2

,
3− n

2

]
,

n
m

λ2

η2

)
,

where pFq is the hypergeometric function such that

pFq([a1, ..., ap], [b1, ..., bq], z) =
∞

∑
k=0

(a1)k...(ap)k

(b1)k...(bq)k

zk

k!

and (a)k is the Pochhammer symbol or ascending factorial. It is defined by (a)0 = 1 for
k = 0, and by (a)k = a(a + 1)...(a + k − 1) for k ≥ 1. However, for all integer k, we
write simply

(a)k =
Γ(a + k)

Γ(a)
.

We may generate values of R using different procedures. Next, we describe Algorithms 1–3.
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Algorithm 1: Algorithm to generate observations from R ∼ fR(η, λ, n, m).
Require Initialize the algorithm fixing η, λ, n and m
1. Generate Z1 from Γ(n/2, 2η2/n)
2. Generate Z2 from Γ(m/2, 2λ2/m)
3. Compute

R =
2
π

arctan

(√
Z1

Z2

)
.

4. Repeat steps 1 to 3 N times to get a sample of size N
5. return (R1, . . . , RN)

′.

Algorithm 2: Algorithm to generate observations from R ∼ fR(η, λ, n, m).
Require Initialize the algorithm fixing η, λ, n and m
1. Generate Z1 from χ2

(n)
2. Generate Z2 from χ2

(m)

3. Compute

R =
2
π

arctan

(
η

λ

√
m
n

Z1

Z2

)
.

4. Repeat steps 1 to 3 N times to get a sample of size N
5. return (R1, . . . , RN)

′.

Algorithm 3: Algorithm to generate observations from R ∼ fR(η, λ, n, m).
Require Initialize the algorithm fixing η, λ, n and m
1. Generate F from F(n,m)

2. Compute

R =
2
π

arctan
( η

λ

√
F
)

.

3. Repeat steps 1 and 2 N times to get a sample of size N
4. return (R1, . . . , RN)

′.

4. Interval Estimation of R

In this section, we consider the interval estimation of R based on exact, asymptotic
and bootstrap methods.

4.1. Exact Confidence Interval

Let us assume that X ∼ UHN(η) and Y ∼ UHN(λ), and we have a sample X1, . . . , Xn
from the distribution of X and a sample Y1, . . . , Ym from the distribution of Y. In addition,

let the two samples be independent. From Corollary 1, we have F = λ2

η2
η̂2

λ̂2 ∼ F(n,m) then

F? = η2

λ2
λ̂2

η̂2 ∼ F(m,n). Taking F? as a pivotal quantity, a 100(1− α)% confidence interval for
R is given by (

2
π

arctan
(

η̂

λ̂
F1/2
(α/2,m,n)

)
,

2
π

arctan
(

η̂

λ̂
F1/2
(1−α/2,m,n)

))
, (11)

where F(α/2,m,n) and F(1−α/2,m,n) denote, respectively, the lower and upper (α/2)th per-
centiles of F distribution with m and n degrees of freedom.
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4.2. Asymptotic Distribution and Confidence Interval

In this subsection, at first, we compute the asymptotic distribution of θ̂ = (η̂, λ̂) and
after this, we study the asymptotic distribution of R̂. From the asymptotic distribution of R̂,
we get the asymptotic confidence interval of R.

Let J(θ) = (Jij(θ), i, j = 1, 2) be the expected Fisher’s information matrix of θ = (η, λ).
The elements of the expected Fisher’s information matrix are

J11 = E
(
−∂2l(η, λ)

∂η2

)
=

2n
η2

J22 = E
(
−∂2l(η, λ)

∂λ2

)
=

2m
λ2

J21 = J12 = 0.

Under some regularity conditions, we have[√
n(η̂ − η)√
m(λ̂− λ)

]
d→ N2

([
0
0

]
,

[
η2

2 0
0 λ2

2

])
.

