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Abstract: In the last 30 years, a flexible job shop scheduling problem (FJSP) has been extensively ex-
plored. Production efficiency is a widely utilized objective. With the rise in environmental awareness,
green objectives (e.g., energy consumption) have received a lot of attention. Nevertheless, energy
consumption has received little attention. Furthermore, controllable processing times (CPT) should be
considered in the field of scheduling, because they are closer to some real production. Therefore, this
work investigates a FJSP with CPT (i.e., FJSP-CPT) where asymmetrical conditions and symmetrical
constraints increase the difficulty of problem solving. The objectives of FJSP-CPT are to minimize
simultaneously the maximum completion time (i.e., makespan) and total energy consumption (TEC).
First of all, a mathematical model of this multi-objective FJSP-CPT was formulated. To optimize this
problem, a novel multi-objective cellular memetic optimization algorithm (MOCMOA) was presented.
The proposed MOMOA combined the advantages of cellular structure for global exploration and
variable neighborhood search (VNS) for local exploitation. At last, MOCMOA was compared against
other multi-objective optimization approaches by performing experiments. Numerical experiments
reveal that the presented MOCMOA is superior to its competitors in 15 instances regarding three
commonly used performance metrics.

Keywords: flexible job shop scheduling; total energy consumption; controllable processing times;
cellular structure; local search

1. Introduction

With the increasing enhancement of environmental consciousness, green manufactur-
ing has attracted wide attention from both academia and industry. Green manufacturing
is an important component to realize the harmonious coexistence of mankind and nature,
which has become a new trend and requirement among manufacturing enterprises. Shop
scheduling, as a crucial part of manufacturing systems, has played a decisive role in green
manufacturing [1,2]. Specifically, a reasonable scheduling rule can effectively ameliorate
the environmental problem and achieve the effect of energy conservation and emission
reduction [3]. Therefore, it is essential to design a rational shop scheduling technique to
reach a target of green production in manufacturing systems.

Recently, many studies on the green scheduling of manufacturing systems have
been conducted. Furthermore, Gahm et al. [4] and Gao et al. [5] gave an overview of
green or energy-efficient scheduling in production manufacturing systems, respectively.
In brief, the relevant research is roughly classified into three types of green scheduling
problems: (1) green scheduling in a flow shop environment; (2) green scheduling in
a job shop environment; and (3) green scheduling in a flexible job shop environment.
Regarding the green scheduling in a flow shop environment, Mansouri et al. [6] and Liu
et al. [7] addressed green scheduling in a flow shop for minimizing makespan and energy
consumption. Lu et al. [8] studied green scheduling in a permutation flow shop using a
backtracking search algorithm. Li et al. [9] solved a hybrid flow shop scheduling problem
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(HFSP) with total energy consumption (TEC) and makespan objectives. Lu et al. [10]
investigated a HFSP considering three objectives, i.e., noise pollution, makespan, and TEC.
Li et al. [11] and Zuo et al. [12] addressed an energy-efficient HFSP with objectives of total
tardiness, makespan, and TEC. Wang et al. [13] studied a HFSP to minimize makespan
and TEC. Lei et al. [14] invented a teaching–learning-based optimization algorithm for
solving a HFSP with makespan, total tardiness, and TEC, simultaneously. Gong et al. [15]
addressed an energy-efficient HFSP with worker flexibility. Zhang et al. [16] designed a
multi-objective optimization algorithm based on decomposition to address a HFSP with
makespan and energy consumption criteria. Concerning the green scheduling of job shops,
May et al. [17] adopted a multi-objective genetic algorithm to deal with an energy-efficient
job shop scheduling problem (JSP). Zhang et al. [18] presented a hybrid multi-objective
genetic algorithm for solving a JSP with total weighted tardiness and TEC. Yin et al. [19]
investigated an energy-efficient JSP considering TEC and noise pollution. Giglio et al. [20]
solved an integrated lot-sizing and energy-efficient JSP. He et al. [21] investigated a JSP,
which aims to minimize makespan, total tardiness, and TEC. Abedi et al. [22] focused on
a JSP to minimize the total weighted tardiness and TEC. Regarding the green scheduling
in flexible job shops, Yin et al. [23] established a mathematical model for the low-carbon
flexible job shop scheduling problem (FJSP). Zhang et al. [24] proposed an effective gene
expression programming algorithm for solving an energy-efficient FJSP. Luo et al. [25]
presented a grey wolf optimizer for solving a green FJSP. Duan et al. [26] investigated
a FJSP with objectives of minimizing makespan and TEC. Li and Lei [27] designed an
imperialist competitive algorithm for a green FJSP with objectives of makespan, total
tardiness, and TEC.

