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1. Introduction

In 1929, Lidstone [1] introduced a generalization of Taylor’s series that approximates
an entire function f (z) of exponential type less than π in a neighborhood of two points
instead of one:

f (z) =
∞

∑
n=0

An(z) f 2n(1) +
∞

∑
n=0

An(1− z) f 2n(0),

where the set {An(z)}n called Lidstone polynomials. In [2], Whittaker proved that

An(z) =
22n+1

(2n + 1)!
B2n+1(

z + 1
2

),

where Bn(x) is the Bernoulli polynomial of degree n, which may be defined by the generat-
ing function

text

et − 1
=

∞

∑
n=0

Bn(x)
tn

n!
.

Recently, Ismail and Mansour [3] introduced a q analog of the Lidstone expansion
theorem where they expand a class of entire functions of q-exponential growth in terms
of Jackson q-derivatives of even degree at 0 and 1. See also [4–6] for some results and
applications to the q-Lidstone theorem.

In [7], the authors constructed another formula of q-Lidstone expansion theorem by
using the symmetric q-difference operator δq (see Section 2), that is

f (z) =
∞

∑
n=0

[
δ2n

q f (1)
δqz2n Ãn(z)−

δ2n
q f (0)
δqz2n B̃n(z)

]
, (1)

where Ãn(z) and B̃n(z) are the q-Lidstone polynomials defined by the generating functions

expq(zw)− expq(−zw)

expq(w)− expq(−w)
=

∞

∑
n=0

Ãn(z)w2n,

expq(zw)expq(−w)− expq(−zw)expq(w)

expq(w)− expq(−w)
=

∞

∑
n=0

B̃n(z)w2n.
(2)
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Moreover, it turns out that

B̃n(z) =
22n+1

[2n + 1]q!
B̃2n+1(z/2; q), (3)

where B̃n(z; q) are q-Bernoulli polynomials generated by

w expq(zw) expq(
−w

2 )

expq(
w
2 )− expq(

−w
2 )

=
∞

∑
n=0

B̃n(z; q)
wn

[n]q!
, (4)

and the function expq(.) is the q-exponential function which has the series representation

expq(z) =
∞

∑
n=0

q
n(n−1)

4

[n]q!
zn; z ∈ C. (5)

In this paper, we assume that q is a positive number less than one and the set A∗q is
defined by

A∗q := {qn : n ∈ N0} ∪ {0},

where N0 := {0, 1, 2, . . .}. We present the q-Lidstone polynomials Ãn(z) and B̃n(z) based
on the Green’s function of a q-boundary value problem

δ2n
q f (z)
δqz2n = φ(z),

δ2k
q f (0)
δqz2k = ak,

δ2k
q f (1)
δqz2k = bk (k = 0, 1, . . . , n− 1),

(6)

where f and φ are assumed to be continuous functions on A∗q . Also, we introduce the
q-Fourier series expansions of these functions and derive some results related to them. For
other recent contributions on this area, one may refer to [8–10].

This article is organized as follows: In the next section, we present some background
on q-analysis which we need in our investigations. In Section 3, we establish the existence
of a solution for the system (51). In Section 4, we introduce the q-Fourier series expansions
of some functions. As an application, in Section 5, we define q-Lidstone polynomials based
on the Green’s function of the system (51), and we provide the q-Fourier series expansions
of these polynomials. Moreover, relying on the obtained q-Fourier series, we derive a close
approximation to Ãn(z) and B̃n(z) for large n.

