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Abstract: Motivated by g-calculus, we define a new family of ¥, which is the family of bi-univalent
analytic functions in the open unit disc U that is related to the Einstein function E(z). We establish
estimates for the first two Taylor-Maclaurin coefficients |a;], |a3|, and the Fekete-Szego inequality
|a3 - ya%' for the functions that belong to these families.
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1. Introduction and Basic Concepts

Let A denote the family of functions f normalized by

[ee)

fz)=z+ Z az", 1

n=2

which are analytic and univalent in the open unit disc U = {z : |z| < 1} and satisfy the usual
normalization condition f(0) = f/(0) — 1 = 0. In addition, an important class of functions
will be called P. P is the family of analytic univalent functions ¢ with positive real part
mapping U onto domains symmetric with respect to the real axis and starlike with respect
to ¢(0) = 1 such that ¢’(0) > 0. In 1994, Ma and Minda [1] introduced the following subset
of functions:

2f'(z)

s'o) = {rea 15

where the symbol “<” refers to the subordination given in Definition 1 below. Ma
and Minda [1] investigated certain useful problems, including distortion, growth and
covering theorems.

Now, taking some particular functions instead of ¢ in 8*(¢), we achieve many sub-
families of the collection A which have different geometric interpretations, as for example:

(@) If ¢(z) = T2 with -1 < B < A < 1, then S'[4,B] := (1) is the set of
Janowski starlike functions; see [2]. Some interesting problems such as convolution
properties, coefficient inequalities, sufficient conditions, subordinate results and
integral preserving were discussed recently in [3-7] for some of the generalized
families associated with circular domains;

(ii) The class S} := 8*( V1 + z) was introduced by Sokél and Stankiewicz [8], consisting
of functions f € A such that zf’(z) / f(z) lies in the region bounded by the right-half

of the lemniscate of Bernoulli given by |w2 - 1| <1

<¢(z),peP,ze U},
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(iii) When we take ¢(z) = €%, then we have S; := S*(¢*) [9];

(iv) The family S;{ = S*(l + %%), k = V2 + 1, the rational function is studied in [10];

(v) ForS: :=8'(1+sinz), the class S!; isintroduced in [11];

(vi) By setting (z) = 1+ 3z + 322, the family S*(¢p) reduces to S,y introduced by Sharma
and his coauthors [12], consisting of functions f € A such thatzf’(z)/ f(z) lies in the
region bounded by the cardioid given by (9x? + 9y? — 18x + 5)% — 16(9x% + 9y* — 6x +
1) = 0, for more subclasses see [13-17].

In mathematics, Einstein function is a name occasionally used for one of the functions

2
(see [18,19]): Eq(z) := eZL—’ Er(z) == ﬁ, E3(z) :=log(1—¢7%), E4(z) := ezz—l

1
log(1—e7%).

It is easily noticed that both E; and E; have these nice properties (see Figure 1); the
image domain of E1 » (Ej ; are convex functions with Re(E1»(z)) > 0V z € U) is symmetric
along the real axis and starlike about E1 »(0) = 1. Unfortunately, Ei/z(O) # 0, thus, we shall
define the new functions E(z) := E;(z) +z and E(z) := E»(z) + 3z. Now, we can say that
E,E € P (see Figure 2).

The series representations are given as follows:

o] Bn
E(z) =1+z+) —", @)
n=1
and
1w (1-n)By ,
E(z)1+§z+;7z, 3)

where B, is the nth Bernoulli number; it is known that the Bernoulli numbers B,, can be
defined by the contour integral (see [20])

n! z dz
By=— Q) ———— 4
" 2ni56e2—1zn+1’ @
where the contour encloses the origin, has radius less than 2mi, and is traversed in a
counterclockwise direction; the first few members are
1 1 1 1
By=1B{=-=,Bp=-,By=—-——,Bg = —, ...
0 =T g™ T T30 T 2
and
B2n+l =0 VneN.

Here, in this paper, we will deal with the first function E, the function E is left as
open problem.

Let S be the subfamily of A consisting of all functions of the form (1) which are
univalent in U.

