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Abstract: This work extends some classical results of Bertrand curves to timelike ruled and devel-
opable surfaces using the E. Study map. This provides support to define two timelike ruled surfaces
which are offset in the sense of Bertrand. It is proved that every timelike ruled surface has a Bertrand
offset if and only if an equation should be satisfied among their dual invariants. In addition, some
new results and theorems concerning the developability of the Bertrand offsets of timelike ruled
surfaces are gained.
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1. Introduction

In Euclidean 3-space, the trajectory of an oriented line embedded at a moving rigid
body is generally a ruled surface. The geometry of ruled surfaces has been widely used
in computer-aided manufacturing (CAM), computer-aided geometric design (CAGD),
kinematics and geometric modeling [1–3]. Offset surfaces and ruled surfaces have been
examined in Euclidean and non-Euclidean spaces: Ravani and Ku [4] generalized the
theory of Bertrand curves for ruled and developable surfaces. It was shown that a ruled
surface allows an infinity of Bertrand offsets, similarly as the planar curve allows an infinity
of Bertrand mates. Based on the previous study, several properties of Bertrand offsets for
trajectory ruled surfaces were obtained. In [5], Küçük and Gürsoy gave some characteriza-
tions of Bertrand offsets of trajectory ruled surfaces in terms of the relationships among the
projection areas for the spherical images of Bertrand offsets and their integral invariants.
In [6], Kasap and Kuruoglu obtained the relationships between the integral invariants of the
pairs of a Bertrand ruled surface in Euclidean 3-space. In [7], the study of Bertrand offsets
of ruled surfaces in Minkowski 3-space was initiated. The involute-evolute offsets of ruled
surfaces were defined by Kasap et al. in [8]. Orbay et al. in [9] started the idea of Mannheim
offsets in the case of a ruled surface. Onder and Ugurlu presented the relations between
both invariants of Mannheim offsets of timelike ruled surfaces. In addition, the conditions
for the offsets of this kind of surface to be developable were given in [10]. These offset
surfaces are defined using the geodesic Frenet frame, which was given by [8]. According to
involute-evolute offsets of the ruled surface in [10], the integral invariants of these offsets
are calculated respecting the geodesic Frenet frame [11]. Important contributions to the
Bertrand offsets of these ruled surfaces were investigated in [12–16].

In this paper, the principle of Bertrand curves is generalized and introduced for time-
like ruled surfaces in Minkowski space. By using the E. Study map, two timelike ruled
surfaces which are offset in the sense of Bertrand are defined. In particular, we investigate
how to construct the Bertrand offset form, a timelike ruled surface with vanishing dual
geodesic curvature. Meanwhile, a timelike developable surface can have a timelike devel-
opable Bertrand offset if a linear equation holds between the curvature and the torsion of
its edge of regression.
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Hopefully, the results in this paper will have some applications in the analysis of
spatial motion and geometrical models.

2. Basic Concepts

We start with the basic concepts of dual numbers, dual Lorentzian vectors and the
E. Study map (see [1–3,17–19]): An oriented (non-null) line in Minkowski 3-space will be
defined using the point α ∈ L and the normalized direction vector x of L, that is, 〈x, x〉 = ±1.
To acquire components of L, one forms the moment vector x∗ = α×x respecting the origin
point at E3

1. In the case α that is replaced, one uses any point β = α+tx, t ∈ R at L, which
shows that x∗ is independent of α on L. In the case where two vectors x and x∗ are not
independent of each other, the following are satisfied:

〈x, x〉 = ±1, 〈x∗, x〉 =0.

The six components xi, x∗i (i = 1, 2, 3) of x as well as x∗are named the normalized
Plűcker coordinates of the line L. Thus, the two vectors x and x∗ locate the oriented line L.

The dual number x̂ is the number x + εx∗, where x and x∗are real numbers and ε is
the dual unit with the properties that ε 6= 0 and ε2 = 0. Therefore, the set

D3 = {x̂:= x + εx∗ =(x̂1, x̂2, x̂3)},

with inner product
〈x̂, ŷ〉 = −x̂1ŷ1 + x̂2ŷ2 + x̂3ŷ3,

defines the dual Lorentzian 3-space D3
1. Then,

f̂1×f̂2=f̂3, f̂1 × f̂3= −f̂2, f̂3×f̂2=f̂1,
−〈f̂1, f̂1〉=〈f̂2 ,̂f2〉 =〈f̂3 ,̂f3〉 =1,

}

where f̂1, f̂2 and f̂3 are the dual bases at the origin point O(0, 0, 0) of the dual Lorentzian 3-
space D3

1. Consequently, the point x̂ = (x̂1, x̂2, x̂3)
t has dual coordinates x̂i = (xi + εx∗i ) ∈ D.

If x 6= 0, the norm ‖x̂‖ of x̂ = x + εx∗ is

‖x̂‖ =
√
|〈x̂, x̂〉| =

√
|〈x, x〉|,

and then the vector x̂ is called the spacelike (respectively, timelike) dual unit vector in the
case where 〈x, x〉 =1 (respectively, 〈x, x〉 =−1). It is clear that:

〈x̂, x̂〉 = ±1⇐⇒ 〈x, x〉 = ±1, 〈x, x∗〉 =0.