2. Preliminaries

Recall that the q-derivative Dq of the function f is defined by

Dq f (z) :=
f (z)− f (qz)

z− qz
, for z 6= 0, (7)

and the q-derivative at zero is defined to be f ′(0) if it exists, see [11]. The q-shifted fractional
(a; q)n of a ∈ C is defined by

(a; q)0 := 1 and (a; q)n :=
n

∏
j=0

(1− aqj), for n ∈ N,

and the q-number factorial [n]q! is defined for q 6= 1 by

[n]q! =
n

∏
j=0

[j]q, [j]q =
1− qj

1− q
.
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Jackson [12] introduced the following integral, as a right inverse of the q-derivative
(7), by ∫ b

a
f (t) dqt :=

∫ b

0
f (t)dqt−

∫ a

0
f (t) dqt (a, b ∈ C),

where ∫ z

0
f (t) dqt := (1− q)

∞

∑
n=0

zqn f (zqn),

provided that the series converges at z = a and z = b. We can interchange the order of
double q-integral by∫ z

0

∫ v

0
f (t) dqtdqv =

∫ z

0

∫ z

qt
f (t) dqvdqt =

∫ z

0
(z− qt) f (t) dqt. (8)

The symmetric q-difference operator δq which is acting on a function f defined by

δq f (z)
δqz

:=
f (q

1
2 z)− f (q

−1
2 z)

z(q
1
2 − q

−1
2 )

, for z 6= 0. (9)

(see [11,13]). From (7) and (9), it follows

δq f (z)
δqz

:= Dq f (
z
√

q
).

Therefore, we have ∫ a

0

δq f (z)
δqz

dqz = q
1
2 [ f (q−

1
2 a)− f (0)]. (10)

A function f defined on A∗q is called q-regular at zero if it satisfies

lim
n→∞

f (xqn) = f (0), for all x ∈ A∗q,t.

The q-integration by parts rule on A∗q (see [13]) is

∫ a

0
g(q−

1
2 t)

δq f (t)
δqt

dqt = q
1
2 (g f )(q−

1
2 t)
∣∣∣a
0
−
∫ a

0
f (q

1
2 t)

δqg(t)
δqt

dqt, (11)

where f and g are complex valued q-regular functions at zero.

We will use a q-exponential function expq(.) defined in (5) and the q-linear sine and
cosine, Sq(z) and Cq(z), which defined by

Sq(z) :=
expq(iz)− expq(−iz)

2i
=

∞

∑
n=0

(−1)n qn(n+ 1
2 )

[2n + 1]q!
z2n+1,

Cq(z) :=
expq(iz) + expq(−iz)

2
=

∞

∑
n=0

(−1)n qn(n− 1
2 )

[2n]q!
z2n.

(12)

They can be written in terms of the third Jackson q-Bessel function J(3)ν (z; q) [14,15]
as follows

Sq(z) := q1/8 (q
2; q2)∞

(q; q2)∞
z1/2 J(3)1/2(q

−1/4z; q2),

Cq(z) := q−3/8 (q
2; q2)∞

(q; q2)∞
z1/2 J(3)−1/2(q

−3/4z; q2).
(13)
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These functions satisfy

δqCq(wz)
δqz

= −w Sq(wz),
δqSq(wz)

δqz
= w Cq(wz), (14)

see [11,13]. We denote to the derivative of Sq(z) by S′q(z) and we assume that {wk : k ∈ N
with w1 < w2 < w3 < . . .} is the set of positive zeroes of Sq(z).

3. Existence Solutions of q-Differential System

In this section, we construct the solution of the q-differential system (51). Let Cn
q (A∗q)

denote the space of all continues functions with continuous q-derivatives up to order n− 1
on A∗q with values in R.

Lemma 1. Let f , φ ∈ C2
q(A∗q). Then, the solution of the q-differential equation

δ2
q f (z)
δqz2 − φ(z) = 0, (15)

subject to the boundary conditions f (0) = f (1) = 0 is equivalent to the basic Fredholm q-
integral equation

f (z) =
∫ 1

0
G̃(z, qt)φ(qt) dqt, (16)

where G̃(z, t) is the Green’s function defined on A∗q by

G̃(z, t) :=


√

qz(t− 1), z < t;

√
qt (z− 1), t < z.