Although green scheduling in various shop environments has been extensively stud-
ied, job processing times are usually deemed to be constant. In realistic production, job
processing times are controlled by expending extra resources (e.g., energy resource and
human resource). Thus, controllable processing times (CPT) should be considered in green
shop scheduling problems, which are much closer to real-world manufacturing. Compared
to other shop types, FJSP with CPT (FJSP-CPT) is much more difficult. FJSP-CPT has been
confirmed to be NP-hard since it was first raised [28]. Nevertheless, green FJSP-CPT is still
unexplored so far. Thus, we attempt to investigate a green FJSP-CPT with objectives of
minimization of makespan and TEC. Green FJSP-CPT requires considering collaborative
optimization between benefit and environment criteria. Obviously, it is a multi-objective
shop scheduling problem. Many optimization approaches have been employed to address
such multi-objective combinatorial optimization issues [29]. These methods include a prior
method and posterior method. Concerning the prior method, a multi-objective issue is
merged into a mono-objective problem by adopting a weighted sum method. However, this
method has several disadvantages, such as obtaining prior information of problems and
concealing the trade-off relationship among all objectives. Concerning the prior method, a
Pareto-based posterior approach can generate some trade-off or non-dominated solutions
and shows the coupling relation among objectives without prior information. However,
it is hard to obtain new non-dominated solutions at each iteration. To solve this problem,
the fitness of each individual involving the raw fitness value and density indicator is used
in this work. Meanwhile, a local search can significantly improve the performance in
solving shop scheduling problems. Additionally, to alleviate premature convergence, one
population is divided into many sub-populations by utilizing a cellular structure. Therefore,
a multi-objective cellular memetic algorithm (MOCMOA) was designed to handle this
energy-efficient FJSP-CPT. Numerical experiments reveal that the proposed MOCMOA can
solve this problem well.

Energy-efficient FJSP-CPT has not been researched yet. This problem aims to gain
some non-dominated solutions between makespan and TEC. Therefore, the novelties of
this paper are as follows:
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(1) Concerning the problem model, a mathematical model of energy-efficient FJSP-CPT
was formulated.

(2) Concerning the optimization algorithm, a new multi-objective cellular memetic opti-
mization algorithm (MOCMOA) was designed to handle this energy-efficient FJSP-CPT.

(3) Concerning the experiment, experiments were performed to prove the effectiveness
of the MOCMOA.

The rest of the article is structured as follows. Section 2 summarizes the problem state-
ment and a mathematical model for energy-efficient FJSP-CPT. Section 3 details a proposed
MOCMOA approach. Section 4 presents numerical results. This work is concluded in
Section 5.

2. Problem Statement and Mathematical Model

This section provides a problem statement and mathematical model.

2.1. Problem Statement

In general, a multi-objective optimization problem (MOP) for minimization is formu-
lated below:

min f (x) = min[ f1(x), f2(x), . . . , fm(x)]
x = (x1, x2, . . . xn) ∈ R

(1)

where x is one feasible solution and R is the search space. Suppose a and b are two different
solutions. The solution a will dominate b, if and only if fi(a) ≤ fi(b) for each index
i ∈ {1, · · · , m} and fl(a) < fl(b) for at least one index l ∈ {1, · · · , m}. One solution x∗ ∈ R
will be one Pareto optimal point if it is not dominated by anyone else. All Pareto optimal
solutions satisfying the above conditions are called Pareto optimal set (PS*). The objective
point of PS* is named the optimal Pareto front (PF*).

Energy-efficient FJSP-CPT is stated briefly: A set of n jobs (i = 1, 2, · · · , n) are handled
on a set of m machinesM. Each job i has a set of ni operations

{
Oi,1, Oi,2, . . . , Oi,j, . . . , Oi,ni

}
,

in which Oi,j is the j-th operation of the job i. Each operation Oi,j can be handled on any one
of the available machinesMij ⊂M. Furthermore, the processing time of each operation
can be controlled by adjusting energy resources. However, it will cause an increase in
energy consumption. The objectives of FJSP-CPT are minimization of the makespan and
TEC, simultaneously.

Assumptions of the energy-efficient FJSP-CPT are stated below:

(1) Interruption is not permitted and all machines are in good condition.
(2) Transportation and setup times are overlooked.
(3) Machines/jobs are independent of each other.

2.2. Mathematical Model

With the above notations, an energy-efficient FJSP-CPT is formulated below.

min f1 = Cmax = max
{

Cijk

∣∣∣i = 1, 2, · · · , n; j = 1, 2, . . . , ni; k =

1, 2, . . . , m}
(2)

min f2 = TEC = ECw + ECs (3)

Subject to
Cijk − Ci(j−1)k ≥ pa

ijk Xijk∀j, k; j = 2, . . . , ni (4)

Sijk + pa
ijk ≥ Sghk + L

(
1−Yghijk

)
∀(i, j), (g, h), k (5)

ECw = ∑ n
i=1 ∑ ni

j=1 ∑ m
k=1 pa

ijkXijkPwork
k (6)

ECs = ∑ n
i=1 ∑ ni

j=1 ∑ n
g=1 ∑ ng

h=1 ∑ m
k=1

(
Sijk − Cghk

)
YghijPidle

k (7)
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pL
ijk ≤ pa

ijk ≤ pU
ijk ∀(i, j), k (8)

∑ m
k=1Xijk = 1 ∀(i, j) (9)

Objective (2) and Objective (3) represent the makespan and TEC. Equation (4) confines
the operation precedence relation of the same job. Equation (5) imposes that each machine
can handle at most one job at any a time. Equations (6) and (7) show the total work energy
consumption and total idle energy consumption, respectively. Equation (8) provides the
bound of the processing times of each operation. Equation (9) guarantees that one operation
can only be handled by one machine at a time.