The hyperbolicand Lorentzian (de Sitter space) dual unit spheres with center O, respectively, are:

H2
+ =

{
x̂∈D3

1 | −x̂2
1 + x̂2

2 + x̂2
3 = −1

}
,

and
S2

1 =
{

x̂∈D3
1 | −x̂2

1 + x̂2
2 + x̂2

3 = 1
}

.

Then, the E. Study map is given as in [17]: A pair of conjugate hyperboloids shapes dual
unit spheres. A set of null (lightlike) lines is represented by a common asymptotic cone,
the ring-formed hyperboloid presents a set of spacelike lines, the oval-formed hyperboloid
represents a set of timelike lines, and the pair of opposite vectors at the line is represented
by the opposite points of every hyperboloid (Figure 1).
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Figure 1. The dual hyperbolic and dual Lorentzian unit spheres.

Definition 1. For any two non-null dual vectors ̂̂x and ŷ in D3
1, we have:

(i) If x̂ and ŷ are two spacelike dual vectors, then

• If they span a spacelike dual plane, there is a unique dual number ϕ̂ = ϕ + εϕ∗,
0 ≤ ϕ ≤ π, and ϕ∗ ∈ R such that < x̂, ŷ >= ‖x̂‖‖ŷ‖ cos ϕ̂. This number is called
the spacelike dual angle between x̂ and ŷ.

• If they span a timelike dual plane, there is a unique dual number ϕ̂ = ϕ + εϕ∗ ≥ 0
such that < x̂, ŷ >= ε‖x̂‖‖ŷ‖ cosh ϕ̂, where ε = +1 or ε = −1 according to
sign(x̂2) = sign(ŷ2) or sign(x̂2) 6= sign(ŷ2), respectively. This number is called
the central dual angle between x̂ and ŷ.

(ii) If x̂ and ŷ are two timelike dual vectors, then there is a unique dual number ϕ̂ = ϕ+ εϕ∗ ≥
0 such that < x̂, ŷ >= ε‖x̂‖‖ŷ‖ cosh ϕ̂, where ε = +1 or ε = −1 according to whether
x̂ and ŷ have different time orientations or the same time orientation, respectively. This
dual number is called the Lorentzian timelike dual angle between x̂ and ŷ.

(iii) If x̂ is spacelike dual and ŷ is timelike dual, then there is a unique dual number ϕ̂ =
ϕ + εϕ∗ ≥ 0 such that < x̂, ŷ >= ε‖x̂‖‖ŷ‖ sinh ϕ̂, where ε = +1 or ε = −1 according
to sign(x̂2) = sign(ŷ1) or sign(x̂2) 6= sign(ŷ1). This number is called the Lorentzian
timelike dual angle between x̂ and ŷ.

3. Bertrand Offsets of Timelike Ruled Surfaces

A timelike ruled surface is determined as a surface that is generated from the motion
of an oriented timelike line along a curve in E3

1. Via the E. Study map, a timelike ruled
surface is represented by the timelike dual unit vector of an arbitrary real parameter. Then,
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the dual spherical image, denoted by (X), is a spacelike dual curve on the hyperbolic dual
unit sphere H2

+, that is,
t ∈ R 7→ x̂(t) ∈ H2

+.

where x̂(t) are specified using rulings of the surface and from here we do not distinguish
between a ruled surface and its own representative dual curve. The vector

t̂(t) = t + εt∗ =
dx̂(t)

dt

∥∥∥∥dx̂(t)
dt

∥∥∥∥−1

is the spacelike dual unit tangent vector on x̂(t). Introducing the spacelike dual unit vector
ĝ(t) = g(t) + εg∗(t) = x̂× t̂, we have the moving frame {x̂(t), t̂(t), ĝ(t)} on x̂(t) called the
Blaschke frame. Then,

−〈x̂, x̂〉=〈̂t,̂t〉 =〈ĝ,ĝ〉 =1,
ĝ = x̂× t̂, x̂ = t̂× ĝ, − t̂ = x̂× ĝ.