The point estimator of R is R̂ = R(η̂, λ̂). We obtain the asymptotic confidence interval
for R following this procedure (see [14])

d1(η, λ) =
∂R
∂η

=
2λ

π(η2 + λ2)
, and

d2(η, λ) =
∂R
∂λ

= − 2η

π(η2 + λ2)
.

This gives

Var(R̂) = Var(η̂)d2
1(η, λ) + Var(λ̂)d2

2(η, λ)

=
2η2λ2

π2(η2 + λ2)2

[
1
n
+

1
m

]
.

Thus, we obtain the following result

ZR =
R̂− R

√
2η̂λ̂

π(η̂2+λ̂2)

[
1
n + 1

m

]1/2
d→ N(0, 1).

Hence, the asymptotic 100(1− α)% confidence interval for R is given by

R̂± Z(1−α/2)

√
2η̂λ̂

π(η̂2 + λ̂2)

[
1
n
+

1
m

]1/2
, (12)

where Z(1−α/2) is the (1− α/2)th percentile of the standard normal distribution and R̂ is
given by (8).

4.3. Bootstrap Confidence Intervals

MLE is a typical statistical method. However, in many practical situations since the
sample size is not large, so the large-sample based inference such as MLE-based asymptotic
estimates may not be suitable and may even be misleading sometimes. In this subsection,
parametric and nonparametric bootstrap confidence intervals are constructed for unknown
parameters; see [15,16] for details.
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4.3.1. Parametric Bootstrap Sampling Algorithm

Next, to generate parametric bootstrap samples, as suggested by [16], of η, λ and R,
from the given independent random samples, we use the following method X1, . . . , Xn and
Y1, . . . , Ym obtained from UHN(η) and UHN(λ), respectively.

Stage 1 Compute MLE of η and λ, say η̂ and λ̂, based on data X = (X1, . . . , Xn)′ and
Y = (Y1, . . . , Ym)′.
Stage 2 Based on η̂ and λ̂, generates samples X? = (X?

1 , . . . , X?
n)
′ from UHN(η̂) and

Y? = (Y?
1 , . . . , Y?

m)
′ from UHN(λ̂) with

X?
i =

η̂ Φ−1
(

Ui1+1
2

)
1 + η̂ Φ−1

(
Ui1+1

2

)
Y?

i =
λ̂ Φ−1

(
Ui2+1

2

)
1 + λ̂ Φ−1

(
Ui2+1

2

)
where for j = 1, 2, Uij is generated independent observations from the uniform
distribution U(0, 1) of sample size n and m, respectively.
Stage 3 Compute MLE of η and λ, say η̂? and λ̂?, based on data X? and Y?, respectively.
Stage 4 Compute MLE of R, say R̂?, based on η̂? and λ̂?.
Stage 5 Repeat Steps 2 to 4 B times and generate B bootstrap estimates of η, λ and R.

4.3.2. Nonparametric Bootstrap Sampling Algorithm

Next, we describe the steps to obtain nonparametric bootstrap samples of η, λ and R.

Stage 1 Draw random samples with replacement X? = (X?
1 , . . . , X?

n)
′ and

Y? = (Y?
1 , . . . , Y?

m)
′ from the original data X = (X1, . . . , Xn)′ and Y = (Y1, . . . , Ym)′,

respectively.
Stage 2 Compute the bootstrap estimates η and λ, say η̂? and λ̂?, based on data X?

and Y?, respectively.
Stage 3 Using η̂? and λ̂? and Equation (8), compute the bootstrap estimate of R, say R̂?.
Stage 4 Repeat Steps 1 and 3 B times and generate B bootstrap estimates of η, λ and R.

Now, we propose different types of bootstrap confidence intervals for the parameter R
using the parametric and nonparametric bootstrap samples. Identically to R, we compute
the confidence intervals of η and λ. For b = 1, . . . , B, we denote {R̂?

b} the set of bootstrap
estimates of R. We also denote the MLE obtained from the original real dataset as R̂ and
we assumed that the confidence level is 100(1− α)%.