3. Proposed Multi-Objective Optimization Approach

We provide a framework of MOCMOA for the energy-efficient FJSP-CPT in this part.
The main steps of MOCMOA are explained in detail.

3.1. Framework of MOCMOA

In this paper, a MOCMOA is presented to address this energy-efficient FJSP-CPT. The
flowchart of the MOCMOA is depicted in Figure 1.
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Figure 1. Flowchart of the proposed MOCMOA. 
Figure 1. Flowchart of the proposed MOCMOA.
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The main steps of MOCMOA are below.
Step 1: Initialization population: Yield one initial population randomly and establish

an external archive (EA) for storing a non-dominated solution set.
Step 2: Fitness: Calculate the fitness values of all the individuals.
Step 3: Cellular structure assignment: Each individual is assigned to one lattice

structure, where each individual has its neighbors. Consequently, one population can be
classified into many subpopulations.

Step 4: Selection: Select two parents from the population.
Step 5: Update: Choose two good individuals from each sub-population based on

fitness. Individuals can only communicate with their neighbors.
Step 5.1: Search operator: The search progress is often directed by crossover and

mutation. Refer to Section 3.1.5 for more details.
Step 5.2: Variable Neighborhood Search (VNS): Variable neighborhood structures

are used to hunt for promising solutions. For the specific information of VNS, refer to
Section 3.1.6.

Step 6: Update EA: If no other solutions in EA can dominate solution x, put this
solution into the EA and remove all solutions that are dominated by the solution x. When
non-dominated solutions are full of EA, ones with the larger fitness will be deleted.

Step 7: Termination criterion: If the termination condition is satisfied, stop iteration
optimization. Otherwise, execute the above iteration.

In MOCMOA, several critical components, including encoding, decoding, initialization,
selection, search operator, and local search, are elaborated in the subsequent subsections.

3.1.1. Encoding and Decoding

A three-part-based encoding mechanism is utilized to express one solution representa-
tion. The first part o represents an operation vector. The second part u indicates the chosen
machine for the operation. The third part v refers to the practical processing times of the
operation. The first part o involves the job index, in which job i presents ni times. The
second part u indicates an integer vector representing the machine index of each operation.
The third part v is a set of real numbers representing the practical processing times of each
operation. The total length of three parts is the length of each solution.

To further explain this encoding mechanism, Figure 2 plots this solution representation.
The total length of each solution is 27, where the length of each part of this solution is 9.
The first part o denotes a list of all operations, i.e., O21-O11-O12-O31-O13-O22-O32-O33-O23.
The operation is processed with priority based on its order. The second part u is the index
of the machine to process operation. The third part v indicates the actual processing times
of each operation on the selected machine.

The decoding mechanism is stated as follows: When one solution is decoded, the
first part o is transformed into a list of operations. Then, each operation is handled by
one chosen machine according to the second part u. At last, the actual processing times
are determined according to the third part v. To be specific, one operation cannot be
handled until its adjacent predecessor is completed. [Sx, Ex ] is the idle time interval on the
machine k of each operation, where x is the x-th idle time interval of Oij. It satisfies the
following condition: {

max
{

Sx, Ci,j−1
}
+ pa

ijk ≤ Ex i f j ≥ 2
Sx + pa

ijk ≤ Ex i f j = 1
(10)

where Oij can be positioned in the idle time interval [Sx, Ex], the starting time of Oij is either
max

{
Sx, Ci,j−1

}
or Sx. If there is no interval on machine k for Oij, Oij will be assigned to

the end position of machine k.
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3.1.2. Initialization and Cellular Structure Assignment

First, one initial population will be randomly yielded based on the above decoding
mechanism and an empty EA built to preserve a non-dominated solution set. One initial
population will be grouped into many sub-populations where each individual is allocated
in one appointed cellular structure. Each solution in the cellular structure has its state,
which is usually related to its neighbors in discrete time steps. The present states of a
nearby neighborhood of solutions determine the state of each solution at the following
time [30]. As we know, cellular structures contain many types. In this work, we adopt a
common cellular structure called the Von Neumann neighborhood.