}
The Blaschke formula is [17]:

d
dt

 x̂
t̂
ĝ

 =

 0 p̂ 0
p̂ 0 q̂
0 −q̂ 0

 x̂
t̂
ĝ

, (1)

where

p̂(t) = p(t) + εp∗(t) =
∥∥∥∥dx̂(t)

dt

∥∥∥∥, q̂ = q + εq∗ = det(x̂,
dx̂(t)

dt
,

d2x̂(t)
dt2 ), (2)

are named the Blaschke invariants of the spacelike dual curve x̂(t). The dual unit vectors
x̂, t̂ and ĝ correspond to three concurrent mutually orthogonal oriented lines in E3

1 and
they intersect at the point c on x̂ named the striction (or central) point. The trajectory of the
central point is named the striction curve on (X). The dual arc-length ŝ of x̂(t) is defined as

dŝ = ds + εds∗ =
∥∥∥∥dx̂(t)

dt

∥∥∥∥dt = p̂(t)dt. (3)

The distribution parameter of the ruled surface is

µ(t) :=
ds∗

ds
=

p∗(t)
p(t)

. (4)

From Equations (1) and (3), we also obtain [17] : x̂
′

t̂
′

ĝ
′

 =

 0 1 0
1 0 γ̂
0 −γ̂ 0

 x̂
t̂
ĝ

 = ω̂×

 x̂
t̂
ĝ

; (′=
d
dŝ

), (5)

where ω̂ = ω + εω∗ = χ̂x̂ − ĝ is the Darboux vector and γ̂(ŝ) := γ + εγ∗ is the dual
geodesic curvature of x̂(ŝ) on H2

+. The tangent vector to the striction curve c(s) is given by

dc
ds

= −Γ(s)x + µ(s)g, (6)

which is a spacelike (respectively, a timelike) curve if |µ| > |Γ| (respectively, |µ| < |Γ|) [17].
The functions γ(s), Γ(s) and µ(s) are the curvature (construction) functions of the ruled
surface. These functions are described as follows: γ is the geodesic curvature of the
spacelike spherical image curve x = x(s), Γ describes the angle among the ruling of (X)
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and the tangent to the striction curve, and µ is its distribution parameter at the ruling.
These functions define a method for establishing timelike ruled surfaces by the equation

(X) : y(s, v) =
s∫
0

(−Γ(s)x(s) + µ(s)g(s))ds + vx(s). (7)

The unit normal vector field e is

e(s, v) =
∂y(s,v)

∂s × ∂y(s,v)
∂v∥∥∥ ∂y(s,v)

∂s × ∂y(s,v)
∂v

∥∥∥ = ± µt + vg√
µ2 + v2

, (8)

which is the spacelike central normal at the striction point (v = 0). Let φ be the angle
between e and t. Then,

e(s, v) = cos φt + sin φg.

It is clear that:
tan φ =

v
µ

.

This result is a Minkowski version of the well-known Chasles Theorem [1–3]. Hence, we
have the following:

Corollary 1. The tangent plane of the nondevelopable timelike ruled surface (X) turns clearly
through π along a ruling.

Under the assumption that |γ̂| < 1, we also specify the spacelike Disteli-axis:

b̂(ŝ) := b + εb∗ =
ω̂

‖ω̂‖=
χ̂x̂ + ĝ√

1− γ̂2
= sinh ψ̂x̂− cosh ψ̂ĝ, (9)

where ψ̂ = ψ + εψ∗ is the dual radius of curvature between b̂ and x̂. The dual geodesic
curvature γ̂(ŝ) in terms of Γ, µ and γ is [17]:

γ̂(ŝ) = γ + ε(Γ− γµ) = tanh ψ̂. (10)

Moreover, we also have:

γ̂(ŝ) = γ + ε(Γ− γµ) = tanh ψ + εψ∗(1− tanh2 ψ),
κ̂(ŝ) := κ + εκ∗ =

√
1− γ̂2 = 1

cosh ψ̂
,

τ̂(ŝ) := τ + ετ∗ = ±ψ̂
′
= ± γ̂

′

1−γ̂2 ,

 (11)

where κ̂(ŝ) is the dual curvature and τ̂(ŝ) is the dual torsion of the spacelike dual curve
x̂(ŝ) ∈ H2

+.

Proposition 1. If the dual geodesic curvature function γ̂(ŝ) is constant, x̂(ŝ) is a dual circle
on H2

+.

Proof. From Equation (11) we can find that having γ̂(ŝ) constant yields that τ̂(ŝ) = 0, and
if κ̂(ŝ) is constant, that leads to x̂(ŝ) being a spacelike dual circle on H2

+.

Definition 2. A nondevelopable timelike ruled surface (X) is defined as a constant Disteli-axis
timelike ruled surface if its dual geodesic curvature γ̂(ŝ) is constant.

