
����������
�������

Citation: Al-Shomrani, M.; Al-Suba,

N. A Generalization of Group-Graded

Modules. Symmetry 2022, 14, 835.

https://doi.org/10.3390/

sym14040835

Academic Editors: Alice Miller and

Evgeny Nikulchev

Received: 12 March 2022

Accepted: 14 April 2022

Published: 18 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Generalization of Group-Graded Modules
Mohammed Al-Shomrani 1,* and Najlaa Al-Subaie 2

1 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
2 Department of Mathematics, Taif University, Taif 26571, Saudi Arabia; n.njla@tu.edu.sa
* Correspondence: malshamrani@kau.edu.sa

Abstract: In this article, we generalize the concept of group-graded modules by introducing the
concept of G-weak graded R-modules, which are R-modules graded by a set G of left coset represen-
tatives, where R is a G-weak graded ring. Moreover, we prove some properties of these modules.
Finally, results related to G-weak graded fields and their vector spaces are deduced. Many consider-
able examples are provided with more emphasis on the symmetric group S3 and the dihedral group
D6, which gives the group of symmetries of a regular hexagon.
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1. Introduction

Rings and modules that can be graded by groups were intensively studied especially
in connection with Clifford’s theory; see [1–3].

Many results about group-graded rings and modules were generalized by using semi-
groups or monoids for grading instead of groups, leading to more general constructions, as
we can see in [4–8].

The group-graded fields and their graded vector spaces, as well as their properties
have been investigated by many mathematicians; see for example [9–11].

There are other generalizations of graded rings and modules in the literature, for ex-
ample the semi-graded rings and semi-graded modules (see [12]), which are justified by
considering the non-commutative algebraic geometry for quantum algebras.

Many ways have been used to investigate the properties of these rings and modules.
In [13], Cohen and Montgomery introduced an interesting way using duality theorems; see
also [14]. Moreover, some mathematicians introduced categorical methods to study these
graded rings such as the study of separable functors introduced in [15,16]. Most of these
methods have been introduced for the case when the grading group is finite. However,
more additional investigations have been performed considering the infinite case; see for
example [17].

In [18], Beggs considered a fixed set G and defined a binary operation “∗” on it, which
is not associative in a trivial way, though we can deduce the associativity by applying a
“cocycle” f . The elements of G are left coset representatives for a subgroup H of a finite
group X. It was shown that the results are not affected by the choice of the representatives.
These data were used to construct non-trivially associated tensor categories and non-
trivially associated modular categories (see [18,19]).

In [20], the concept of the rings that can be graded by groups and their modules was
generalized using the set G mentioned above. It was shown that many results related to
these graded rings and their modules could be carried on in the new setting. These induced
graded rings were given the name “G-weak graded rings”.

It is natural to ask if the properties of the original finite groups have an affect on the
induced graded rings and modules. However, this is still an active area for researchers.
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In [21,22], G-weak graded rings were deeply investigated and additional properties
were derived supported by many illustrative examples.

In this article, we discuss important properties of G-weak graded R-modules. Through-
out this article, many examples are provided, in particular a counter example showing that
there is a field having a non-homogeneous unit, although it is a non-trivially X-graded
field (X 6= Z). The symmetric group S3 and the dihedral group D6, which gives the group
of symmetries of a regular hexagon, are considered among these examples.

The importance of this work, besides using a set with a binary operation satisfying
specific properties for grading instead of using a group or even a semigroup, is associating
this grading with a factorization of a given group, which may lead to a quantization of the
classical results of group-graded modules.

As this work is based on [18], which considered X to be finite, and on [1], we assumed,
unless otherwise stated, that all groups are finite, the rings are unity, and the modules
are unital.

2. Preliminaries

In this section, we include the definition of the binary operation ∗, the cocycle f , and
the actions . and / that are used intensively in this work. For more explanation and related
results, the reader is referred to [18].

Definition 1 ([18]). Let s, t be elements in G. Then, f (s, t) in H and s ∗ t in G are determined by
st = f (s, t)(s ∗ t) in X. Furthermore, the action . : G×H → H and the coaction / : G×H → G

are determined by su = (s . u)(s / u), where s, s / u are elements in G and u, s . u are elements in
H. These factorizations are unique.

The binary operation “∗” ensures the right division property and the left identity for
each s ∈ G. In the case that e ∈ G, then eG = e.

