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Abstract: The analysis of contingency tables focuses on a statistical model instead of independence
when the independence between row and column variables does not hold. Many association models
have been proposed to indicate the structure of odds ratios. Additionally, symmetry and asymmetry
models have been proposed to analyze the cell probabilities of square contingency tables with
symmetric or asymmetric structures. This paper proposes an asymmetry plus association model for
square contingency tables with ordinal categories and partitioning of the test statistic for goodness-
of-fit using our proposed model.

Keywords: association model; asymmetry model; square contingency table

1. Introduction

A categorical variable distinguishes a set of categories. It is employed in diverse fields
such as social sciences, medical sciences, engineering, and education. Here, we consider a
categorical variable with r categories and another one with c categories. The outcome for
two variables has rc possible combinations, which can be denoted by a rectangular table
with r rows and c columns, where the cells illustrate the rc possible outcomes. This is called
a contingency table (for more details, see [1,2]). A contingency table illustrates the joint
frequencies by combination of two categorical variables. When analyzing a contingency
table, only the observed frequencies are seen, but the true distribution is unknown. One of
the aims of analyzing a contingency table is to estimate an unknown probability distribution
from the observed frequencies. The confidence level of the estimated distribution is higher
when fewer parameters are used to describe the data. Sometimes, we need to consider
a parsimonious model. Traditionally, a contingency table is used to evaluate whether
classifications are associated. That is, the analysis determines whether two variables are
statistically independent.

If two variables take the same categorical values, the table is called a “square” contin-
gency table. When the observed frequencies are concentrated in the main diagonal cells,
the two variables are dependent. Even if the observations are not concentrated on the main
diagonal but we have one large frequency and several small frequencies in each row and
each column, then there is a strong association between the categories of a variable and
those of the other, and hence a strong dependence. This is a common situation in real world
data and, since the case of independence is infrequent and unrealistic, a suitable model
for representing dependence data is important . Consequently, many statisticians consider
various statistical models instead of an independence model and study the method of esti-
mation and hypothesis testing based on a statistical model.When statistical independence
between two variables does not hold, association models, which indicate the structure
of odds ratios, have been considered to analyze contingency tables. On the other hand,
symmetry or asymmetry models, which indicate the structure of ratios for cell probabilities
in symmetric positions, are often used to analyze square contingency tables.
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This study proposes a model with characteristics of both an association model and
asymmetry model. Our model is more parsimonious than many association or asymme-
try models. Hence, our model may better estimate the distribution than conventional
association models and asymmetry models.

This paper is organized as follows. Section 2 introduces previous research and pro-
poses an asymmetry plus association model. Section 3 describes the necessary and sufficient
condition to use our model. Section 4 provides the methods to evaluate model-fitting based
on goodness-of-fit. Section 5 concludes this paper.

2. Models

For an r × r square contingency table with ordinal categories, let πij denote the
probability that an observation will fall in the ith row and jth column of the contingency
table (i = 1, . . . , r; j = 1, . . . , r). Goodman [3–5] considered many association models in a
contingency table. For example, the quasi-uniform association (QU) model is defined as

πij =

{
µαiβ jθ

ij (i 6= j),
ψii (i = j).

(1)

Without loss of generality, we impose αr = βr = 1. The odds ratio for rows i and j
(>i), and columns s and t (>s) are denoted by φ(ij;st). That is,

φ(ij;st) =
πisπjt

πjsπit
. (2)

Using the odds ratios, the QU model can be expressed as

φ(ij;st) = θ(j−i)(t−s) (i 6= s, i 6= t, j 6= s, j 6= t). (3)

The QU model with θ = 1 is the quasi-independence (QI) model (see p. 426 in Agresti [6]).
That is,

πij =

{
µαiβ j (i 6= j),
ψii (i = j).

(4)

On the other hand, many statisticians have analyzed square contingency tables using a
symmetric structure or an asymmetric structure for cell probabilities. Bowker [7] proposed
the symmetry (S) model, which is defined as

πij = ψij (i = 1, . . . , r; j = 1, . . . , r), (5)

where ψij = ψji. This model indicates the symmetric structure for cell probabilities.
Stuart [8] proposed the marginal homogeneity (MH) model, which is defined as

πi+ = π+i (i = 1, . . . , r), (6)

where πi+ = ∑r
j=1 πij and π+i = ∑r

j=1 πji. The MH model indicates that the row marginal
distribution is equivalent to the column marginal distribution.