3.1.3. Fitness

Two entities of each individual, including strength and raw fitness values, should
be calculated. Each individual contains its strength value representing the number of
individuals that it can dominate. Meanwhile, each individual contains its raw fitness
value, which is a summation of the strength values of individuals dominating the present
individual. To preserve the individual’s diversity, a density metric is formulated as [31]:

Density(i) =
1

σk
i + 2

(11)

where σk
i is the Euclidian distance from solution i to its k-th closest vicinage, k is set to 1,

and the fitness of each solution is calculated below:

Fitness(i) = raw_ f itness(i) + Density(i) (12)

3.1.4. Selection

A tournament selection is employed in this selection operation. One individual with
better fitness is selected as one parent (denoted by P1) from two different individuals. The
other parent (denoted by P2) is chosen in the same way.
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3.1.5. Search Operator

Two kinds of search operators (i.e., POX and MPX) are used in this article. In detail,
the operation-based crossover (POX) operator is applied for the operation part o. Multiple
point crossover (MPX) is conducted in the machine assignment part u. Figure 3 gives an
illustration of the POX operator. The main procedures of POX are stated below.
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Step 1: For one solution, all operations in the first part o are grouped into two sets,
which are denoted by symbols J1 and J2.

Step 2: Jobs included in J1 from P1 to child one (denoted by C1) are copied, and jobs
included in J2 from P2 to child two (denoted by C2) are copied. Meanwhile, their order is
kept unchanged in the offspring.

Step 3: Jobs included in J2 from P2 to C1 and jobs included in J1 from P1 to C2 are
copied. Their order is kept unchanged in the offspring.

Figure 4 illustrates the search process of the MPX operator. The main steps of MPX are
presented below.
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Step 1: Randomly generate a set (denoted by R) consisting of 0–1 binary values, and
the length of this set is equal to the length of an operation list.

Step 2: Select operations from P1 and P2 where the corresponding value is equal to
the one in R. Then, swap their corresponding machines. The other machines in P1 and P2
are reserved for the offspring.

The main procedures of the mutation operator are detailed below.
Step 1: Randomly select two locations in the first part and swap two corresponding

elements between two positions.
Step 2: Randomly select one machine from the available machines in the correspond-

ing positions.
Step 3: Adjust processing time in a feasible range for the corresponding positions.

3.1.6. Local Search

In shop scheduling problems, variable neighborhood search (VNS) is an essential
local search strategy [32,33]. VNS can search for promising solutions by using a variety of
neighborhood search structures. The inner loop of VNS often comprises shake and local
search operators. To improve the search diversity, shake operation can change from one
type of local search neighborhood to another. To enhance the quality of solutions, the
local search operator searches for high-quality solutions in the vicinity of solutions. Please
refer to [10] for detailed information. Furthermore, the number of VNS structures is fixed
to reduce computation time. In this paper, three types of VNS are employed, which are
elucidated as follows:

(1) Insert operator: Two different positions on the first part of one solution are chosen
at random, and then the operation in the latter position is inserted into the former
position.

(2) Swap operator: Two different positions on the first part of one solution are chosen at
random and the two corresponding operations are exchanged.

(3) Reverse operator: Two different positions on the first part of one solution are chosen
at random and a set of operations between two positions are reversed.

The detailed procedure of VNS in this work is as follows: First of all, one candidate
solution is picked from one population. Then, one new solution would be yielded by
utilizing one of three types of neighborhood structures. If the newly yielded solution is
superior to the original one based on fitness, the new solution will replace the old one and
continue the inner loop. If the local search rule reaches Ls times and the new solution is not
improved, this local search will be terminated.

4. Numerical Experiments

This part is committed to measuring the behavior of MOCMOA. At first, the instances
and parameter calibration are discussed. Then, three metrics are stated. Finally, comparison
experiments are presented in this part. All the trials were carried out on a PC with an
Intel Core i7, 2.70 GHz, 16 GB of RAM, and Win 10. Additionally, all experiments were
implemented by java.

4.1. Instances and Metrics

To systematically evaluate the performance of approaches, test instances and metrics
are adopted in this part. Because energy-efficient FJSP-CPT is a new combinatorial opti-
mization problem, we modified instances based on classical benchmarks MK01~MK15.
That is to say, the original data remained unchanged and the other related data of these
instances are recorded in Table 1.
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Table 1. Data of instances.

Parameter Distribution

minimization processing time
(

pL
ijk

)
30 min

maximization processing time
(

pU
ijk

)
50 min

idle power on each machine k
(

Pidle
k

)
continuous uniform (0, 2] kW

work power on each machine k
(

Pwork
k

)
continuous uniform [2, 5] kW

In this work, three common metrics, including Spread, GD [34], and IGD [35], were
utilized to measure the performance of one certain algorithm. A normalization approach
was adopted in these metrics. These metrics are defined in the following part.

(1) Spread (∆). It is a measure of solution distribution. It is capable of determining the
distribution situation along the front. This metric’s definition is as follows [36]:

∆ =
∑no

j=1 de
j + ∑

|PF|
i=1

∣∣∣di − d
∣∣∣

∑no
j=1 de

j + |PF|·d
(13)

where di is Euclidean distance from the i-th member in PF to its closest one, d is the
average distance among all di, de

j is the Euclidean distance from the j-th objective to
the boundary value in the PF*, |PF| is the total number of PF points, and one smaller
Spread value is desirable.