It is well known, by using the Koebe one-quarter theorem [21], that every univalent
function f € S containing a disc of radius 1 has an inverse function f~!, which is defined by

fFUf2) =2 (zeU),
and

ffF Y w) =w (a)e A= {a)e C:lw| < 31})
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(a) E1(U)

[> with(plots) : [> with(plots) :
> z:= 0.9999( cos(z) + I*sin(z)) : L> z:= 0.9999( cos(z) + I*sin(z)) :
- 2 =
> comple‘xplot(l e J (=0.2%m-0.3.2,-0.6 ..(m); > c(nnp/cxplut[[ Z€ | /=0.2%m0.8..1.2,-0.15..0.15 |:
- (& —1)
0.6 7 0.15-
0.4 4 0.10
0.2 1 0.05+
T T T 1 O—r T T T 1
o 0.5 1 1.5 2 1 0.9 1.0 1.1 1.2
0.2 -0.05+
-0.4 -0.10-
~0.6 -0.15-
C> [~

(b) Ex(U)

Figure 1. The images of unit disc U of the Einstein functions E; and Ej.

(a) E(U)

[> with(plots) : [> with(plots) :
L> z:=0.9999( cos(¢) + I*sin(r)) : L> z:=0.9999( cos(#) +7*sin(7)) :
2z
> cnmplexplot[ P ,t:()..2*7:,70.3.,2,70.6“0.6]; > cump[c{xp/ut[ 2 2 1-0.2%70.2,-0.6.06 |;
& _ (—1)
0.6 0.6 =
0.4 0.4
0.2 024
T T T 1 0 T T T 1
0 0.5 1 1.5 2 0.5 1 1.5 2
-0.2 1 -0.24
-0.4 -0.4
-0.6 - -0.6-
[> [>

(b) E(U)
Figure 2. The images of unit disc U of the modified Einstein functions E and E.

A function f € Sis said to be bi-univalent in U if both f and f~! are univalent in U.
Let ¥ denote the subfamily of S, consisting of all bi-univalent functions defined on the unit
disc U. Since f € X has the Maclaurin series expansion given by (1), a simple calculation
shows that its inverse g = f~! has the series expansion

g(w) = fHw) = w—aw® + (245 —az)w’ — ... (5)

Examples of functions in the class X are

zZ

1

4

and 1lo

—log(1-2z) >

d

1+z
1-z

)
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and so on. However, the familiar Koebe function is not a member of . Other common
examples of functions in S, such as

are also not members of 2.

Now, we recall some notations about the g-difference operator which is used in
investigating our main families. In view of Annaby and Mansour [22], the g-difference
operator is defined by

f(ZZ;:{(Z) 220,
def(z) =
£(0) , z=0;

and

Xf(2) = f(2), 4f(2) =df(z) and Ij'f(z) =04(df " f(z)) (meN).
Thus, for the function f € A defined by (1), we have

(9]

Iaf(2) =1+ ) gz (z#0), (6)
n=2
where ) )
q" - 'S
V| = = , veN.
S j;oq

We note that lim,_,1-[n], = n and lim;_1- d¢f(z) = f'(z).

Definition 1 ([23,24]). An analytic function f is said to be subordinate to another analytic function
g, written as f(z) < g(z) (z € U), if there exists a Schwarz function w, which is analytic in U
with w(0) = 0and |w(z)| <1 (z € U), such that f(z) = g(w(z)). In particular, if the function g
is univalent in U, then we have the following equivalence:

f(z) <g(2) & £(0) = g(0) and f(U) c g(U).

The aim of this article is to introduce new subfamilies of analytic bi-univalent functions
subordinate to the Einstein function E(z). Furthermore, we deduce some estimations to |a,|,
laz| and also the Fekete-Szego inequalities for the functions that belong to these subfamilies.

Definition 2. Consider 0 <6 <1,0< A <1landq e (0,1). The function f € X is said to be in
M5 (6, A; E) if it satisfies

. 1-A 0.(z0
(1—6)(%) 94f (2) +6% < E(2), @)
and
(1- 6)(L)Ha (@) + 521(@209(@)) E(w) ®)
g@) 909(@) ’

where g = f~1 is given by (5) and z, w € U.

Definition 3. Consider 0 <a <1,0<p <1landqe (0,1). The function f € A is said to be in
Ns.(a, B; E) if it satisfies

fz)

(1- a)T +adyf(z) —|—ﬁz(9§f(z) < E(2), 9)
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Ky =

and

(1- a)%a)) + adyg(w) + ﬁw&’gg(a)) < E(w), (10)

where g = f~1 is given by (5) and z,w € U.
Lemma 1 ([25,26]). Let a, B € Rand p1,pa2 € C. If Ip1l,Ipal < C, then

2alC, > |Bl,
|(@+B)p1 + (a—B)pa| < { 218IC,  lal <IBI.