According to the E. Study map, the constant Disteli-axis timelike ruled surface (X) is
formed by a one-parameter helical motion with constant pitch h about the spacelike Disteli-
axis b̂, by the oriented timelike line x̂ situated at a Lorentzian constant distance ψ∗ and a
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Lorentzian constant angle ψ relative to the timelike Disteli-axis b̂. The constant Disteli-axis
is essential to the curvature theory of ruled surfaces. Therefore, we will investigate some of
its properties later. As a special case, if γ̂(ŝ) = 0, then x̂(ŝ) is a spacelike great dual circle
on H2

+, that is,
ĉ = {x̂∈H2

+ | 〈x̂, b̂〉 = 0, with ‖b̂‖ = 1}.

In this case, all the rulings of (X) intersect orthogonally with the spacelike Disteli-axis b̂,
that is, ψ = ψ∗ = 0. Thus, we have γ̂(ŝ) = 0⇔ (X) is a timelike helicoidal surface.

Now, we give a kinematic interpretation of γ̂(ŝ) as follows: If x(ŝ) = x̂(ŝ + 2π), then
x(ŝ) is a closed curve on H2

+. According to the E. Study map, this curve corresponds
to an (X)-closed timelike ruled surface in E3

1. We define a spacelike dual unit vector û
rigidly linked with the Blaschke frame {x̂(ŝ), t̂(ŝ), ĝ(ŝ)} such that the spacelike oriented line
corresponding to û generates a timelike developable ruled surface (timelike torse) among
the orthogonal trajectory of the (X)-closed timelike ruled surface. Then, the spacelike dual
unit vector û can be represented as

û(ŝ)= sin β̂(ŝ)̂t(ŝ) + cos β̂(ŝ)ĝ(ŝ), with β̂ = β + εβ∗,

from which we obtain
û
′
(ŝ)= (β̂

′
− γ̂)û⊥ + sinh β̂x̂(ŝ).

Then, we call the total change of β̂(ŝ) the dual angle of pitch of the (X)-closed timelike
ruled surface, that is, ∮

dβ̂ =
∮

γ̂dŝ = −
∮
〈̂t, ĝ

′〉dŝ. (12)

It is separated into real and dual parts as:∮
dβ =

∮
γ(s)ds, and

∮
dβ∗ =

∮
Γ(s)ds. (13)

Hence, we arrive therefore at the conclusions that:

1. The angle pitch of an (X)-closed timelike ruled surface is

λx(s) =
∮

γ(s)ds = −
∮
〈t, dg

ds
〉ds, (14)

2. The pitch of an (X)-closed timelike ruled surface is

Lx(s) =
∮

Γ(s)ds = −
∮
〈x,

dc
ds
〉ds. (15)

The pitch Lx and the angle of pitch λx are integral invariants of an (X)-closed timelike
ruled surface. Then,

Λx(ŝ) = λx + εLx =
∮

dβ̂ = −
∮
〈̂t, ĝ

′〉dŝ, (16)

is the Minkowski version of the dual angle of pitch defined in [5,12,20,21].

Corollary 2. Any timelike ruled surface (X) is a timelike helicoidal surface iff its dual angle of
pitch Λ̂(ŝ) is identically zero.

Notice that in Equation (7):
(a) When µ(s) = 0 ( dc

ds ‖ x), the Blaschke frame {x(s), t(s), g(s)} is the usual Serret–
Frenet frame, that is, ζ1 = −x(s), ζ2 = −t(s) and ζ3 = g(s). Then, (X) is a timelike
tangential developable ruled surface (timelike tangential surface for short). Let u be the



Symmetry 2022, 14, 783 7 of 15

arc length parameter of c(s) and {ζ1(u), ζ2(u), ζ3(u)} be the usual moving Serret–Frenet
frame of c(s). Then,

d
du

 ζ1(u)
ζ2(u)
ζ3(u)

 =

 0 κ(u) 0
κ(u) 0 −τ(u)
0 τ(u) 0

 ζ1(u)
ζ2(u)
ζ3(u)

,

where κ(u) and τ(u) are the natural curvature and torsion of the striction curve c(u), in
the same order:

κ(u) =
1

Γ(u)
, τ(u) =

γ(u)
Γ(u)

, with Γ(u) 6= 0.

Therefore, the curvature function Γ(u) is the radius of curvature of the timelike striction
curve c(u). We arrive therefore at the conclusion that the timelike striction curve c(u) is
the regression edge of (X). Based on [22], the result is summarized as the following:

Theorem 1. Any timelike ruled surface (X) with the curvature function

Γ(u) = a cos
u∫
0

τ(u)du + b sin
u∫
0

τ(u)du; τ(u) 6= 0,

with real constants (a, b) 6= (0, 0) is a timelike tangential surface of a timelike curve lying on a
Lorentzian sphere with radius

√
a2 + b2.