Caussinus [9] proposed the quasi-symmetry (QS) model, which is defined as

πij = µαiβ jψij (i = 1, . . . , r; j = 1, . . . , r), (7)

where ψij = ψji. This model is identical to the S model when αi = βi. The QS model can be
expressed as

φ(ij;st) = φ(st;ij) (i < j; s < t). (8)

The QS model indicates the symmetric structure of the odds ratios. The QU model
implies the QS model. That is, the QS model holds when the QU model holds.
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When the S model does not hold, asymmetry models, with a weaker restriction than
the S model, have been proposed. For example, Tahata and Tomizawa [10] proposed the
kth linear asymmetry (LSk) model, which is defined for a fixed k (k = 1, . . . , r− 1) as

πij = µ
k

∏
l=1

αil
l β

jl

l ψij (i = 1, . . . , r; j = 1, . . . , r), (9)

where ψij = ψji. Note that when αl = βl , this model is the S model. As k increases, the LSk
model is less restrictive, and the LSr−1 model is the QS model. Namely, the LSk model
is the intermediate model between the S model and QS model. The LSk model can be
expressed as

πij

πji
=

k

∏
l=1

γ
jl−il

l (i 6= j). (10)

The LSk model includes the linear diagonals-parameter symmetry model [11] and the
extended linear diagonals-parameter symmetry model [12].

Goodman [4] introduced the symmetry plus quasi-independence (SQI) model, which
is defined as

πij =

{
µαiαj (i 6= j),
ψii (i = j).

(11)

This model is a special case of the S model and the QI model when ψij = µαiαj and
αi = βi for i 6= j, respectively.

Yamamoto and Tomizawa [13] proposed the symmetry plus quasi-uniform association
(SQU) model, which is defined as

πij =

{
µαiαjθ

ij (i 6= j),
ψii (i = j).

(12)

The SQU model implies the S model and QU model. Note that the SQU model is
identical to the SQI model when θ = 1.

Association models and asymmetry models have been proposed independently. How-
ever, an asymmetry plus association model, which considers both the structure of asymme-
try for cell probabilities and odds ratios, is rarely considered.

Here, we propose a new model defined for a fixed k (k = 1, . . . , r− 1) as

πij =

{
µαiαj ∏k

l=1 δ
jl−il

l θij (i 6= j),
ψii (i = j).

(13)

Without loss of generality, we set αr = 1. This model is called the kth linear asymmetry
plus quasi-uniform association (LSQUk) model. When θ = 1, it is called the kth linear
asymmetry plus quasi-independence (LSQIk) model.

If the LSQUk model holds, then

πij

πji
=

k

∏
l=1

δ
2(jl−il)
l (i 6= j). (14)

The LSk model holds by γl = δ2
l in Equation (14). Additionally,

φ(ij;st) = θ(j−i)(t−s) (i 6= s, i 6= t, j 6= s, j 6= t). (15)

Therefore, the LSQUk model shows characteristics of both the LSk model and the
QU model.
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This model with δl = 1 for l = 1, . . . , k is the SQU model. When k = r− 1, the LSQUk
model implies

πij

πji
=

r−1

∏
l=1

γ
jl

l

γil
l

(i 6= j). (16)

On the other hand, the QU model implies

πij

πji
=

λj

λi
(i 6= j), (17)

where λj = β j/αj. Setting λj = ∏r−1
l=1 γ

jl

l provides a one-to-one relation between {λ1, . . . , λr−1}
and {γ1, . . . , γr−1}. This means that the LSQUr−1 model is equivalent to the QU model.
The LSQUk (k < r− 1) model is a special case of the QU model since the LSQUr−1 model
with δl = 1 for l = k + 1, . . . , r − 1 is the LSQUk model. Hence, the LSQUk model is an
intermediate model between the SQU and QU models. Similarly, the LSQIr−1 model is
equivalent to the QI model. That is, the LSQIk model is an intermediate model between the
SQI and QI models (For more details, see Figure 1).

Figure 1. Relationships among the models (A→ B indicates that model A is a special case of model B).

3. Necessary and Sufficient Condition for the SQU Model

Caussinus [9] introduced the necessary and sufficient condition for the S model. This
condition separates the S model into multiple models with a weaker restriction than the
S model. Assuming that model M1 holds if and only if both models M2 and M3 hold,
then analyzing models M2 and M3 should elucidate a more detailed structure of the cell
probabilities. Here, we are interested in deriving a necessary and sufficient condition for
the SQU model using the LSQUk model.

Yamamoto and Tomizawa [13] provided the following necessary and sufficient condi-
tion for the SQU model.