(2) Generational Distance (GD). The convergence performance is represented by the
GD measure. Its average gap is between PF and PF*. The formula for this metric is
as follows:

GD =

√
∑
|PF|
i=1 D2

i

|PF| (14)

where Di is the Euclidean distance from the i-th member in PF to the closest one in
PF*, and one smaller GD value is desirable.

(3) Inverted Generational Distance (IGD). It is a different version of the GD; however, it
is a more thorough indicator. It determines the average distance between PF* and PF.
The following is a definition of IGD:

IGD =
∑x∈PF∗ dist(x, PF)

|PF∗| (15)

where dist(x, PF) is the minimum Euclidean distance from the x (x is the member in
PF*) to the member in PF, |PF∗| is the total number of all PF* points. A smaller IGD
value is good.

4.2. Parameter Calibration

The behavior of algorithms depends on parameter settings. Thus, some experiments
were performed to assess various parameter combinations of MOCMOA. MOCMOA
includes four parameters: population size (PS), crossover ratio (pc), mutation ratio (pm),
and times of local search (Ls). A Taguchi approach was utilized to determine the optimal
parameter combination in all instances. Levels of these parameters in MOCMOA are
defined: PS = {50, 100, 150, 200}, pc = {0.7, 0.8, 0.9, 1.0}, pm = {0.1, 0.2, 0.3, 0.4}, and
Ls = {3, 4, 5, 6}. Consequently, one orthogonal array L16 (44) was employed in this trial.
All experiments were carried out with 20 runs regarding each parameter combination.
Figure 5 presents the main effect graph of these parameters in terms of IGD metric. As
mentioned earlier, one smaller IGD value is desirable. According to the observation in
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Figure 5, the optimal parameter combination of MOCMOA is: PS = 150, pc = 0.9, pm = 0.3,
and Ls = 5.
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4.3. Comparison Experiment

To measure the comprehensive behavior of the MOCMOA approach, MOCMOA was
compared against some famous multi-objective evolutionary algorithms (MOEAs) such
as NSGA-II [37], SPEA2 [35], and MOEA/D [38]. As mentioned earlier, energy-efficient
FJSP-CPT has not yet been solved by any optimization algorithm, because it is a new shop
scheduling problem. To this end, these compared MOEAs should be modified to meet
the characteristics of energy-efficient FJSP-CPT. These compared algorithms’ parameters
were calibrated in the same way as the previous experiment. The comparison experiment
is performed in this section. For a fair comparison, all the algorithms considered in this
comparison experiment adopted the same terminal condition, namely, the maximum
number of function evaluations (MNFEs). When the terminal condition (i.e., MNFEs) is
met, the approach will stop the loop. The MNFEs is usually related to the problem scale.
Therefore, MNFEs is equal to 45,000.

Because of the stochastic characteristic of metaheuristics, each method carried out
30 repetitions for each test instance to reduce randomness. Furthermore, a significant test
was employed in the results among different algorithms. In this paper, at the 0.95 signif-
icance level, a Friedman test was adopted to assess the significant difference in terms of
statistical results by all algorithms.

Table 2 records the numerical values (i.e., mean and standard deviation) in terms of
the GD metric. The best value is identified in bold. As shown in Table 2, the statistical
values of the proposed MOCMOA are smaller than those of other MOEAs in all instances.
It indicates that the MOCMOA algorithm outperforms its competitors. Table 3 shows the
ranks among these algorithms in all instances by using the Friedman test regarding the
GD metric. These statistical results further confirm that MOCMOA is the best one among
all algorithms regarding the GD metric. Similarly, it can be seen from Table 4 that the
MOCMOA can obtain better results regarding the Spread metric. To be specific, MOCMOA
finds the best mean values in 14 out of 15 instances, except for “MK06”. Furthermore,
MOCMOA can achieve the best standard deviation values in 14 out of 15 instances, which
implies the good stability of the proposal. Meanwhile, as shown in Table 5, MOCMOA
is superior to its competitors in most instances concerning the Spread metric by a large
margin. Tables 6 and 7 show the statistical results obtained by these MOEAs regarding
the IGD metric. As presented in Table 6, it can be seen that the MOCMOA can find the



Symmetry 2022, 14, 832 11 of 17

best mean standard deviation IGD values among these algorithms. Table 7 records all
ranks of algorithms by using the Friedman test regarding the IGD metric. Apparently,
the MOCMOA shows good behavior regarding convergence and diversity performance.
Numerical results confirm that the proposed MOCMOA is capable of addressing such a
combinatorial optimization issue well.

Table 2. Mean and standard deviation of GD among all algorithms.