In what follows, whenever G and H are mentioned, we mean the set and the subgroup
defined above.

3. The Category of G-Weak Graded Modules

Definition 2 ([20]). Let R be a G-weak graded ring. Then, a G-weak graded left R-module M is a
left R-module satisfying:

M =
⊕
s∈G

Ms (as abelian groups) (1)

and
Rs Mt ⊆ Ms∗t ∀ s, t ∈ G. (2)

If the relation (2) is replaced by

Rs Mt = Ms∗t ∀ s, t ∈ G, (3)

then M is termed a strongly (or a fully) G-weak graded left R-module.

Definition 3. The elements of ∪s∈GMs are termed weak graded or G-homogeneous elements of M.
A non-zero element m ∈ Ms is termed a G-homogeneous element of grade s, and we write 〈m〉 = s.

Remark 1. Every element m ∈ M has decomposition m = ∑s∈G ms, which is unique with
ms ∈ Ms , ∀s ∈ G. These {ms}s∈G are named the G-homogeneous components of m. It can be
noted that the sum is finite (i.e., almost all ms are zero).

G-GrR-Mod denotes the category of the class of G-weak graded left R-modules.
The morphisms in G-GrR-Mod are G-weak graded-preserving morphisms, i.e., if ϕ :
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M −→ N in G-GrR-Mod, then ϕ(m) ∈ Ns for all m ∈ Ms and s ∈ G, where M and N are
G-weak graded left R-modules. These morphisms are denoted by G-GrHomR(M, N).

Definition 4. Let M and N be two G-weak graded R-modules. Then, we define an additive
subgroup G-GrHomR(M, N)t of G-GrHomR(M, N), for t ∈ G, by

G−GrHomR(M, N)t = {φ ∈ G−GrHomR(M, N) : φ(Ms) ⊆ Ns∗t, for all s ∈ G}.

Proposition 1. G-GrHomR(M, N) is a subgroup of HomR(M, N) additively.

Proof. Let φ, ϕ ∈ G-GrHomR(M, N). Hence, for all s ∈ G, we have

φ(Ms) ⊆ Ns and ϕ(Ms) ⊆ Ns.

Thus,
(φ + ϕ)(Ms) = φ(Ms) + ϕ(Ms) ⊆ Ns + Ns = Ns.

Knowing that φ and ϕ are homomorphisms and that Ns is an additive abelian subgroup
of N completes the proof.

Theorem 1. Let M and N be G-weak graded left R-modules. Then,

G−GrHomR(M, N) =
⊕
s∈G

G−GrHomR(M, N)s ,

as additive subgroups.

Proof. Let ϕs ∈ G−GrHomR(M, N)s for s ∈ G s.t. all ϕs, except a finite number, are zero
maps, and let

∑
s∈G

ϕs = 0. (4)

Now, we show that ϕs is a zero map. By Definition 4, we have ϕs(m) ∈ Nt∗s for all
m ∈ Mt and an arbitrary fixed element t ∈ G. Hence, considering (4), we have:

( ∑
s∈G

ϕs)(m) = ∑
s∈G

ϕs(m) = 0N .

This is the unique expansion of 0N in the direct sum N =
⊕

s∈G Nt∗s or equivalently
N =

⊕
s∈G Ns. Thus, ϕs(m) = 0N for each s ∈ G, which means that ϕs is a zero map on

Mt for t ∈ G. Since t is an arbitrary element and M =
⊕

t∈G Mt, it follows that ϕs is a zero
map on M, which guarantees that the equality in the theorem is satisfied.

Proposition 2. Let eG be a two-sided identity in G. Then, the left multiplication by any weak
graded unit x ∈ Rs for any s ∈ G is an isomorphism in ReG -Mod. Moreover, xReG = Rs.

Proof. Since x is a unit, it immediately follows that the left multiplication by x is an
ReG -isomorphism of ReG onto xReG . Furthermore, [22], Theorem 4, yields

xReG ⊆ RsReG ⊆ Rs∗eG = Rs.

On the other hand,
Rs = xx−1Rs ⊆ xRsL Rs ⊆ xReG ,

which means Rs = xReG , as required.

Proposition 3. Let M be a G-weak graded left R-module. Then, Ms is a left ReG -submodule of M
for each s ∈ G.
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Proof. By Definition 2, Ms is an abelian subgroup of M for each s ∈ G. Furthermore,
by using relation (2) of Definition 2, we obtain ReG Ms ⊆ MeG∗s = Ms, which means that
Ms is a left ReG -module. Knowing that Ms ⊆ M completes the proof.