Theorem 1. The SQU model holds if and only if both the QU model and the MH model hold.

Let X and Y denote the row and column variables, respectively, and consider a model
defined for a fixed k (k = 1, . . . , r− 1), which is given as

E(Xl) = E(Yl) (l = 1, . . . , k), (18)

where E(Xl) = ∑i ∑j ilπij and E(Yl) = ∑i ∑j jlπij. This model can be referred to as the
marginal kth moment equality (MEk) model. This leads to the following theorem.
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Theorem 2. For any k (k = 1, . . . , r− 1), the SQU model holds if and only if both the LSQUk
model and the MEk model hold.

Proof. If the SQU model holds, the LSQUk model holds because the LSQUk model with
δl = 1 (l = 1, . . . , k) is the SQU model. Since the SQU model implies the S model, we can
see that

E(Xl) = ∑
i

∑
j

ilπij = ∑
i

∑
j

ilπji = E(Yl) (l = 1, . . . , k). (19)

The MEk model also holds. The necessity is proved.
Conversely, if both the LSQUk model and the MEk model hold, we can prove that the

SQU model holds. If the LSQUk model holds, from Equation (14), we obtain

log πij − log πji = 2
k

∑
l=1

(jl − il) log δl (i 6= j). (20)

The MEk model can also be expressed as

∑ ∑
i 6=j

(jl − il)πij = 0 (l = 1, . . . , k). (21)

From the LSQUk model and the MEk model, we obtain

∑ ∑
i 6=j

(πij − πji)(log πij − log πji) = 2 ∑
l=1

log δl∑ ∑
i 6=j

(jl − il)(πij − πji)

= 0.
(22)

Since the logarithmic function is strictly increasing, then for any i 6= j

(πij − πji)(log πij − log πji) ≥ 0. (23)

Equation (22) with πij = πji holds, that is, the S model holds. When the S model holds,
the MH model holds. Additionally, the LSQUk model is a special case of the QU model.
From Theorem 1, the SQU model holds. The proof is complete.

Theorem 2 is a generalization of Yamamoto and Tomizawa’s result because the MEr−1
model is equivalent to the MH model (see [14]). This leads to the following corollary.

Corollary 1. For any k (k = 1, . . . , r − 1), the SQI model holds if and only if both the LSQIk
model and the MEk model hold.

4. Partition of Test Statistics

Here, we describe a method to evaluate the model fitting. We consider a test of hy-
phothesis, where the null hypothesis is that model M holds, and the alternative hypothesis
is that model M does not hold. Let nij denote the observed frequency in the (i, j)th cell
of the table and mij indicate the corresponding expected frequency with n = ∑i ∑j nij
(i = 1, . . . , r; j = 1, . . . , r). Assume that {nij} has a multinomial distribution. Then m̂ij
denotes the maximum likelihood estimate (MLE) of mij under a model. The likelihood ratio
chi-squared statistic for the goodness-of-fit of the model M is defined as

G2(M) = 2
r

∑
i=1

r

∑
j=1

nij log

(
nij

m̂ij

)
. (24)

The numbers of degrees of freedom (df) for testing the goodness-of-fit under the SQU,
LSQUk, and MEk models are r2 − 2r− 1, r2 − 2r− 1− k, and k, respectively. The number
of df for the SQU model is equal to the sum of those for the LSQUk and MEk models.
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Previous studies have discussed the separability of a model [15–19]. Separability
means that a test statistic for the goodness-of-fit of model M1 is asymptotically equivalent
to the sum of the test statistics for model M2 and model M3 when model M1 can be
separated into model M2 and model M3. If it holds, the incompatible situation, where both
model M2 and model M3 are accepted but model M1 is rejected, would not arise. This leads
to the following theorem.

Theorem 3. For any k (k = 1, . . . , r− 1), the test statistic G2(SQU) is asymptotically equivalent
to the sum of G2(LSQUk) and G2(MEk).