Lemma 2 ([21]). Suppose that x(z) is analytic in the unit open disc U with x(0) =0, |x(z)| < 1,
and that

x(z) =p1z+ Z pnz"  forall zeU. (11)
n=2
Then,
lp1l<1, and |l <1-1Ip1?  (neN\{1)). (12)

2. Main Results

Unless otherwise mentioned, we assume in the reminder of this article that
0<6<1,0<1<1,0<a<1,0<8<1,9€(0,1),and also z,w € U.

Theorem 1. Let f € My (0, A E), then

ol < . , 13)
VI + Ka - 32| + 413
IKa| + |Kql
lag] < m, (14)
where
Ky =(1-0)([2;+A )+5[2}q([2]q—1)/
Ky =(1- 5)( 1)([2l;+ 4 1) - 6[2]4(12], - 1), (15)
K3 = (1-0)([8]g+A—-1)+0[3]4([3];-1),
(1-0)(A=1)([2l;+ 5 +1) —0[213([2]4 - 1) +2(1 - 6)[3]4 +26[3]4([3], - 1)

Proof. Let f and g be in My (6, A; E), then, it satisfies the conditions (7) and (8). However,
according to subordination principle Definition 1 and Lemma 2, there exist two Schwarz
functions u#(z) and v(w) of the form

(o]
= Z cpz", and v(w Zdnw ,

n=1
such that
z \' dq(204f(2))
-0 75) 2uf(e)+ XS — Elata), (16)
and
9 (a)(?qg( )

= E(0(w)). (17)
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After some simple calculations, we deduce

E(u(z)) = 1(72))6_(21)
u(z) | (@) (u@)*
s Mt T
— 1_|_C_12+1C ﬁ 24 ...
= ER| R R (18)
Bow) = “el@)
v(w) | (W)  (o(w)*
B T TR/
2
= 1+%w+%[d2+%]w2+---. (19)
Moreover,
1= (20
(1—6)(1%) 8”(2)—}-6%—1+K1azz+(1<3a3+K2a§)22+--- (20)
o |7 9dq(@dyg(w))
(1 _6)(m) dgg(w) + 5% =1-Kinpw+ (K4a§ —K3a3)a)2 +--, (21

where Kj :j=1,2,3,4 are stated in (15).
By substituting from (20), (21), (18) and (19) into (16) and (17), and by comparing the
coefficients on both sides, we obtain

K]IZZ - E/ (22)
2
1 c
Kzasz + Kzag = =l + 1 , (23)
2 6
-Kyap = d—1, (24)
2
21 dj
— Ksaz + Kya; = 5 dy + 5 I (25)
As a direct result of Equations (22) and (23), we get
1= _dlr (26)
and also,
2 +d* = 8K2a3. (27)
By adding (23) to (25) and then using (27), we obtain
2 5\, 1
(Kz + Ky — gKl)az = §<C2 + dz) (28)
Equations (26) and (28) together with using Lemma 2 imply that
2
K + Ky = SK{laaf < 1= e . (29)
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However, from Equation (22), we can deduce
le1 > = 4K lazf. (30)

By using (30) into (29), we obtain

1

lag| < . (31)

VI + Ky - 3] +4K2

Further, from (23) and (25) and also using (26), we get

1 c
K3(Ky + Ky)az = E(CZKAL —Kody + - (Ky = Kz)]- (32)
Thus, by virtue of Lemma 2, we find

1 Ky - K

KolKa + Kallas] < 2l + Kal + ler 2 o2~ Kl - K1) )

On the other hand, from the properties of the modulus, the term @ —|Ka| = |Ky4] < 0.

Then, we conclude
[Ko| + | Kyl

las| < m (34)
Thus, the proof is completed. O
Theorem 2. Let f € Nx(a, B E), then
1
lap| < =/ (35)
V2 (e, )+ 4(1 +a((2], 1) + pI2],)
1 2(1+“([2]q—1)+5[2]q)2 > 1
2(1+a([3]5-1)+p[24[3lg)” 1+a([8]-1)+p28; =
lag] < R (36)
Y(a,p;9)+1+a([3],-1)+8[2]4(3]4 2(1+a([2]4-1)+p[2]4) <1
2(1+a([3}q—1)+ﬁ[2]q[3][,)(Y(a,ﬁ;q)+2(1+a([2]4—1)+ﬁ[2]q)2)l 1+a(Blg-1)+p21Bly ~
where . ,
Y(a, ;) = 1+a([3lg ~ 1) + Bl2ly Blg - 5(1 + a2y ~ 1) + [2) (37)