Bootstrap-t confidence interval. The bootstrap-t confidence interval reproduces the way
of constructing the standard-t confidence interval. The t-like critical value and the standard
error of R̂ are computed based on the bootstrap estimates {R̂?

b}. We obtain the bootstrap
standard error as follows

se?(R̂) =

√
∑B

b=1(R̂?
b − R̂?)2

B
, where R̂? =

B

∑
b=1

R̂?
b

B
.

To find the t-like critical value, denoted by t̂?α, we standardize {R̂?
b} (b = 1, . . . , B)

by using

z?b(R) =
R̂?

b − R̂

se?(R̂)
.

Then, we obtain t̂?α from the bootstrap estimate:

#
{

z?b(R) ≤ t̂?α
}

B
= α.



Symmetry 2022, 14, 837 11 of 17

Then, we obtain the 100(1− α)% bootstrap-t confidence interval(
R̂− t̂?(1−α/2) · se?(R̂), R̂ + t̂?(α/2) · se?(R̂)

)
.

Bootstrap percentile confidence interval. To obtain bootstrap percentile confidence in-
terval [17] of R, we simply find the α/2 and 1− α/2 percentiles, denoted by R̂?(α/2) and
R̂?(1−α/2), based on the set of bootstrap estimates of R. The simple 100(1− α)% bootstrap
percentile confidence interval is defined to be (R̂?(α/2), R̂?(1−α/2)).

Bias-Corrected and Accelerated Bootstrap (BCa) Method. To overcome the overcoverage
issues in percentile bootstrap CIs, the BCa method corrects for both bias and skewness
of the bootstrap parameter estimates by incorporating a bias-correction factor and an
acceleration factor (see [17,18]). The bias-correction factor z0 is estimated as the proportion
of the bootstrap estimates less than the original parameter estimate θ̂,

z0 = Φ−1

(
#{R̂? − R̂}

B

)

where Φ−1 is the inverse CDF of a standard normal distribution. We can estimate the accel-
eration factor a through jackknife or leave-one-out resampling, which involves generating
n replicates of the original sample, where n is the number of observations in the sample.
The first jackknife replicate is obtained by leaving out the first case (i = 1) of the original
sample, the second by leaving out the second case (i = 2), and so on, until n samples of
size n− 1 are obtained. For each of the jackknife resamples, R̂(−i) is obtained. The average
of these estimates is,

R̂(·) =
1
n

n

∑
i=1

R̂(i).

Then, the acceleration factor â is calculated as follows

â =
∑n

i=1(R̂(·) − R̂(i))
3

6
{

∑n
i=1(R̂(·) − R̂(i))

2
}3/2 .

With the values of z0 and â, the values a1 and a2 are calculated

a1 = Φ

(
z0 +

z0 + z(α/2)

1 + â
(
z0 + z(α/2)

))

a2 = Φ

(
z0 +

z0 + z(1−α/2)

1 + â
(
z0 + z(1−α/2)

)).

Here, z(α/2) is the 100(α/2)th percentile point of a standard normal distribution. Then,
a 100(1 − α)% BCa confidence interval of R is given by

(
R̂?(a1), R̂?(a2)

)
. For more on

different types of confidence intervals, see [19], among others.