Definition 5. A non-empty subset N of a G-weak graded R-module M is termed a G-weak graded
submodule of M if N itself is a G-weak graded R-module.

Proposition 4. Let N be a non-trivial sub-module of a G-weak graded left R-module M. If N
contains all of its components that are G-homogeneous, then N is a G-weak graded sub-module.

Proof. Let n = ∑s∈G ns such that ns ∈ N for all n ∈ N, ns ∈ Ns, and s ∈ G. Now, we prove
that N =

⊕
s∈G Ns. It is clear that N = ∑s∈G Ns. Since N is a submodule of M =

⊕
s∈G Ms,

hence Ns = N ∩Ms for each s ∈ G. Furthermore, as M is a G-weak graded left R-module,
we obtain Ms

⋂
(∑t∈G Mt) = {0} for all s ∈ G with s 6= t. Thus, Ns

⋂
(∑t∈G Nt) = {0}.

Therefore, N =
⊕

s∈G Ns, as required.Next, to prove that RsNt ⊆ Ns∗t, let Nt = N ∩Mt.
Then, for s ∈ G, we have

RsNt = Rs(N ∩Mt) = RsN ∩ Rs Mt ⊆ N ∩ Rs Mt ⊆ N ∩Ms∗t = Ns∗t,

which completes the proof.

Proposition 5. If M is a G-weak graded R-module and N is a non-trivial G-weak graded sub-
module of M, then M/N is a G-weak graded R-module, where for each s ∈ G, we have

( M/ N )s = (Ms + N)/N = {m + N : m ∈ Ms},

for each s ∈ G.

Proof. First, for all m ∈ M, we have m = ∑s∈G ms, where ms ∈ Ms, which implies

m + N = ( ∑
s∈G

ms) + N = ∑
s∈G

(ms + N).

Hence,
M/N = ∑

s∈G
(M/N)s.

Suppose that
∑

s∈G
(ms + N) = 0 + N (5)

for ms ∈ Ms. We have to show that ms + N = 0 + N for all s ∈ G. From (5), clearly,
∑s∈G ms ∈ N. Since N is a G-weak graded submodule, then ms ∈ N for each ms. Therefore,
ms + N = 0 + N, ∀s ∈ G, as required. Thus,

M/N =
⊕
s∈G

(M/N)s.

Next, for the inclusion property, we have:

Rs(M/N)t = Rs(Mt + N)/N = (Rs Mt + N)/N ⊆ (Ms∗t + N)/N = (M/N)s∗t.

Therefore, M/N is a G-weak graded R-module, as required.

Example 1. Consider the ring R = M2(R). Let X = D6 = < x, y : x6 = y2 = 1, xy = yx5 >
be the dihedral group of symmetries of a regular hexagon. The group generators are given by
a counterclockwise rotation through

π

3
radians and reflection in a line joining the midpoints

of two opposite edges where x denotes the rotation and y denotes the reflection. If we choose
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H = {1, x3, y, x3y} and G = {1, x, x5}, then R is a G-weak graded ring (see [22], Example 3.1).
Define

M = M2×3(R) =
{[

r1 r2 r3
r4 r5 r6

]
: ri ∈ R, 1 6 i 6 6

}
.

Then, M is a G-weak graded R-module with

M = M1 ⊕Mx ⊕Mx5 ,

where, M1 =

{[
r1 0 0
0 r5 0

]}
, Mx =

{[
0 0 r3

r4 0 0

]}
and Mx5 =

{[
0 r2 0
0 0 r6

]}
.

Furthermore, Rs Mt ⊆ Ms∗t, ∀s, t ∈ G, as follows:

1. R1M1 ⊆ M1∗1 as for all
[

a 0
0 d

]
∈ R1 and

[
r1 0 0
0 r5 0

]
∈ M1, we have

[
a 0
0 d

][
r1 0 0
0 r5 0

]
=

[
ar1 0 0
0 dr5 0

]
∈ M1 = M1∗1.

2. R1Mx ⊆ M1∗x as for all
[

a 0
0 d

]
∈ R1 and

[
0 0 r3

r4 0 0

]
∈ Mx, we have

[
a 0
0 d

][
0 0 r3

r4 0 0

]
=

[
0 0 a r3

dr4 0 0

]
∈ Mx = M1∗x.