(17)

Proof. The q-differential Equation (15) can be written as

D2
q f (z)−√qφ(qz) = 0 (z ∈ A∗q). (18)

By taking double q-integral for (18) and using (8), we obtain

f (z) = c0 + c1z +
√

q
∫ z

0
(z− qt)φ(qt) dqt, (19)

where c0 and c1 are arbitrary constant. Using the boundary conditions, we get c0 = 0 and

c1 = −√q
∫ 1

0
(1− qt)φ(qt) dqt.

Substituting in (19), we have

f (z) = −√qz
∫ 1

0
(1− qt)φ(qt) dqt +

√
q
∫ z

0
(z− qt)φ(qt) dqt,

and then we obtain (16).

Remark 1. By induction on n, one can verify that if f , φ ∈ C2n
q (A∗q), then the function

f (z) =
∫ 1

0
G̃n(z, qt) φ(qt) dqt, (20)
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is the solution of the q-boundary value problem
δ2n

q f (z)
δqz2n = φ(z),

δ2k
q f (1)
δqz2k =

δ2k
q f (0)
δqz2k = 0 (k = 0, 1, . . . , n− 1),

(21)

where G̃1(z, t) is the Green’s function defined as in (17) and

G̃n(z, qt) =
∫ 1

0
G̃(z, qw) G̃n−1(qw, qt) dqw

=
∫ 1

0
G̃n−1(z, qw) G̃(qw, qt) dqw (n = 2, 3, . . .).

(22)

Theorem 1. If f (z) and φ(z) are functions of class C2n
q (A∗q), then any solution of the system

δ2n
q f (z)
δqz2n = φ(z),

δ2k
q f (0)
δqz2k = ak,

δ2k
q f (1)
δqz2k = bk (k = 0, 1, . . . , n− 1)

(23)

is given by

f (z) = a0(z− 1) +
n−1

∑
k=1

ak

∫ 1

0
(qt− 1) G̃k(z, qt) dqt + b0z

+
n−1

∑
k=1

bk

∫ 1

0
(qt) G̃k(z, qt) dqt +

∫ 1

0
G̃n(z, qt)φ(qt) dqt,

(24)

where the functions G̃n(z, qt) (n ∈ N) defined as in (17) and (22).

Proof. From (17), (22) and Equation (23) we get

Rn(z) =
∫ 1

0
G̃n(z, qt)φ(qt) dqt

=
∫ 1

0
G̃n−1(z, qw)

∫ 1

0
G̃(qw, qt)

δ2n
q f (qt)
δqz2n dqt dqw

=
∫ 1

0
G̃n−1(z, qw)

[√
q(qw− 1)

∫ qw

0
(qt)

δ2n
q f (qt)
δqz2n dqt

+q
√

qw
∫ 1

qw
(qt− 1)

δ2n
q f (qt)
δqz2n dqt

]
dqw.

(25)

Using the rule (11), after some simplifications, we obtain

Rn(z) =
δ2n−2

q f (0)
δqz2n−2

∫ 1

0
(qw− 1) G̃n−1(z, qw) dqw−

δ2n−2
q f (1)
δqz2n−2

∫ 1

0
(qw) G̃n−1(z, qw) dqw +

∫ 1

0
G̃n−1(z, qw)

δ2n−2
q f (qw)

δqz2n−2 dqw.

(26)
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Repeating the q-integration by parts on the last q-integral of Equation (26) (n − 1)
times, we get

Rn(z) =
n−1

∑
k=1

δ2k
q f (0)

δqz2k

∫ 1

0
(qw− 1) G̃k(z, qt) dqw−

n−1

∑
k=1

δ2k
q f (1)

δqz2k

∫ 1

0
(qw) G̃k(z, qw) dqw +

∫ 1

0
G̃(z, qw)

δ2
q f (qw)

δqz2 dqw.

(27)

Computing the last integral of (27), we get

∫ 1

0
G̃(z, qw)

δ2
q f (qw)

δqz2 dqw

=
√

q(1− z)
∫ z

0
(−qw)

δ2
q f (qw)

δqz2 dqw−√qz
∫ 1

z
(1− qw)

δ2
q f (qw)

δqz2 dqw

=a0(1− z) + b0z− f (z).