5. Simulation Study

In this section, we present a small Monte Carlo simulation study in order to illustrate
the behavior of different estimates for different sample sizes. The simulation studies were
conducted using 10,000 samples from UHN(η) and UHN(λ). The sample sizes were
combinations of n and m, with n = 15, 20, 30, 50, 100 and m = 15, 20, 30, 50, 100. In all cases,
we take η = 0.3 and λ = 0.2, with those values we get R = 0.63. In [1], the reader can find
a simulation study for different values of the shape parameter including values greater
than 1. From the sample, we estimate η and λ using MLE Equations (6) and (7). Once η and
λ are estimated, we compute the MLE of R using (8). We also compute the average biases
and mean squared errors (MSEs) using MLE and parametric and nonparametric bootstrap
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estimates (Par.Boot/Npar.Boot) of η, λ and R in Table 1 over the 10,000 replications. We
obtain the 95% confidence intervals based on the exact and asymptotic distributions of η, λ
and R. We also obtain the 95% confidence intervals based on parametric and nonparametric
bootstrap methods for η, λ and R. Based on exact and asymptotic distribution of η, λ
and R, and parametric and nonparametric bootstrap methods of η, λ and R, we reported
the average confidence lengths and coverage probabilities for 95% confidence intervals
in Table 2. For the bootstrap methods, estimates and confidence interval was computed
based on B = 500 replications. Some of the points are quite clear from this simulation.
Even for small sample sizes, the performance of the MLEs and bootstrap methods are quite
satisfactory in terms of biases and MSEs. In addition for all methods when sample sizes n,
m increases then the average bias and MSEs decreases. It verifies the consistency property
of the MLE of η, λ and R. It is observed that the bootstrap methods behave almost in a
similar way both with respect to biases and MSEs.

Table 1. Average biases and MSE values (within bracket) for parameters at η = 0.3, λ = 0.2 and
R = 0.63.

(n, m) Method η λ R

(15, 20) MLE −0.0044(0.0029) −0.0025(0.0010) −0.0052(0.0051)
Npar.Boot −0.0086(0.0029) −0.0046(0.0010) −0.0098(0.0051)
Par.Boot −0.0093(0.0029) −0.0049(0.0010) −0.0105(0.0050)

(20, 15) MLE −0.0039(0.0022) −0.0029(0.0013) −0.0014(0.0049)
Npar.Boot −0.0072(0.0022) −0.0057(0.0013) −0.0022(0.0048)
Par.Boot −0.0076(0.0022) −0.0062(0.0013) −0.0021(0.0047)

(20, 20) MLE −0.0032(0.0022) −0.0029(0.0010) −0.0017(0.0044)
Npar.Boot −0.0065(0.0022) −0.0051(0.0010) −0.0040(0.0043)
Par.Boot −0.0069(0.0022) −0.0053(0.0010) −0.0043(0.0043)

(20, 30) MLE −0.0033(0.0022) −0.0017(0.0007) −0.0042(0.0038)
Npar.Boot −0.0065(0.0022) −0.0032(0.0007) −0.0081(0.0037)
Par.Boot −0.0070(0.0022) −0.0034(0.0007) −0.0088(0.0037)

(30, 20) MLE −0.0020(0.0015) −0.0021(0.0010) 3.6× 10−5(0.0036)
Npar.Boot −0.0043(0.0015) −0.0043(0.0010) −3.2× 10−6(0.0035)
Par.Boot −0.0045(0.0015) −0.0045(0.0010) 0.0002(0.0035)

(30, 30) MLE −0.0024(0.0015) −0.0016(0.0007) −0.0019(0.0030)
Npar.Boot −0.0047(0.0015) −0.0031(0.0007) −0.0036(0.0030)
Par.Boot −0.0049(0.0015) −0.0033(0.0007) −0.0036(0.0030)

(30, 50) MLE −0.0027(0.0015) −0.0011(0.0004) −0.0036(0.0024)
Npar.Boot −0.0050(0.0015) −0.0021(0.0004) −0.0066(0.0024)
Par.Boot −0.0052(0.0015) −0.0021(0.0004) −0.0069(0.0024)

(50, 30) MLE −0.0016(0.0009) −0.0013(0.0007) −0.0002(0.0022)
Npar.Boot −0.0030(0.0009) −0.0028(0.0007) 0.0002(0.0022)
Par.Boot −0.0031(0.0009) −0.0029(0.0007) 0.0003(0.0022)