(b) If Γ(s) = 0, then the striction curve is tangent to g, it is normal to the ruling
through c(s), ζ1 = g(s), ζ2 = −t(s) and ζ3 = x(s). In this case, (X) a timelike binormal
ruled surface. Similarly, we find

d
du

 ζ1(u)
ζ2(u)
ζ3(u)

 =

 0 κ(u) 0
−κ(u) 0 −τ(u)
0 −τ(u) 0

 ζ1(u)
ζ2(u)
ζ3(u)

,

where κ(u) and τ(u) are the natural curvature and torsion of the striction curve c(u),
respectively:

κ(u) =
γ(u)
µ(u)

, τ(u) =
1

µ(u)
, with µ(u) 6= 0.

Therefore, the curvature function µ(u) is the radius of torsion of the spacelike striction
curve c(s). The result is summarized as the following:

Theorem 2. Any timelike ruled surface (X) with the curvature function

µ(u)
γ(u)

= cosh
u∫
0

τ(u)du− b sinh
u∫
0

τ(u)du; τ(u) 6= 0,

with real constants (a, b) 6= (0, 0) is a timelike binormal surface of a spacelike curve lying on a
Lorentzian sphere with radius

√
a2 − b2 > 0.

Definition 3. Let (X) and (X) be two timelike ruled surfaces in E3
1. (X) is named the Bertrand

offset of (X) if there is a one-to-one correspondence between their rulings, that is, both surfaces have
a common spacelike central normal at the striction points of their corresponding rulings.

Suppose a timelike ruled surface (X) is represented by a timelike dual unit vector

x̂(ŝ) := x + εx∗=x̂1x̂ + x̂2 t̂ + x̂3ĝ, (17)
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where x̂i = x̂i(ŝ), (i = 1, 2, 3), are its dual coordinate functions. Therefore,

− x̂2
1 + x̂2

2 + x̂2
3 = −1. (18)

Differentiating Equations (17) and (18) with the aid of Equation (5), we find:

x̂
′

= (x̂
′

1 + x̂2)x̂ + (x̂
′

2 + x̂1 − γ̂x̂3 )̂t + (x̂
′

3 + γ̂x̂2)ĝ,

−x̂1 x̂
′

1 + x̂2 x̂
′

2 + x̂3 x̂
′

3 = 0.

 (19)

If we suppose that the dual curves x̂ = x̂(ŝ) and x̂=x̂(ŝ) are Bertrand offsets, that is,
t̂= t̂, then we have:

x̂
′

1 + x̂2 = 0, x̂
′

2 + x̂1 − γ̂x̂3 = −〈x̂
′

, t̂〉, x̂
′

3 + γ̂x̂2 = 0. (20)

Substituting Equation (20) in the second equation of (19) and simplifying it leads to

x̂2 = 0. (21)

From (19) and (21), we obtain

x̂
′

1 = 0, x̂1 + γ̂x̂3 = 〈x̂
′

, t̂〉, x̂
′

3 = 0⇒ x̂1 = ĉ1, x̂3 = ĉ3 ∈ D, (22)

where ĉ1 and ĉ3 are the dual constants of integrations. Hence, we define a constant
hyperbolic dual angle ϑ̂ = ϑ + εϑ∗ such that ĉ1 = cosh ϑ̂ and ĉ3 = sinh ϑ̂. Therefore, the
following theorem is proved:

Theorem 3. The offset hyperbolic dual angle formed by the generating timelike lines of a nondevel-
opable timelike ruled surface and its timelike Bertrand offset at corresponding central points remains
constant.

It is obvious from the above developments that the timelike ruled surface, generally,
has a double infinity of timelike Bertrand offsets. Every timelike Bertrand offset may be
generated using a hyperbolic constant linear offset ϑ∗ ∈ R and a hyperbolic constant
angular offset ϑ ∈ R. Any two timelike surfaces of this family of timelike ruled surfaces are
reciprocal of one another; in the case where (X) is the timelike Bertrand offset of (X), then
(X) is also a timelike Bertrand offset of (X). Thus, Equation (17) becomes:

x̂(ŝ)= cosh ϑ̂x̂(ŝ) + sinh ϑ̂ĝ(ŝ). (23)

In view of Definition 3, that for a ruled surface and its Bertrand offset the central
normals coincide, it follows from the above theorem that the central tangents of the two
timelike ruled surfaces also have the same constant dual angle at the corresponding points
on the two striction curves. Then,

ĝ = sinh ϑ̂x̂(ŝ) + cosh ϑ̂ĝ(ŝ).