3. R1Mx5 ⊆ M1∗x5 as for all
[

a 0
0 d

]
∈ R1 and

[
0 r2 0
0 0 r6

]
∈ Mx5 , we have

[
a 0
0 d

][
0 r2 0
0 0 r6

]
=

[
0 ar2 0
0 0 dr6

]
∈ Mx5 = M1∗x5 .

4. Rx M1 ⊆ Mx∗1 as for all
[

0 0
c 0

]
∈ Rx and

[
r1 0 0
0 r5 0

]
∈ M1, we have

[
0 0
c 0

][
r1 0 0
0 r5 0

]
=

[
0 0 0

cr1 0 0

]
∈ Mx = Mx∗1.

5. Rx Mx ⊆ M1∗x as for all
[

0 0
c 0

]
∈ Rx and

[
0 0 r3

r4 0 0

]
∈ Mx, we have

[
0 0
c 0

][
0 0 r3

r4 0 0

]
=

[
0 0 0
0 0 cr3

]
∈ Mx5 = Mx∗x.

6. Rx Mx5 ⊆ Mx∗x5 as for all
[

0 0
c 0

]
∈ Rx and

[
0 r2 0
0 0 r6

]
∈ Mx5 , we have

[
0 0
c 0

][
0 r2 0
0 0 r6

]
=

[
0 0 0
0 cr2 0

]
∈ M1 = Mx∗x5 .

7. Rx5 M1 ⊆ Mx5∗1 as for all
[

0 b
0 0

]
∈ Rx5 and

[
r1 0 0
0 r5 0

]
∈ M1, we have

[
0 b
0 0

][
r1 0 0
0 r5 0

]
=

[
0 br5 0
0 0 0

]
∈ Mx5 = Mx5∗1.
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8. Rx5 Mx ⊆ Mx5∗x as for all
[

0 b
0 0

]
∈ Rx5 and

[
0 0 r3

r4 0 0

]
∈ Mx, we have

[
0 b
0 0

][
0 0 r3

r4 0 0

]
=

[
br4 0 0
0 0 0

]
∈ M1 = Mx5∗x.

9. Rx5 Mx5 ⊆ Mx5∗x5 as for all
[

0 b
0 0

]
∈ Rx5 and

[
0 r2 0
0 0 r6

]
∈ Mx5 , we have

[
0 b
0 0

][
0 r2 0
0 0 r6

]
=

[
0 0 b r6
0 0 0

]
∈ Mx = Mx5∗x5 .

Thus, M is a non-trivial G-weak graded left R-module.

Proposition 6. Let M be a strongly G-weak graded R-module. Then, M = 0 if and only if Mt = 0
for some t ∈ G.

Proof. Suppose that Mt = 0 for some t ∈ G, then, for all eG 6= s ∈ G, we have

0 = Rs Mt = Ms∗t = Mp

where p = s ∗ t. Thus, the right division property on G implies Mp = 0 for all p ∈ G,
as required.

The converse is even more obvious.

4. G-Weak Graded Fields

Definition 6. We call a G-weak graded ring that is not the zero ring a G-weak graded field if each
G-homogeneous non-zero element has an inverse.

It can be noted that a G-weak graded field is not necessarily a field, as we show in the
next example:

Example 2. Let (H,+, ·) be the ring of real quaternions. Let X = Z2×Z2 = {(0, 0), (0, 1), (1, 0),
(1, 1)}, H = {(0, 0), (0, 1)}, and G = {(0, 1), (1, 1)}. Then, the ∗ operation (Table 1) , the cocycle
f (Table 2), and the actions . and / (Table 3) are calculated as follows.

Table 1. The binary operation ∗.