(50, 50) MLE −0.0011(0.0009) −0.0010(0.0004) −0.0007(0.0018)
Npar.Boot −0.0025(0.0009) −0.0019(0.0004) −0.0018(0.0017)
Par.Boot −0.0026(0.0009) −0.0020(0.0004) −0.0018(0.0017)

(100, 100) MLE −0.0005(0.0004) −0.0002(0.0002) −0.0007(0.0009)
Npar.Boot −0.0013(0.0004) −0.0007(0.0002) −0.0013(0.0009)
Par.Boot −0.0013(0.0004) −0.0007(0.0002) −0.0013(0.0009)
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Table 2. Average confidence length and coverage probabilities of confidence intervals using exact,
asymptotic and various parametric and non-parametric bootstrap methods.

(n, m) Method η λ R

(15, 20) Exact 0.2383(0.950) 0.1163(0.943) 0.2766(0.944)
Asympt. 0.2108(0.944) 0.1225(0.934) 0.2732(0.941)
Non-par t 0.2402(0.949) 0.1187(0.941) 0.2768(0.942)

Boot q 0.1671(0.945) 0.1101(0.942) 0.2769(0.943)
CIs BCa 0.1720(0.943) 0.1105(0.943) 0.2744(0.942)

Par t 0.2394(0.942) 0.1174(0.943) 0.2801(0.945)
Boot q 0.2384(0.951) 0.1161(0.942) 0.2765(0.943)
CIs BCa 0.2382(0.949) 0.1164(0.942) 0.2750(0.947)

(20, 15) Exact 0.2018(0.947) 0.1838(0.943) 0.2719(0.951)
Asympt. 0.1842(0.946) 0.1408(0.941) 0.2713(0.947)
Non-par t 0.2201(0.950) 0.1123(0.945) 0.2718(0.948)

Boot q 0.1834(0.949) 0.1089(0.946) 0.2617(0.947)
CIs BCa 0.1923(0.948) 0.1166(0.947) 0.2742(0.953)

Par t 0.2386(0.947) 0.1812(0.947) 0.2760(0.949)
Boot q 0.2381(0.948) 0.1705(0.946) 0.2748(0.951)
CIs BCa 0.2385(0.949) 0.1877(0.945) 0.2742(0.958)

(20, 20) Exact 0.2013(0.945) 0.1349(0.952) 0.2542(0.947)
Asympt. 0.1838(0.942) 0.1223(0.949) 0.2527(0.942)
Non-par t 0.2206(0.949) 0.1125(0.947) 0.2721(0.943)

Boot q 0.1832(0.949) 0.1087(0.947) 0.2611(0.948)
CIs BCa 0.1920(0.947) 0.1169(0.948) 0.2557(0.946)

Par t 0.2249(0.948) 0.1311(0.948) 0.2758(0.947)
Boot q 0.2245(0.947) 0.1201(0.949) 0.2751(0.946)
CIs BCa 0.2249(0.948) 0.1308(0.947) 0.2556(0.945)

(20, 30) Exact 0.2017(0.947) 0.1271(0.943) 0.2346(0.945)
Asympt. 0.1841(0.946) 0.1004(0.944) 0.2320(0.944)
Non-par t 0.1918(0.949) 0.1169(0.945) 0.2232(0.945)

Boot q 0.1799(0.948) 0.1001(0.946) 0.2311(0.946)
CIs BCa 0.1801(0.949) 0.1007(0.947) 0.2301(0.951)

Par t 0.2116(0.946) 0.1315(0.947) 0.2351(0.946)
Boot q 0.2011(0.947) 0.1316(0.948) 0.2313(0.947)
CIs BCa 0.2007(0.948) 0.1318(0.949) 0.2332(0.955)

(30, 20) Exact 0.1596(0.951) 0.1643(0.941) 0.2311(0.953)
Asympt. 0.1503(0.945) 0.1224(0.942) 0.2311(0.949)
Non-par t 0.1501(0.949) 0.1568(0.946) 0.2278(0.945)