Hence, the Blaschke frame of (X) can be given as follows: x̂(ŝ)
t̂(ŝ)
ĝ(ŝ)

 =

 cosh ϑ̂ 0 sinh ϑ̂
0 1 0

sinh ϑ̂ 0 cosh ϑ̂

 x̂(ŝ)
t̂(ŝ)
ĝ(ŝ)

. (24)

Notice that the previous equation is exactly the same as its similar equation for
Bertrand curves [4]. If ϑ = 0 (respectively, ϑ∗ = 0), the timelike Bertrand offsets are called
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oriented (respectively, coincident) offsets. Using Equations (16) and (24), we obtain that the
dual angle of pitch of an (X)-closed timelike ruled surface is given by:

Λx = Λx cosh ϑ̂ + Λg sinh ϑ̂. (25)

This is a new characterization of Bertrand offsets of closed timelike ruled surfaces
among their dual invariants. Then, the following theorem can be given.

Theorem 4. The nondevelopable timelike ruled surfaces (X) and (X) form a Bertrand offset iff
Equation (25) is satisfied.

Corollary 3. The Bertrand offset (X) of a timelike helicoidal surface, generally, does not have to be
a timelike helicoidal surface and can be a regular timelike ruled surface.

From the real and dual parts of Equation (25), the following are obtained:

λx = λx cosh ϑ + λg sinh ϑ,

Lx = (Lx − ϑ∗λg) cosh ϑ + (Lg − ϑ∗λx) sinh ϑ,

 (26)

This is a Lorentzian version of Holditch’s Theorem [5,12,20,22].
Let ŝ be the dual arc length of x̂(ŝ) ∈ H2

+. Then,

d
dŝ

 x̂(ŝ)
t̂(ŝ)
ĝ(ŝ)

 =

 0 1 0
1 0 γ̂

0 −γ̂ 0


 x̂(ŝ)

t̂(ŝ)
ĝ(ŝ)

, (27)

where

1 = (cosh ϑ̂− γ̂ sinh ϑ̂)
dŝ
dŝ

, γ̂ = (γ̂ cosh ϑ̂− sinh ϑ̂)
dŝ
dŝ

. (28)

By Equation (28), eliminating dŝ
dŝ

, we obtain

(γ̂− γ̂) cosh ϑ̂ + (1− γ̂γ̂) sinh ϑ̂ = 0. (29)

This is another characterization of Bertrand offsets of timelike ruled surfaces among their
dual angles of pitch. Then, we have the following theorem.

Theorem 5. The nondevelopable timelike ruled surfaces (X) and (X) form a Bertrand offset iff
Equation (29) is satisfied.

Corollary 4. The Bertrand offset of a constant Disteli-axis timelike ruled surface is also a constant
Disteli-axis timelike ruled surface.

On the other hand, for the timelike ruled surface (X), let e(s, v) be the spacelike unit
normal of an arbitrary point. Hence, as in Equation (8), we have:

e(s, v) =
µ t + vg√

µ2 + v2
, (30)

where µ refers to the distribution parameter of (X). Clearly, from Equations (8) and (30), the
normal vector of a timelike ruled surface is not the same as its timelike Bertrand offsets. In
other words, the Bertrand offsets to the timelike ruled surface are not parallel generally. At
this point, the next question is raised: what are the conditions of these two timelike ruled
surfaces’ offsets to be parallel offsets? The answer is as follows:
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Theorem 6. Two nondevelopable timelike ruled surfaces (X) and (X) are parallel offsets iff
(i) µ = µ;
(ii) each axis of the Blaschke frame of (X) is colinear with the conformable axis of (X).

Proof. Assume that (X) and (X) are parallel offsets, or e(s, v)× e(s, v) = 0. Then, we have:

−v2 sinh ϑt + v(µ− µ cosh ϑ)x + vµ sinh ϑg = 0.

The previous equation should hold true for all values of v 6= 0, which results in ϑ = 0
and µ = µ.

Corollary 5. Two developable timelike ruled surfaces (X) and (X) are parallel offsets iff each axis
of the Blaschke frame of (X) is colinear with the corresponding axis of (X).