Proof. For a fixed k (k = 1, . . . , r− 1), the LSQUk model can be expressed as

log πij =

{
µ′ + α′i + α′j + ∑k

l=1(jl − il)δ′l + ijθ′ (i 6= j),

µ′ + α′i + α′i + ψ′ii (i = j).
(25)

Without loss of generality, we can impose α′r = 0. Let

π = (π11, . . . , π1r, π21, . . . , π2r, . . . , πrr)
T , (26)

and
β = (µ′, β1, β2, β12)

T , (27)

where “T" denotes the transpose,

β1 = (α′1, . . . , α′r−1), β2 = (δ′1, . . . , δ′k), (28)

and
β12 = (θ′, ψ′11, . . . , ψ′rr). (29)

The LSQUk model can also be expressed as

log π = Xβ = (1r2 , X1, X2, X12)β, (30)

where log π = (log π11, . . . , log πrr)T , X is the r2 × (2r + 1 + k) matrix, and 1s is the s× 1
vector of the 1 element. Additionally,

X1 =

(
Ir−1 ⊗ 1r

Or,r−1

)
+ 1r ⊗

(
Ir−1
0T

r−1

)
(31)

X2 = (x1, . . . , xk), (32)

where
xl = 1r ⊗ Jl

r − Jl
r ⊗ 1r (l = 1, . . . , k), (33)

and X12 is the r2 × (r + 1) matrix determined from Equation (25). Note that Ost is the s× t
zero matrix, 0s is the s× 1 zero vector, Jl

r = (1l , . . . , rl)T , and “⊗" represents the Kronecker
product. The matrix X has a full column rank, which is K = 2r + 1 + k.

We denote the linear space spanned by the columns of the matrix X by S(X) with
dimension K. Let U be an r2 × d1 full column rank matrix, where d1 = r2 − 2r− 1− k, such
that S(U) is the orthogonal complement of space S(X). Hence, UTX = Od1,K.

Let h1(π) be a vector of functions defined by h1(π) = UT log π. Moreover, let h2(π)
be a vector of functions defined by h2(π) = XT

2 π, and note that XT
2 U = Od2,d1 where d2 = k

because X2 belongs to space S(X).
From Equation (25), the LSQUk model is equivalent to the hypothesis h1(π) = 0d1 .

Additionally, the MEk model is equivalent to the hypothesis h2(π) = 0d2 . From Theorem
2, the SQU model is equivalent to the hypothesis h3(π) = 0d3 where h3 = (hT

1 , hT
2 )

T and
d3 = d1 + d2 = r2 − 2r− 1.
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We derive the Wald statistic for the SQU model in an analogous mannar to Bhap-
kar [20]. Let Hs (s = 1, 2, 3) denote the ds × r2 matrix of partial derivatives of hs(π) with
respect to π. Namely, Hs(π) = ∂hs(π)/∂πT . Let Σ(π) = diag(π)− ππT , where diag(π)
denotes a diagonal matrix with the ith component of π as the ith diagonal component.
Additionally, let pij denote a sample proportion of the (i, j) cell. That is, pij = nij/n,
and p = (p11, . . . , p1r, p21, . . . , p2r, . . . , prr)T . The central limit theorem indicates that√

n(p− π) has an asymptotic normal distribution with mean 0r2 and covariance matrix
Σ(π). Using the delta method,

√
n(h3(p)− h3(π)) has an asymptotic normal distribution

with mean 0d3 and covariance matrix

H3(π)Σ(π)HT
3 (π) =

(
H1(π)Σ(π)HT

1 (π) H1(π)Σ(π)HT
2 (π)

H2(π)Σ(π)HT
1 (π) H2(π)Σ(π)HT

2 (π)

)
.

Since H1(π)π = UT1r2 = 0d1 , H1(π)diag(π) = UT , and H2(π) = XT
2 , we obtain

H1(π)Σ(π)HT
2 (π) = UTX2 = Od1,d2 . (34)

Under each hypothesis, hs(π) = 0ds (s = 1, 2, 3), we see

W3 = W1 + W2, (35)

where
Ws = nhs(p)T(Hs(p)Σ(p)HT

s (p))−1hs(p). (36)

The Wald statistic Ws has an asymptotic chi-squared distribution with ds df. That is, (i)
W1 is the Wald statistic for the LSQUk model, (ii) W2 is that for the MEk model, and (iii) W3
is that for the SQU model. The proof is completed using the asymptotic equivalence of the
Wald statistic and the likelihood ratio statistic as proved by Rao [21].

Theorem 3 is also a generalization of Yamamoto and Tomizawa’s result since this
theorem is identical to Yamamoto and Tomizawa’s result when k = r− 1. Moreover, we
obtain the following corollary.

Corollary 2. For any k (k = 1, . . . , r− 1), the test statistic G2(SQI) is asymptotically equivalent
to the sum of G2(LSQIk) and G2(MEk).