Boot q 0.1424(0.947) 0.1502(0.947) 0.2199(0.946)
CIs BCa 0.1425(0.947) 0.1507(0.948) 0.2121(0.946)

Par t 0.1602(0.947) 0.1677(0.943) 0.2401(0.948)
Boot q 0.1599(0.948) 0.1601(0.947) 0.2397(0.946)
CIs BCa 0.1566(0.947) 0.1609(0.947) 0.2320(0.945)

(30, 30) Exact 0.1597(0.949) 0.1065(0.952) 0.2086(0.948)
Asympt. 0.1504(0.942) 0.1003(0.943) 0.2078(0.946)
Non-par t 0.1495(0.951) 0.1044(0.953) 0.2084(0.951)

Boot q 0.1485(0.948) 0.0979(0.951) 0.1999(0.947)
CIs BCa 0.1486(0.945) 0.0977(0.949) 0.2082(0.943)
Par t 0.1604(0.949) 0.1071(0.950) 0.2117(0.948)

Boot q 0.1601(0.948) 0.1063(0.951) 0.2085(0.945)
CIs BCa 0.1598(0.948) 0.1065(0.948) 0.2080(0.944)
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Table 2. Cont.

(n, m) Method η λ R

(30, 50) Exact 0.1604(0.949) 0.1026(0.935) 0.1881(0.949)
Asympt. 0.1510(0.934) 0.1080(0.938) 0.1865(0.945)
Non-par t 0.1485(0.950) 0.0998(0.938) 0.1856(0.946)

Boot q 0.1449(0.948) 0.0904(0.937) 0.1855(0.947)
CIs BCa 0.1451(0.951) 0.0911(0.938) 0.1870(0.945)

Par t 0.1649(0.946) 0.1087(0.939) 0.1882(0.942)
Boot q 0.1601(0.949) 0.1023(0.940) 0.1876(0.944)
CIs BCa 0.1604(0.947) 0.1024(0.941) 0.1875(0.935)

(50, 30) Exact 0.1211(0.951) 0.1372(0.937) 0.1855(0.951)
Asympt. 0.1169(0.941) 0.1000(0.932) 0.1856(0.940)
Non-par t 0.1171(0.943) 0.0989(0.942) 0.1823(0.942)

Boot q 0.1078(0.948) 0.0942(0.940) 0.1799(0.946)
CIs BCa 0.1081(0.947) 0.0943(0.941) 0.1854(0.946)

Par t 0.1285(0.946) 0.1389(0.945) 0.1899(0.948)
Boot q 0.1203(0.945) 0.1367(0.946) 0.1862(0.945)
CIs BCa 0.1213(0.949) 0.1369(0.945) 0.1860(0.944)

(50, 50) Exact 0.1215(0.951) 0.0810(0.954) 0.1621(0.950)
Asympt. 0.1172(0.940) 0.0781(0.942) 0.1617(0.944)
Non-par t 0.1149(0.944) 0.0751(0.945) 0.1602(0.948)

Boot q 0.1102(0.943) 0.0733(0.943) 0.1599(0.950)
CIs BCa 0.1101(0.942) 0.0731(0.944) 0.1625(0.949)

Par t 0.1201(0.942) 0.0791(0.942) 0.1672(0.947)
Boot q 0.1172(0.941) 0.0773(0.941) 0.1624(0.943)
CIs BCa 0.1199(0.941) 0.0785(0.940) 0.1623(0.950)

(100, 100) Exact 0.0845(0.948) 0.0563(0.946) 0.1149(0.943)
Asympt. 0.0830(0.945) 0.0553(0.944) 0.1147(0.942)
Non-par t 0.0865(0.942) 0.0571(0.943) 0.1153(0.944)