(28)

Now, by substituting (28) in (27), we obtain the required result.

4. Certain q-Fourier Expansions

In this section, we consider the q-trigonometric functions Cq(z) and Sq(z) which
are defined in (12). Our aim is to obtain the q-Fourier expansions of certain q-integral
transforms involving the Green’s functions G̃n(z, qt) defined in Section 3.

Recall that the q-Fourier series expansion for f (x) = 1 and g(x) = x are given [13,16] by

1 =2
∞

∑
k=1

1− Cq(q1/2wk)

wkCq(q1/2wk)S′q(wk)
Sq(qwkx), x ∈ A∗q ,

x =− 1
q

∞

∑
k=1

2
wkS′q(wk)

Sq(qwkx),
(29)

where {wk : k ∈ N} is the set of positive zeroes of Sq(z).

Lemma 2. Let z ∈ A∗q . Then

∫ 1

0
G̃(z, qt)Sq(qwkt) dqt = − 1

w2
k

Sq(wkz).

Proof. From (17), we get∫ 1

0
G̃(z, qt)Sq(qwkt) dqt =

√
q(1− z)

∫ z

0
(−qt) Sq(qwkt) dqt

−√q z
∫ 1

z
(1− qt) Sq(qwkt) dqt.

(30)

Using q-integration by parts (11), we obtain∫ z

0
(−qt) Sq(qwkt) dqt =

z
√

q wk
Cq(

wkz
√

q
)− 1
√

q w2
k

Sq(wkz), (31)

∫ 1

z
(1− qt) Sq(qwkt) dqt =

(1− z)
√

q wk
Cq(

wkz
√

q
) +

1
√

q w2
k

Sq(wkz). (32)

Substituting from (31) and (32) into (30), we have the required result.
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Lemma 3. For z ∈ A∗q , the following q-Fourier series expansion holds:

∫ 1

0
G̃(z, qt) dqt = −

∞

∑
k=1

Lk

w2
k

Sq(wkz), (33)

where

Lk :=
2− 2Cq(q1/2wk)

wkCq(q1/2wk)S′q(wk)
.

Proof. According to (29), we have

1 = 2
∞

∑
k=1

1− Cq(q1/2wk)

wkCq(q1/2wk)S′q(wk)
Sq(qwkt), t ∈ A∗q . (34)

Multiplying (34) by G̃(z, qt), and integrating with respect to t from zero to unity, we get∫ 1

0
G̃(z, qt) dqt =

2
∞

∑
k=1

1− Cq(q1/2wk)

wkCq(q1/2wk)S′q(wk)

∫ 1

0
G̃(z, qt)Sq(wkqt) dqt.

(35)

By setting Lk :=
2− 2Cq(q1/2wk)

wkCq(q1/2wk)S′q(wk)
and using Lemma 2, we obtain the result.

Theorem 2. For z ∈ A∗q , the following q-Fourier series expansion holds:

∫ 1

0
G̃n(z, qt) dqt = (−1)n

∞

∑
k=1

Lk

w2n
k

Sq(wkz). (36)

Proof. We prove the result by mathematical induction with respect to n. We first observe
that for n = 1, the Formula (36) reduces to the formula in Lemma 3; that is, Equation (36) is
true for n = 1.

Next, assume that (36) is true for some n ≥ 2. Then∫ 1

0
G̃n+1(z, qt) dqt =

∫ 1

0

∫ 1

0
G̃(z, qy)G̃n(qy, qt) dqy dqt

=
∫ 1

0
G̃(z, qy)

[ ∫ 1

0
G̃n(qy, qt) dqt

]
dqy

=(−1)n
∞

∑
k=1

Lk

w2n
k

∫ 1

0
G̃(z, qy)Sq(wkqy) dqy

=(−1)n
∞

∑
k=1

Lk

w2n
k

[−1
w2

k
Sq(wkz)

]
=(−1)n+1

∞

∑
k=1

Lk

w2(n+1)
k

Sq(wkz).