∗ (0, 1) (1, 1)
(0, 1) (0, 1) (1, 1)
(1, 1) (1, 1) (0, 1)

Table 2. The cocycle f .

f (0, 1) (1, 1)
(0, 1) (0, 1) (0, 1)
(1, 1) (0, 1) (0, 1)

Table 3. The actions s . u and s / u.

s . u (0, 0) (0, 1) s / u (0, 0) (0, 1)
(0, 1) (0, 0) (0, 1) (0, 1) (0, 1) (0, 1)
(1, 1) (0, 0) (0, 1) (1, 1) (1, 1) (1, 1)

Thus, H = C(0,1)⊕C(1,1), where C(0,1) = R⊕Ri and C(1,1) = Rj⊕Rk. Now, the following
calculations are needed to show that the inclusion property is satisfied:
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1. C(0,1)C(0,1) ⊆ C(0,1)∗(0,1) = C(0,1) as for all (r1 + r′1i), (r2 + r′2i) ∈ C(0,1), we have

(r1 + r′1i)(r2 + r′2i) = (r1r2 − r′1r′2) + (r1r′2 + r′1r2)i ∈ R⊕Ri = C(0,1).

2. C(0,1)C(1,1) ⊆ C(0,1)∗(1,1) = C(1,1) as for all (r + r′i) ∈ C(0,1) and (r1 j + r′1k) ∈ C(1,1),
we have

(r + r′i)(r1 j + r′1k) = (rr1 − r′r′1)j + (rr′1 + r′r1)k ∈ Rj⊕Rk = C(1,1).

3. C(1,1)C(0,1) ⊆ C(1,1)∗(0,1) = C(1,1) as for all (r + r′i) ∈ C(0,1) and (r1 j + r′1k) ∈ C(1,1),
we have

(r1 j + r′1k)(r + r′i) = (r1r + r′1r′)j + (r′1r− r1r′)k ∈ Rj⊕Rk = C(1,1).

4. C(1,1)C(1,1) ⊆ C(1,1)∗(1,1) = C(0,1) as for all (r1 j + r′1k), (r2 j + r′2k) ∈ C(1,1), we have

(r1 j + r′1k)(r2 j + r′2k) = (−r1r2 − r′1r′2) + (r1r′2 − r′1r2)i ∈ R⊕Ri = C(0,1).

Thus, H is a strongly G-weak graded ring. Moreover, as every element in H is invertible, hence
every G-homogeneous element is invertible. Consequently, H is a G-weak graded field.

Now, we give an example of a G-weak graded field, which is a field.

Example 3. Let X be the dihedral group of symmetries of a regular hexagon D6 = {1, x, x2, x3, x4,
x5, y, xy, x2y, x3y, x4y, x5y}, H = {1, x2, x4, y, x2y, x4y} and G = {1, x}. Then, the ∗ operation
(Table 4), the cocycle f (Table 5), and the actions . and / (Table 6) are calculated as follows.

Table 4. The binary operation ∗.

∗ 1 x
1 1 x
x x 1

Table 5. The cocycle f .

f 1 x
1 1 1
x 1 x2

Table 6. The actions s . u and s / u.

s . u 1 x2 x4 y x2y x4y s / u 1 x2 x4 y x2y x4y
1 1 x2 x4 y x2y x4y 1 1 1 1 1 1 1
x 1 x2 x4 x2y x4y y x x x x x x x

Now, we consider the field F = (R2,+, ·) with product:

(a, b) (a1, b1) = (aa1 − bb1, a b1 + ba1),

for all (a, b), (a1, b1) ∈ F. Hence, F is a G-weak graded with F = F1 ⊕ Fx, where

F1 = {(a, 0) : a ∈ R} and Fx = {(0, b) : b ∈ R},

are additive subgroups. In addition, the inclusion property is satisfied as follows:

1. F1F1 = {(a1, 0)(a2, 0) : a1, a2 ∈ R} = {(a1a2, 0) : a1a2 ∈ R} = F1 = F1∗1.
2. F1Fx = {(a, 0)(0, b) : a, b ∈ R} = {(0, ab) : ab ∈ R} = Fx = F1∗x.
3. FxF1 = {(0, b)(a, 0) : a, b ∈ R} = {(0, ba) : ba ∈ R} = Fx = Fx∗1.
4. FxFx = {(0, b1)(0, b2) : b1, b2 ∈ R} = {(−b1b2, 0) : −b1b2 ∈ R} = F1 = Fx∗x.
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Therefore, F is a strongly G-weak graded field.

Definition 7. Let R be a G-weak graded ring. An ideal I of R is termed a G-homogeneous ideal of
R if I satisfies the condition: if x ∈ I and x = ∑s∈G xs with xs ∈ Rs, then each xs ∈ I.

Theorem 2. Let R be a G-weak graded ring. Then, R is a G-weak graded field if and only if {0} is
a maximal G-homogeneous ideal of R.