Boot q 0.0818(0.944) 0.0498(0.947) 0.1001(0.944)
CIs BCa 0.0830(0.943) 0.5341(0.941) 0.1154(0.953)

Par t 0.0838(0.942) 0.0862(0.951) 0.1162(0.945)
Boot q 0.0834(0.941) 0.0856(0.952) 0.1049(0.943)
CIs BCa 0.0836(0.943) 0.0861(0.951) 0.1150(0.954)

We also compute the confidence intervals and the corresponding coverage probabilities
by different methods. For R, the exact confidence interval was computed using (11), the
asymptotic confidence interval was computed using (12). For η and λ, we compute the
confidence intervals using the formulae of Section 3.2 for the exact confidence interval, for
the asymptotic confidence intervals we use the formulae in [1]. For the bootstrap methods,
the confidence intervals are computed using the formulae of Section 4.3. In this case, all the
eight confidence intervals behave very similarly in the sense of average confidence lengths
and coverage probabilities.

The confidence intervals based on asymptotic confidence interval provides the shortest
length in comparison with the exact confidence interval, whereas in coverage probability,
using exact confidence interval shows better performance than the asymptotic confidence
interval. On the contrary, among the bootstrap methods considered here, bootstrap-p
method performed well as compared with bootstrap-t and bootstrap-BCa methods.

6. An Illustrative Example

Cutting processes are those where a great enough force is applied to a piece of raw
metal, usually sheet metal to cause the material to fail. One of the most common cutting pro-
cesses is shearing and it is performed by applying a shearing force on the metal sheets [20].
In this section, we propose the use of our procedure on two real-life data sets to illustrate
the implementation of our methods. The two data sets were firstly introduced and studied
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by [21] for burr measurements on the iron sheets. For the first data set of 50 observations
on burr (in the unit of millimeter), the hole diameter is 12 mm and the sheet thickness is
3.15 mm. We shall refer to this as data set 1 and is given in Table 3. For the second data set
of 50 observations, hole diameter and sheet thickness are 9 mm and 2 mm, respectively. We
shall refer to this as data set 2 and is given in Table 4. Hole diameter readings are taken on
jobs with respect to one hole, selected and fixed as per a predetermined orientation. The
two data sets relate to two different machines under comparison [21]. One may see [21]
about the technical details of the data sets’ measurements.

Table 3. Data set 1.

0.04, 0.02, 0.06, 0.12, 0.14, 0.08, 0.22, 0.12, 0.08, 0.26,
0.24, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.28, 0.14, 0.16,
0.24, 0.22, 0.12, 0.18, 0.24, 0.32, 0.16, 0.14, 0.08, 0.16,
0.24, 0.16, 0.32, 0.18, 0.24, 0.22, 0.16, 0.12, 0.24, 0.06,
0.02, 0.18, 0.22, 0.14, 0.06, 0.04, 0.14, 0.26, 0.18, 0.16

Table 4. Data set 2.

0.06, 0.12, 0.14, 0.04, 0.14, 0.16, 0.08, 0.26, 0.32, 0.22,
0.16, 0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.22, 0.16,
0.12, 0.24, 0.06, 0.02, 0.18, 0.22, 0.14, 0.02, 0.18, 0.22,
0.14, 0.06, 0.04, 0.14, 0.22, 0.14, 0.06, 0.04, 0.16, 0.24,
0.16, 0.32, 0.18, 0.24, 0.22, 0.04, 0.14, 0.26, 0.18, 0.16