Lemma 4. For z ∈ A∗q , the following q-Fourier series expansion holds:

∫ 1

0
(qt) G̃(z, qt) dqt = 2

∞

∑
k=1

1
w3

k S′q(wk)
Sq(wkz), k ∈ N. (37)
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Proof. Consider the function g(t) = t. From (29), we have

t = −1
q

∞

∑
k=1

2
wkS′q(wk)

Sq(qwkt), 0 < t < 1. (38)

Hence, the proof can be performed by using (38) similar to the proof of Lemma 3.

Theorem 3. For z ∈ A∗q , the following q-Fourier series expansion holds:

∫ 1

0
(qt) G̃n(z, qt) dqt = (−1)n

∞

∑
k=1

2
w2n+1

k S′q(wk)
Sq(wkz). (39)

Proof. The proof can be performed by induction similar to the proof of Theorem 2. So, we
omit it.

5. Fourier Series Expansions of the q-Lidstone Polynomials

The Fourier expansion of special polynomials has been studied by some mathemati-
cians; see [17–20]. In this section, we consider the q-Lidstone polynomials Ãn(z) and B̃n(z)
defined in (2). We define these polynomials by using the Green’s functions G̃n(z, qt) defined
in (17) and (22) and then, we introduce the q-Fourier Series Expansions for them.
We begin with the following result from [7]:

Lemma 5. For n ∈ N, the q-polynomials Ãn(z) and B̃n(z) satisfy the q-difference equations

δ2
q Ãn(z)

δqz2 = Ãn−1(z) and
δ2

q B̃n(z)
δqz2 = B̃n−1(z),

with the boundary conditions Ãn(0) = Ãn(1) = 0 = B̃n(0) = B̃n(1) = 0. Moreover,

Ã0(z) = z, B̃0(z) = z− 1.

We have the following:

Proposition 1. The q-Lidstone polynomials Ãn and B̃n can be expressed as Ã0(z) = z, B̃0(z) =
z− 1, and for n ∈ N

Ãn(z) = q
∫ 1

0
t G̃n(z, qt) dqt, (40)

B̃n(z) =
∫ 1

0
(qt− 1) G̃n(z, qt) dqt, (41)

where

G̃(z, t) := G̃1(z, t) =


√

qz(t− 1), 0 ≤ z < t ≤ 1;

√
qt (z− 1), 0 ≤ t < z ≤ 1.

G̃n(z, qt) =
∫ 1

0
G̃(z, qw) G̃n−1(qw, qt) dqw (n = 2, 3, . . .).

(42)

Proof. We use the induction on n. By Lemma 5, we have
δ2

q Ãn(z)
δqz2 = Ãn−1(z) (n ∈ N),

Ãn(0) = Ãn(1) = 0.

(43)
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So, if n = 1 we get the q-boundary value problem
δ2

q Ã1(z)
δqz2 = z (z ∈ A∗q),

Ã1(0) = Ã1(1) = 0.

(44)

According to Lemma 1, we have the result.
Next, assume that (40) is true for n ≥ 1. According to Remark (1), the solution Ãn+1(z)

of the q-boundary value problem
δ2

q Ãn+1(z)
δqz2 = Ãn(z),

Ãn+1(0) = Ãn+1(1) = 0,

(45)

is given by

Ãn+1(z) =
∫ 1

0
G̃(z, qw)Ãn(qw) dqw

=
∫ 1

0
G̃(z, qw)

[ ∫ 1

0
qt G̃n(qw, qt) dqt

]
dqw

=
∫ 1

0

[ ∫ 1

0
qt G̃(z, qw)G̃n(qw, qt) dqw

]
dqt

=
∫ 1

0
qt G̃n+1(z, qt) dqt.