5. Example

Table 1 shows the data cited by [22]. This data described 59 matched pairs using 4
dose levels of conjugated estrogen. The models described herein are used to analyze this
data. Table 2 shows the value of G2(M) for each model applied to the data in Table 1. That
is, for model M, the null hypothesis is that model M holds, and the alternative hypothesis
is that model M does not hold. From Table 2, the SQI, SQU, S, and MEk models do not
fit well, and the LSQIk, LSQUk, and LSk models are accepted at the 0.05 significant level
(k = 1, 2, 3). We choose the most appropriate model in these models. If model M1 is
a special case of model M2, a test based on the difference between the likelihood ratio
chi-squared statistic can compare the model fitting of two nested models. Let d1 and
d2 denote the degrees of freedom for the models M1 and M2, respectively. Assuming
that model M2 holds, a likelihood ratio chi-squared statistic under model M1 is given
as G2(M1 | M2) = G2(M1) − G2(M2). This statistic is an asymptotically chi-squared
distribution with d1 − d2 degrees of freedom. When we use it at the 0.05 significant level,
the LSQI1 model is the most appropriate model.
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Table 1. Average doses of conjugated estrogen used by cases and matched controls: Los Angeles
endometrial cancer study [22].

Average Dose for Case (mg/day)
Average Dose for Control (mg/day)

0 (1) 0.1–0.299 (2) 0.3–0.625 (3) 0.625+ (4) Total

0 (1) 6 2 3 1 12
0.1–0.299 (2) 9 4 2 1 16
0.3–0.625 (3) 9 2 3 1 15

0.625+ (4) 12 1 2 1 16

Total 36 9 10 4 59

Table 2. The values of likelihood ratio chi-squared statistics for models applied to Table 1.

Model df G2(M)

SQI 8 19.98 ∗

SQU 7 19.86 ∗

LSQI1 7 3.62
LSQI2 6 2.98
LSQI3 (QI) 5 0.77
LSQU1 6 3.61
LSQU2 5 2.98
LSQU3 (QU) 4 0.69
S 6 19.27 ∗

LS1 5 2.97
LS2 4 2.33
LS3 (QS) 3 0.46
ME1 1 16.43 ∗

ME2 2 17.08 ∗

ME3 (MH) 3 19.12 ∗

Note ∗ Significant at the 0.05 level.

Table 3 shows the estimated expected frequencies from the LSQI1 model for the data
in Table 1. The value of maximum likelihood estimator of δ1 for the LSQI1 model is 0.71.
We estimate the ratio between two probabilities as π̂ij/π̂ji = 0.712(j−i) for i < j. Therefore,
the probability distribution for the average dose for a case tends to be stochastically higher
than the probability distribution for the average dose for control because δ̂1 < 1.

Table 3. Estimated expected frequencies from the LSQI1 model.

Average Dose for Case (mg/day)
Average Dose for Control (mg/day)

0 (1) 0.1–0.299 (2) 0.3–0.625 (3) 0.625+ (4)

0 (1) 6 3.58 2.64 1.42
0.1–0.299 (2) 7.07 4 1.13 0.61
0.3–0.625 (3) 10.34 2.24 3 0.89

0.625+ (4) 10.96 2.37 1.76 1

Finally, we are interested in inferring the reason for the poor fit of the SQI model.
According to Corollary 1, the SQI model is separated into the LSQI1 model and the ME1
model. Since the LSQI1 model fits very well, but the ME1 model fits very poorly, we deduce
that the lack of structure of the ME1 model is responsible for the poor fit of the SQI model.

6. Conclusions

Herein we describe an asymmetry plus association model. This model indicates the
asymmetry structures for cell probabilities between symmetric position and odds ratios.
Our model is an intermediate model between the SQU model and the QU model. If the
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QU (LSQUr−1) model holds but the SQU model does not, the LSQUk model for k < r− 1
may hold. In this case, the QU model may be overfitting. That is, our model may realize a
better fit than the QU model under these conditions. In practice, the LSQI1 model fits well
when the SQU model fits poorly and the QU model fits for the data in Table 1. Additionally,
a theorem with respect to the necessary and sufficient condition for the SQU model is
represented using our model. Using this theorem, we show the asymptotic separability
for the SQU model. Namely, the likelihood ratio chi-squared statistic for the SQU model is
equivalent to the sum of those for the separated models, which helps deduce the reason
that the SQU model does not hold.
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QU Quasi-uniform association
QI Quasi-independence
S Symmetry
MH Marginal homogeneity
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SQI Symmetry plus quasi-independence
SQU Symmetry plus quasi-uniform association
LSQUk kth linear asymmetry plus quasi-uniform association
LSQIk kth linear asymmetry plus quasi-independence
MEk Marginal kth moment equality
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