First of all, we conduct a one sample Kolmogorov–Smirnov (K-S) goodness-of-fit test
on UHN distribution based on the two data sets. We report the MLEs and estimates using
parametric and nonparametric bootstrap methods and its corresponding standard errors
(S.E.) of model parameters as well as the p-value (pval) and the test statistic (D) of K-S
goodness-of-fit test for both data sets (K-Si, for data set i = 1, 2) in Table 5. The K-S statistic
(based on the MLE of the parameter η̂ = 0.238) is 0.080 and the corresponding p-value
is 0.726 for data set 1. The K-S statistic (based on the MLE of the parameter λ̂ = 0.219)
is 0.1 and the corresponding p-value is 0.607 for data set 2. Therefore, the two data sets
are reasonably fitted for the unit-half-normal distribution. Point estimates of η, λ and
R are similar in all methods considered, but the standard errors of the nonparametric
bootstrap estimates are smaller than the MLEs and the parametric bootstrap estimates. The
confidence intervals for η, λ and R at 95% confidence level are reported in Table 6. Noticed
that length of exact confidence interval is larger than that of asymptotic as we expected. In
addition, the confidence intervals of the parametric bootstrap methods are larger than that
of nonparametric bootstrap methods.

Table 5. Maximum likelihood (MLE), parametric (Par.Boot) and non-parametric bootstrap (Npar.Boot)
estimates (s.e.), statistics (D) and the p-values (pval) of K-S test of goodness-of-fit of the two distribu-
tions in both data sets.

η̂ λ̂ R̂

MLE 0.238(0.024) 0.219(0.022) 0.526(0.045)
Npar.Boot 0.237(0.017) 0.219(0.016) 0.526(0.031)
Par.Boot 0.235(0.024) 0.218(0.023) 0.524(0.045)

K-S1: D = 0.080 pval = 0.726
K-S2: D = 0.100 pval = 0.607
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Table 6. The exact, asymptotic and various parametric and non-parametric bootstrap confidence
intervals of η, λ and R at 95% confidence level.

η λ R

Exact (0.199, 0.296) (0.184, 0.273) (0.437, 0.613)
Asympt. (0.191, 0.285) (0.176, 0.262) (0.438, 0.614)
Non-par t (0.205, 0.277) (0.190, 0.257) (0.455, 0.586)

Boot q (0.204, 0.271) (0.188, 0.250) (0.463, 0.586)
CIs BCa (0.207, 0.274) (0.191, 0.254) (0.460, 0.584)

Par t (0.196, 0.302) (0.183, 0.276) (0.425, 0.628)
Boot q (0.188, 0.287) (0.175, 0.262) (0.431, 0.615)
CIs BCa (0.199, 0.296) (0.184, 0.273) (0.437, 0.612)

7. Concluding Remarks

In this work, we study different estimators of R = P(Y < X) considering that both
random variables X and Y follow a unit-half-normal distribution, with different shape
parameters. A MLE procedure to obtain the MLEs of the unknown shape parameters
is presented. Moreover, the MLE and the exact and asymptotic distribution of R are
deduced. This allows us to compute the exact and asymptotic confidence intervals (CI).
Additionally, based on parametric and nonparametric bootstrap methods, we are able
to compute estimates of R and its respective CI. The simulation study shows that the
performance of the MLEs, in terms of biases and MSEs, is quite satisfactory. We observe,
also, a decrease in the average bias and MSEs as the sample size increases. From the point
of view of biases and MSEs, we noticed similar performances using the MLEs and bootstrap
methods. We studied, using different methods, the CI and the corresponding coverage
percentages. We observe similar performances in terms of average confidence lengths
and coverage probabilities for all the eight CI consider in this work. Based on the CI of R
develop in this work, the best preference is using the nonparametric bootstrap method.

It was observed that the MLE of the shape parameter of the UHN distribution is biased.
Although, the MLE possesses a number of attractive limiting properties: asymptotically
unbiased, consistent, and asymptotically normal, many of these properties depend on
an extremely large sample sizes. Those properties, such as unbiasedness, may not be
valid for small or even moderate sample sizes, see [22], which are more practical in real
data applications. Some bias-corrected techniques for the MLEs are desired in practice,
especially when the sample size is small, see, for example, refs. [23–27] and references
therein. Bias correction is an important topic in the UHN distribution, but is outside the
scope of this article.
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