Proof. First, let R be a G-weak graded field, and let I be a maximal G-homogeneous ideal
of R. Suppose that I 6= {0}, then there is at least 0 6= x ∈ I with x = ∑s∈G xs, which implies
0 6= xs ∈ I for some G-homogeneous component xs of x. Hence, as R is a graded field,
x−1

s ∈ R, which implies x−1
s xs = 1R ∈ I. Thus, I = R. However, by the maximality of I,

I 6= R, which means that I = {0}.
On the other hand, let I = {0} be the maximal G-homogeneous ideal of R. Then,

for any non-zero G-homogeneous element x ∈ R, we have

< x > = {rx : r ∈ R}.

Hence, by the maximality of I, < x > = R, which implies 1R ∈ < x >. This means that
there exist r′ ∈ R such that r′x = 1R ∈ < x >, which implies r′ = x−1. Thus, every
G-homogeneous element ( 6= 0) has an inverse. Therefore, R is a G-weak graded field.

It is known that every field is an integral domain, which is commutative [23]. We
give here a counterexample, which shows that there is a field that has a non-homogeneous
unit, although it is a non-trivially X-graded field where X is a finite group. This may not
coincide with some of what was mentioned in [10,11,24].

Example 4. Consider the field F = (R2,+, ·), where R2 = {(a, b) : a, b ∈ R} with (a1, b1)
(a2, b2) = (a1a2 − b1b2, a1b2 + b1a2), for all (a1, b1), (a2, b2) ∈ R2. Hence, F = F0 ⊕ F1 is a
Z2-graded field with:

F0 = {(a, 0) : a ∈ R} and F1 = {(0, b) : b ∈ R},

where F0 and F1 are additive subgroups. The inclusion property is satisfied as follows:

1. F0F0 = {(a1, 0)(a2, 0) : a1, a2 ∈ R} = {(a1a2, 0) : a1a2 ∈ R} = F0 = F0+0.
2. F0F1 = {(a, 0)(0, b) : a, b ∈ R} = {(0, ab) : ab ∈ R} = F1 = F0+1.
3. F1F0 = {(0, b)(a, 0) : a, b ∈ R} = {(0, ba) : ba ∈ R} = F1 = F1+0.
4. F1F1 = {(0, b1)(0, b2) : b1, b2 ∈ R} = {(−b1b2, 0) : −b1b2 ∈ R} = F0 = F1+1.

Thus, F is a strongly Z2-graded field. Moreover, it can be noted that (1, 1) is a unit as

(1, 1)(
1
2

,−1
2
) = (

1
2

,−1
2
)(1, 1) = (1, 0) = 1R,

but, obviously, (1, 1) is not a homogeneous element.

As G-weak graded vector spaces are no more than modules over fields, all the results
mentioned for G-weak graded modules are applicable here.

Example 5. Let F be a field that is G-weak graded. Then, F is a G-weak graded vector space over
itself by putting Vs = Fs for all s ∈ G.

Example 6. Let X be the symmetric group S3 = {e, (12), (13), (23), (123), (132)}, H = {e, (12)},
and G = {(12), (13), (23)}. Then, the ∗ operation (Table 7), the cocycle f (Table 8), and the actions
. and / (Table 9) are calculated as follows.



Symmetry 2022, 14, 835 9 of 10

Table 7. The binary operation ∗.

∗ (12) (13) (23)
(12) (12) (13) (23)
(13) (23) (12) (13)
(23) (13) (23) (12)

Table 8. The cocycle f .

f (12) (13) (23)
(12) (12) (12) (12)
(13) (12) (12) (12)
(23) (12) (12) (12)

Table 9. The actions s . u and s / u.

s . u e (12) s / u e (12)
(12) e (12) (12) (12) (12)
(13) e (12) (13) (13) (23)
(23) e (12) (23) (23) (13)

If we choose F to be the field R of real numbers, then F is G-weak graded by putting FeG = F.
Consider the vector space R3 = {(a, b, c) : a, b, c ∈ R}, and define

V(12) = {(a, a , a) : a ∈ R},

V(13) = {(0, b, 0) : b ∈ R}

and
V(23) = {(0, 0, c) : c ∈ R}.

Hence, R3 = V(12) ⊕ V(13) ⊕ V(23). Moreover, the property (3) is satisfied for all s ∈ G.
Therefore, V = R3 is a strongly G-weak graded vector space.
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