Instances
NSGA-II

(Mean/Standard
Deviation)

SPEA2
(Mean/Standard

Deviation)

MOEA/D
(Mean/Standard

Deviation)

MOCMOA
(Mean/Standard

Deviation)

MK01 5.72 × 10−3/3.3 × 10−3 4.38 × 10−3/3.6 × 10−3 4.45 × 10−3/4.2 ×10−3 2.46 × 10−3/1.3 × 10−3

MK02 4.84 × 10−3/4.3 × 10−3 4.96 × 10−3/4.7 × 10−3 3.57 × 10−3/5.5 ×10−3 3.43 × 10−3/1.6 × 10−3

MK03 5.53 × 10−3/2.8 × 10−3 6.78 × 10−3/3.5 × 10−3 6.68 × 10−3/3.2 ×10−3 4.47 × 10−3/2.1 × 10−3

MK04 7.67 × 10−3/2.6 × 10−3 8.35 × 10−3/2.8 × 10−3 7.82 × 10−3/3.7 ×10−3 5.27 × 10−3/2.6 × 10−3

MK05 8.35 × 10−3/2.1 × 10−3 7.47 × 10−3/2.6 × 10−3 6.95 × 10−3/2.9 ×10−3 4.28 × 10−3/1.7 × 10−3

MK06 2.4 × 10−2/1.9 × 10−2 2.56 × 10−2/1.9 × 10−2 2.86 × 10−2/2.0 × 10−2 1.67 × 10−2/1.6 × 10−2

MK07 9.46 × 10−3/1.9 × 10−3 8.67 × 10−3/1.8 × 10−3 7.68 × 10−3/1.8 × 10−3 5.83 × 10−3/1.1 × 10−3

MK08 9.37 × 10−3/2.7 × 10−3 7.76 × 10−3/1.9 × 10−3 6.89 × 10−3/2.5 × 10−3 4.36 × 10−3/1.1 × 10−3

MK09 8.93 × 10−3/2.3 × 10−3 8.82 × 10−3/2.1 × 10−3 6.49 × 10−3/2.4 × 10−3 5.09 × 10−3/1.8 × 10−3

MK10 9.02 × 10−3/2.1 × 10−3 8.32 × 10−3/2.2 × 10−3 6.82 × 10−3/2.1 × 10−3 4.56 × 10−3/1.6 × 10−3

MK11 9.71 × 10−3/2.7 × 10−3 7.04 × 10−3/1.9 × 10−3 7.83 × 10−3/1.9 × 10−3 4.34 × 10−3/1.2 × 10−3

MK12 9.38 × 10−3/3.2 × 10−3 9.24 × 10−3/3.1 × 10−3 9.41 × 10−3/2.2 × 10−3 8.37 × 10−3/2.1 × 10−3

MK13 8.98 × 10−3/2.8 × 10−3 9.14 × 10−3/2.7 × 10−3 7.63 × 10−3/2.9 × 10−3 5.76 × 10−3/2.2 × 10−3

MK14 9.08 × 10−3/2.5 × 10−3 9.23 × 10−3/2.6 × 10−3 8.56 × 10−3/2.7 × 10−3 5.37 × 10−31.9 × 10−3

MK15 9.15 × 10−3/4.6 × 10−3 9.72 × 10−3/4.2 × 10−3 8.93 × 10−3/3.7 × 10−3 8.01 × 10−3/2.8 × 10−3

Table 3. Ranks among algorithms using the Friedman test regarding the GD metric.

MOEAs Rank p-Value

NSGA-II 4.00

1.35 × 10−9
SPEA2 3.05

MOEA/D 2.85

MOCMOA 1.00

Table 4. Mean and standard deviation of Spread among all algorithms.

Instances
NSGA-II

(Mean/Standard
Deviation)

SPEA2
(Mean/Standard

Deviation)

MOEA/D
(Mean/Standard

Deviation)

MOCMOA
(Mean/Standard

Deviation)

MK01 8.90 × 10−1/4.5 × 10−2 7.38 × 10−1/3.7 × 10−2 9.78 × 10−1/4.9 × 10−2 6.89 × 10−1/3.5 × 10−2

MK02 9.45 × 10−1/4.4 × 10−2 7.82 × 10−1/3.5 × 10−2 9.87 × 10−1/4.3 × 10−2 7.65 × 10−1/3.0 × 10−2

MK03 8.57 × 10−1/5.2 × 10−2 6.59 × 10−1/4.9 × 10−2 9.49 × 10−1/5.3 × 10−2 6.38 × 10−1/3.6 × 10−2

MK04 9.35 × 10−1/5.9 × 10−2 7.35 × 10−1/4.8 × 10−2 9.08 × 10−1/5.7 × 10−2 6.95 × 10−1/4.2 × 10−2

MK05 8.65 × 10−1/4.3 × 10−2 6.58 × 10−1/4.6 × 10−2 8.64 × 10−1/6.2 × 10−2 6.45 × 10−1/4.1 × 10−2
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Table 4. Cont.