Similarly, we can prove Equation (41). Finally, by induction on n (n ≥ 2) again, it is
easy to see that

G̃n(z, qt) =
∫ 1

0
G̃n−1(z, qw)G̃(qw, qt) dqw.

The following result offers the explicit representation of the interpolating q-Lidstone
polynomials and the associated error function Rn(z).

Theorem 4. Let 0 < q < 1 and f ∈ C2
q(A∗q). Then

f (z) =
n−1

∑
k=0

[ δ2k
q f (1)

δqz2k Ãk(z) +
δ2k

q f (0)

δqz2k B̃k(z)
]
+ Rn(z), (46)

where

Rn(z) =
∫ 1

0
G̃n(z, qt)

δ2n
q f (qz)
δqz2n dqt.

Proof. The proof follows immediately from Theorem 1 and Proposition 1, if we replace
ak, bk and φ(z) in Equation (24) by their values in terms of f (z) as given by the system
(23).
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Proposition 2. For z ∈ A∗q and n ∈ N, the Fourier series for q-Lidstone polynomials Ãn(z) and
B̃n(z) are given by

Ãn(z) = (−1)n
∞

∑
k=1

2
w2n+1

k S′q(wk)
Sq(wkz), (47)

B̃n(z) = (−1)n
∞

∑
k=1

2
w2n+1

k S′q(wk)Cq(q1/2wk)
Sq(wkz), (48)

where {wk : k ∈ N with w1 < w2 < w3 < . . .} is the set of positive zeroes of Sq(z).

Proof. By using Equation (40) and Theorem 3 we get (47). Similarly, Equation (48) follows
immediately from (41), (36) and (37).

We end this section by determining the asymptotic behavior of Ãn(z) and B̃n(z) for
large n.

Proposition 3. Let z ∈ A∗q . Then, there exist some constants Kq and Lq such that

∣∣∣(−1)n Ãn(z)−
2 Sq(w1z)

w2n+1
1 S′q(w1)

∣∣∣ < Kq

w2n
1

, (49)

∣∣∣(−1)nBn(z)−
2 Sq(w1z)

w2n+1
1 S′q(w1)Cq(

√
qw1)

∣∣∣ < Lq

w2n
1

, (50)

where w1 is the smallest positive zero of Sq(z).

Proof. From Equation (47), we get∣∣∣(−1)n Ãn(z)−
2

w2n+1
1 S′q(w1)

Sq(w1z)
∣∣∣ = ∣∣∣ ∞

∑
k=2

2
w2n+1

k S′q(wk)
Sq(wkz)

∣∣∣.
Since the function Sq(.) is bounded on A∗q , there exists a constant M > 0 such that

∣∣∣ ∞

∑
k=2

2
w2n+1

k S′q(wk)
Sq(wkz)

∣∣∣
<

M
w2n+1

2 S′q(w2)

[
1 + (

w2

w3
)2n+1 S′q(w2)

S′q(w3)
+ (

w2

w4
)2n+1 S′q(w2)

S′q(w4)
+ . . . . . .

]
.

Note that w1 < w2 < . . ., this implies the series in brackets tends to unity when n→ ∞.
Set Kq = M

w1S′q(w2)
, we get (49). Inequality (50) can be proved in the same manner by using

Equation (48).

6. Conclusions and Future Work

In this paper, we have introduced some definitions of the q-Lidstone polynomials
which are q-Bernoulli polynomials generated by the third Jackson q-Bessel function, based
on the Green’s function of the q-difference equation

δ2n
q f (z)
δqz2n = φ(z),

δ2k
q f (0)
δqz2k = ak,

δ2k
q f (1)
δqz2k = bk (k = 0, 1, . . . , n− 1).

(51)

New results are obtained; particularly the q-Fourier series expansions of these functions.
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Another study to give a characterization of those functions on the plane given by
absolutely convergent of q-Lidstone series expansion (1), using the results in Section 5, is
in progress.
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