Example 1. In what follows, we will construct the constant Disteli-axis timelike ruled surface

(X). Since γ̂(ŝ) is constant, from Equation (5), we obtain the ODE t̂
′′
− κ̂2 t̂ = 0. Without loss of

generality, assume t̂(0) = (0, 1, 0). The general solution of the ODE becomes

t̂(ŝ) =
(

b̂1 sinh κ̂ŝ, cosh κ̂ŝ + b̂2 sinh κ̂ŝ, b̂3 sinh κ̂ŝ
)

,

where b̂1, b̂2 and b̂3 are dual constants. Since
∥∥̂t
∥∥2

= 1, we obtain b̂2 = 0 and b̂2
1 − b̂2

3 = 1. It
follows that x̂(ŝ) is given by

x̂(ŝ) =

(
b̂1

κ̂
cosh κ̂ŝ + d̂1,

1
κ̂

sinh κ̂ŝ,
b̂3

κ̂
cosh κ̂ŝ + d̂3

)

where d̂1 and d̂3 are dual constants, b̂1d̂1 − b̂3d̂3 = 0, d̂2
3 − d̂2

1 = ρ̂2 − 1 and ρ̂2 = cosh2 ψ̂. We
now change the coordinates: ˜̂x1˜̂x2˜̂x3

 =

 b̂1 0 −b̂3
0 1 0
−b̂3 0 b̂1

 x̂1
x̂2
x̂3

.

By the new coordinates ˜̂x1, ˜̂x2 and ˜̂x3, the dual unit vector x̂(ŝ) becomes

x̂(ϕ̂) =
(
cosh ψ̂ cosh ϕ̂, cosh ψ̂ sinh ϕ̂, sinh ψ̂

)
, (31)

where ϕ̂ = κ̂ŝ. It is a spacelike spherical curve with the dual curvature κ̂ =
√

1− γ̂2 on the
hyperbolic dual unit sphere H2

+. Let ϕ̂ = ϕ(1 + εh), h denoting the pitch of the screw motion.
Then, Equation (31) represents a timelike ruled surface. Thus, the Blaschke frame is found as x̂

t̂
ĝ

 =

 cosh ψ̂ cosh ϕ̂ cosh ψ̂ sinh ϕ̂ sinh ψ̂
sinh ϕ̂ cosh ϕ̂ 0
sinh ψ̂ cosh ϕ̂ sinh ψ̂ sinh ϕ̂ cosh ψ̂


 f̂1

f̂2

f̂3

. (32)

It is easily seen from Equation (32) that

p̂(ϕ) = (1 + εh) cosh ψ̂, q̂(ϕ) = (1 + εh) sinh ψ̂,

dŝ = p̂(ϕ)dϕ, γ̂(ϕ) =: q̂(ϕ)
p̂(ϕ)

= tanh ψ̂.

 (33)

From the real and dual parts of Equation (33), we find

µ = ψ∗ tanh ψ + h, and Γ = ψ∗ − h tanh ψ. (34)
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Further, the Disteli-axis is
b̂ = sinh ψ̂x̂− cosh ψ̂ĝ = −f̂3. (35)

This means that (X) is a constant Disteli-axis timelike ruled surface, that is, the axis of the helical
motion is the constant Disetli-axis b̂. Therefore, the equation of the base curve is the spacelike or
timelike helix

c(ϕ) = (ψ∗ sinh ϕ, ψ∗ cosh ϕ,−hϕ). (36)

We can also show that if 〈 dc(ϕ)
dϕ , dx(ϕ)

dϕ 〉 = 0, then the base curve c(ϕ) of (X) is its striction
curve. Then, by means of the real part of Equation (31) and Equation (36), to the constant Disteli-
axis timelike ruled surface (X),

y(ϕ, v) := c(ϕ) + vx(ϕ) =

 ψ∗ sinh ϕ + v cosh ψ cosh ϕ
ψ∗ cosh ϕ + v cosh ψ sinh ϕ

−hϕ + v sinh ψ

, v ∈ R, (37)

where h, ψ and ψ∗ are constants. These constants can control the shape of (X). Take ψ = ψ∗ = 0
and h = −1, for example. The timelike helicoidal surface is shown in Figure 2, where −3 ≤ ϕ ≤ 3
and −1.5 ≤ v ≤ 1.5.

Figure 2. Timelike helicoidal surface.

Example 2. In this example, we verify the idea of Corollary 3. In view of Equations (24), (29), (32)
and (33) we have that: γ̂ = tanh ψ̂ = 0 (ψ = ψ∗ = 0)⇔ γ̂ + tanh ϑ̂ = 0 and

x̂(ϕ̂) =
(

cosh ϑ̂ cosh ϕ̂, cosh ϑ̂ sinh ϕ̂, sinh ϑ̂
)

. (38)

The equation of the striction curve of (X), in terms of c(ϕ), can therefore be written as:

c(ϕ) := c(ϕ) + ϑ∗t(ϕ) = (0, 0,−hϕ) + ϑ∗(sinh ϕ, cosh ϕ, 0). (39)

Then, we have the timelike Bertrand offset (X)

y(ϕ, v) := c(ϕ) + vx(ϕ) =

 ϑ∗ sinh ϕ + v cosh ϑ cosh ϕ
ϑ∗ cosh ϕ + v cosh ϑ sinh ϕ,

z = −hϕ + v sinh ϑ

, v ∈ R, (40)

where h, ϑ and ϑ∗ are constants. Take ϑ = ϑ∗ = 1 and h = −10, for example. The timelike
Bertrand offset is shown in Figure 3, where −3 ≤ ϕ ≤ 3 and −1.5 ≤ v ≤ 1.5. The graph of the
timelike ruled surface (X) with its Bertrand offset (X) is shown in Figure 4.
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Figure 3. Timelike Bertrand offset.