Instances
NSGA-II

(Mean/Standard
Deviation)

SPEA2
(Mean/Standard

Deviation)

MOEA/D
(Mean/Standard

Deviation)

MOCMOA
(Mean/Standard

Deviation)

MK06 9.88 × 10−1/5.8 × 10−2 9.03 × 10−1/4.1 × 10−2 9.98 × 10−1/6.8 × 10−2 9.97 × 10−1/6.4 × 10−2

MK07 8.65 × 10−1/6.3 × 10−2 8.86 × 10−1/5.8 × 10−2 9.76 × 10−1/5.8 × 10−2 7.28 × 10−1/3.9 × 10−2

MK08 7.98 × 10−1/4.8 × 10−2 7.93 × 10−1/5.8 × 10−2 8.86 × 10−1/6.8 × 10−2 6.90 × 10−1/3.8 × 10−2

MK09 8.95 × 10−1/6.3 × 10−2 8.97 × 10−1/7.2 × 10−2 8.96 × 10−1/5.6 × 10−2 7.87 × 10−1/4.9 × 10−2

MK10 7.88 × 10−1/4.4 × 10−2 7.56 × 10−1/5.5 × 10−2 9.36 × 10−1/4.6 × 10−2 7.47 × 10−1/4.2 × 10−2

MK11 7.84 × 10−1/5.6 × 10−2 6.74 × 10−1/5.9 × 10−2 8.63 × 10−1/7.1 × 10−2 7.08 × 10−1/4.7 × 10−2

MK12 8.32 × 10−1/5.7 × 10−2 7.78 × 10−1/5.5 × 10−2 9.96 × 10−1/6.6 × 10−2 7.75 × 10−1/4.8 × 10−2

MK13 8.25 × 10−1/6.3 × 10−2 8.53 × 10−1/6.5 × 10−2 9.57 × 10−1/7.3 × 10−2 7.73 × 10−1/4.8 × 10−2

MK14 8.37 × 10−1/6.2 × 10−2 9.88 × 10−1/5.9 × 10−2 8.56 × 10−1/6.9 × 10−2 8.07 × 10−1/5.5 × 10−2

MK15 9.06 × 10−1/6.5 × 10−2 9.43 × 10−1/6.5 × 10−2 9.97 × 10−1/8.3 × 10−2 8.78 × 10−1/6.1 × 10−2

Table 5. Ranks among algorithms using the Friedman test regarding the Spread metric.

MOEAs Rank p-Value

NSGA-II 2.86

4.95 × 10−5
SPEA2 2.05

MOEA/D 4.00

MOCMOA 1.45

Table 6. Mean and standard deviation of IGD metric among all algorithms.

Instances
NSGA-II

(Mean/Standard
Deviation)

SPEA2
(Mean/Standard

Deviation)

MOEA/D
(Mean/Standard

Deviation)

MOCMOA
(Mean/Standard

Deviation)

MK01 5.56 × 10−4/6.6 × 10−5 4.98 × 10−4/6.7 × 10−5 7.59 × 10−3/6.8 × 10−5 4.42 × 10−4/5.3 × 10−5

MK02 4.76 × 10−4/6.3 × 10−5 4.87 × 10−4/6.6 × 10−5 6.93 × 10−4/8.2 × 10−5 4.37 × 10−4/5.8 × 10−5

MK03 4.88 × 10−3/2.2 × 10−3 5.55 × 10−3/2.4 × 10−3 4.95 × 10−3/4.5 × 10−3 4.64 × 10−3/1.6 × 10−3

MK04 8.34 × 10−3/2.6 × 10−3 8.37 × 10−3/2.7 × 10−3 7.68 × 10−3/3.1 × 10−3 5.46 × 10−3/1.8 × 10−3

MK05 5.72 × 10−3/6.7 × 10−4 5.88 × 10−3/7.8 × 10−4 8.78 × 10−3/9.2 × 10−4 4.87 × 10−3/4.6 × 10−4

MK06 7.54 × 10−3/2.4 × 10−3 8.93 × 10−3/2.3 × 10−3 7.69 × 10−3/2.6 × 10−3 7.54 × 10−3/1.9 × 10−3

MK07 7.56 × 10−3/2.0 × 10−3 8.23 × 10−3/1.8 × 10−3 8.98 × 10−3/1.9 × 10−3 4.89 × 10−3/1.4 × 10−3

MK08 6.59 × 10−3/2.6 × 10−3 7.46 × 10−3/2.3 × 10−3 6.89 × 10−3/1.8 × 10−3 4.78 × 10−3/1.5 × 10−3

MK09 7.09 × 10−3/2.4 × 10−3 6.83 × 10−3/1.7 × 10−3 9.38 × 10−3/1.5 × 10−3 5.09 × 10−3/1.2 × 10−3

MK10 5.46 × 10−3/1.7 × 10−3 6.89 × 10−3/2.1 × 10−3 5.68 × 10−3/1.9 × 10−3 4.65 × 10−3/1.5 × 10−3

MK11 8.66 × 10−3/1.5 × 10−3 9.25 × 10−3/1.8 × 10−3 7.88 × 10−3/1.2 × 10−3 4.23 × 10−3/1.1 × 10−3

MK12 1.67 × 10−2/2.6 × 10−3 1.76 × 10−2/2.6 × 10−3 1.77 × 10−2/1.6 × 10−3 1.34 × 10−2/1.2 × 10−3

MK13 8.26 × 10−3/2.7 × 10−3 8.98 × 10−3/2.9 × 10−3 9.98 × 10−3/2.8 × 10−3 4.84 × 10−3/2.2 × 10−3

MK14 7.89 × 10−3/2.9 × 10−3 8.76 × 10−3/2.4 × 10−3 8.91 × 10−3/2.4 × 10−3 4.88 × 10−3/1.9 × 10−3

MK15 2.73 × 10−3/2.8 × 10−3 1.98 × 10−2/2.4 × 10−3 1.75 × 10−2/2.9 × 10−3 1.45 × 10−2/2.2 × 10−3
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Table 7. Ranks among algorithms using the Friedman test regarding the GD metric.

MOEAs Rank p-Value

NSGA-II 2.05

2.82 × 10−7
SPEA2 2.58

MOEA/D 3.32

MOCMOA 1.14

To further visualize the behavior of various optimization algorithms, Figures 6–8 plot
the distribution of three metrics obtained by these algorithms on all problems. Figure 6
presents the distribution of statistical results regarding the GD metric for four algorithms
in 20 independent run times. As shown in Figure 6, the average results found by the MOC-
MOA are lower than those by its compared approaches with respect to the convergence
performance. Furthermore, there is no overlap among different algorithms. This plot fur-
ther verifies our conclusion from the previous numerical experiment. As shown in Figure 7,
the average results found by the MOCMOA are lower than those by its competitors re-
garding the diversity of solutions. As shown in Figure 8, regarding the comprehensive
performance, the average results found by the MOCMOA are lower than those by its
competitors by a large margin. Meanwhile, there is no overlap among these algorithms.
Therefore, it is concluded that the MOCMOA is significantly better than the other rivals for
energy-efficient FJSP-CPT. The good performance of MOCMOA is attributed to the fact that
it combines the advantages of cellular structure for exploration and VNS for exploitation. In
this algorithm, cellular structure is utilized to enhance the search performance. Meanwhile,
we utilize VNS as a general local search to further improve the quality of solution. The ad-
vantages of the proposed MOCMOA are the good convergence and diversity performance.
However, the disadvantages of the MOCMOA lie in consuming a lot of time searching for
good solutions.
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5. Conclusions and Outlook

In this work, an energy-efficient flexible job shop scheduling problem with controllable
processing times (FJSP-CPT) was investigated. This work was an important supplement to
the present studies where most existing research ignored green-related criteria. In addition
to the common makespan criterion, total energy consumption (TEC) was regarded as a new
green criterion. Consequently, a mathematical model of the green FJSP-CPT with objectives
of minimization TEC and makespan was formulated in this paper. For this purpose, a multi-
objective cellular memetic optimization algorithm (MOCMOA) was designed to handle
this optimization problem. This MOCMOA combined the advantages of cellular structure
and variable neighborhood search, allowing for a suitable balance of global exploitation
and local exploration. To prove the validity of the proposed MOCMOA, comparison
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experiments on some instances were made. Experimental results revealed that MOCMOA
was a promising approach to solve such a problem compared to other algorithms.

In future work, more complex shop scheduling problems, including a dynamic schedul-
ing environment and distributed shop scheduling environment, will be explored. Further-
more, more effective optimization metaheuristics and heuristics are proposed to address
such scheduling problems.

Author Contributions: Y.W.: Conceptualization, Methodology, Software. W.P.: Data curation,
Writing—Original draft preparation. C.L.: Supervision. H.X.:Writing—Reviewing and Editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by National Natural Science Foundation of China under Grant
no. 52175490 and 51805495.
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Nomenclature

(1) Parameters
total number of jobs

m total number of machines.
k index of machines, k = 1, 2, . . . , m.
i, g index of jobs, i.e., i, g = 1, 2, .., n.
j, h index of operations, j, h = 1, 2, . . . , nj.
Oij the j−th operation of job i.
ni total number of operations of job i.
Cijk the completion time of Oij on machine k.
Sijk the starting time of Oij on machine k.
pL

ijk the lowest value of processing time of Oij on machine k.
pU

ijk the upper value of processing time of Oij on machine k.
Mij available machine set for Oij.
Cmax the makespan of the schedule.
Pidle

k the idle power of a machine k.
Pwork

k the work power of a machine k.
ECw the energy consumption during the work phase.
ECs the energy consumption during the idle phase.
L one very large number.
(2) Decision variables
pa

ijk the actual processing time of Oij on machine k

Xijk =

{
1, if the operation Oij is processed on machine k

0, elsewise

Yghijk =

{
1, if Ogh is the predecessor of Oij on machine k

0, elsewise
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