Figure 4. (X) and its Bertrand offset (X).

Properties of Striction Curves

With the aid of Definition 2, the striction curve c(s) of (X) is obtained by

c(s) = c(s) + ϑ∗t(s), (41)

from which we obtain

dc(s)
ds

ds
ds

= (−Γ + ϑ∗)x + (µ + γϑ∗)g, (42)

whereas, as in Equation (11), it is:

dc(s)
ds

= −Γ(s)x(s) + µ(s)g(s). (43)

Thus, from Equations (42) and (43), we have

ds
ds

=
−Γ + ϑ∗

−Γ cosh ϑ + µ sinh ϑ
=

µ + γϑ∗

−Γ sinh ϑ + µ cosh ϑ
. (44)

If µ = 0, that is, if (X) is the timelike tangent ruled surface of a given timelike space
curve of class three, then, using Equation (44), it follows that

µ = Γ
γϑ∗ cosh ϑ + (Γ− ϑ∗) sinh ϑ

γϑ∗ sinh ϑ + (Γ− ϑ∗) cosh ϑ
. (45)
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Thus, the Bertrand offset of a timelike tangential is not timelike tangential, that is,
µ(s) 6= 0. If (X) is also a timelike tangential, that is, µ(s) = 0, then we obtain the relation

(1− ϑ∗κ(u)) sinh ϑ + ϑ∗τ(u) cosh ϑ = 0. (46)

Corollary 6. If (X) and (X) are two timelike tangential Bertrand offsets, then their striction curves
are timelike Bertrand curves.

Furthermore, from Equation (46), the offset distance ϑ∗ is

ϑ∗ =
sinh ϑ

κ(u) sinh ϑ− τ(u) cosh ϑ
. (47)

Hence, when the timelike tangential offset of a timelike tangential surface is an ori-
ented offset, then it is a coincident offset. If a timelike plane curve τ(u) = 0, in view of
Equation (46), it leads to κ(u) being constant. Here, c(u) = c(u), and c(u) is closed and
self-mated. In addition, Equation (41) becomes

c(u) = c(u) + ϑ∗ζ2(u). (48)

From the fact that ‖ζ2‖2=1, we obtain:

‖c(u)− c(u)‖2 = ϑ∗2 > 0.

Corollary 7. Every closed self-mated timelike tangential surface has constant width.

When Γ = 0, the surface (X) is a timelike binormal ruled surface of its timelike striction
curve. From Equation (44), it follows that

Γ = µ
ϑ∗ cosh ϑ− (γϑ∗ + µ) sinh ϑ

ϑ∗ sinh ϑ− (γϑ∗ + µ) cosh ϑ
. (49)

Thus, the Bertrand offset of a timelike binormal is not timelike binormal, that is, Γ(s) 6= 0.
Furthermore, if the timelike Bertrand offset (X) is also timelike binormal, then we have:

τ(u)ϑ∗ cosh ϑ− (κ(u)ϑ∗ + 1) sinh ϑ = 0.

In similar arguments, we can give the corresponding results for a timelike tangential.
We omit the details here.

4. Conclusions

In this paper, a generalization of Bertrand offsets of curves for timelike ruled surfaces
has been developed. Interestingly, there are many similarities between the theory of
Bertrand curves and the theory of Bertrand offsets for timelike ruled surfaces. For instance,
a timelike ruled surface can have an infinity of Bertrand offsets in the same way as a
plane curve can have an infinity of Bertrand mates. Moreover, in recent years, the study
of singularity theory, submanifolds theory, harmonic quasiconformal mappings, etc. are
significant fields of modern mathematical research. Most researchers have paid more
attention to cross-disciplinary research, which is a new trend and a promising direction. It
is suggested that Gaussian and mean curvatures of these Bertrand offsets can be calculated
when the Weingarten map for the Bertrand offsets’ spacelike ruled surfaces is determined.
Moreover, connecting the study of singularity theory and submanifolds theory presented
in [23–36] can be considered to explore new methods to obtain more results and theorems
related to symmetric properties about this topic.
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