Proof. Suppose f and g are in Ny (a,;E), then they satisfy the conditions (7) and (8).
According to subordination principle Definition 1 and Lemma 2, there exist two Schwarz
functions u#(z) and v(w) of the form

u(z) = i cpz", and v(w) = i d,o",
n=1 n=1
such that
(-0 L2t aof() + pea(a) = Eu(a)), @)
and (@)
(1- a)gT‘” + adgg(@) + pdg(@) = E(o(w)). (39)
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With some simple calculations, we get

(1—®£§Z+a%f&%ﬂﬁﬁf@):1+§:@+aﬂﬂ¢—ﬂ+ﬁM—ﬂAﬂﬂ%f (40)
n=2
and
(1- a)@ +adgg(w) + wdtg(w) = 1— (14 a[2]y - 1)+ B[2)g)azw + (1 + a[3]g — 1) + B[24[B]g)Jaza® + -+ . (41)

By substituting from (18), (19), (40) and (41) into (38) and (39) as well as by comparing
the coefficients on both sides, we conclude

(1+a([2l; = 1)+ BL2ly)oz = 3, 42)
1 2
(14 a([3]g = 1) + B[214[3]g)as = E(Cz + gl] (43)
—(1+a([2]; - 1) + Bl2lg)ar = %1, (44)
and 2
(-+ ool =1) o) 2 - = o+ ). )
From (42) and (44), we obtain
1 = —d1, (46)
and also,
&+ & =8(1+a([2),-1) +pl2,) 47)
By adding (43) to (45) with using (47), we get
2X(a,:0)8 = 5 (c2 +db). (49)

In view of Lemma 2, Equation (48) together with (46) imply that
2|Y(a, B q)|la2f? < 1= erf. (49)

On the other hand, from Equation (42), we can write

leal? = 4(1 + a([2]; ~ 1) + B2],) lazP. (50)
By using (50) in (49), we get

1
las| < , (51)

V2 ()1 + 4(1+ a2~ 1) + 12, )

where Y(a, B;9) is defined in (37).
Further, by subtracting (45) from (43) and using (46), we have

(8)) —dz ‘
4(1+ a([3], - 1) + B[214[3],)

a3 = a3+ (52)
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In view of Lemma 2, Equation (52) together with (50) imply that
2
2(1+al[2];—1)+ B[2] 1
a3l < [1- (1 a2y 1)+ ) 2zl + NGO
1+a([3], 1) +B[24[3) 2(1 + o 3y - 1) + Bl2l4 3lg)

By the virtue of (51), we can get the desired result. Thus, we completed the proof. 0O

Theorem 3. Suppose f € Mz (6,A;E) and u € R, then

[D(w,0,0:9),  |®(w0,A9)] 21
- 4
3 ~ a3l < 2K; { 1, ®(1,5,1;9)| < 1, 54
where Ko — Ko — 2UK
4 — K2 — 3
P(u,0,A;9) = —52, (55)
Ko + Ky — K2
and Ky, Ky, K3, and Ky are given by (15).
Proof. To investigate the desired result, subtract (25) from (23) by using (26), we get
_K4—k—22 (Cz—dz)
az = K a; + K (56)
Thus,
Ky — Ky —2uK —d
o (Ke=Ky-2uKs3\,  (c2—db)
az — pa, = ( 2K )a2 + T (57)
As a result of subsequent computations performed by using (28), we obtain
)a3 - Wzl D(u,06,A;q) +1)c2 + (P(u,6,A;9) — 1)da (58)
where ®(u, 6, A;q) is given by (55).
However, in view of Kanas et al. [27] and (12), we can obtain
lcal <1—c1> <1 and also |dp| < 1—1di? < 1. (59)

Now, applying Lemma 1 to (58), we can obtain the desired result directly. Thus, we
completed the proof. O

Theorem 4. Let us consider f € Nx.(a,B;E) and u € R, then

aralil
|ﬂ3 _ ‘uagl < ZY(“,ﬁ;Q) ’ Y(]aﬁq - _1 +ﬁ[2]’4[3] (60)
= 1 i
2(1+a([8]-1)+p[2,03];) Y(a,8:9) | = —1 )+B[2]4[3]4”

where Y (a, B;q) is defined by (37).

Proof. In order to investigate the desired result (60), subtract (45) from (43) taking in
consideration (46), we conclude

ey —d

4(1 +a(3];-1) +l3[2]q[3}Q)'

a3 — a3 = (1 - p)a3 + (61)
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By virtue of (48), we can get that

a3—#a2 = 0 S + 1
2 4Y(a,B;9) 4(1+a([3]q—1)+ﬁ[2]q[3}q)

I-p 1
42X (a, i q) 4(1+a([3],-1) + pl2l4[3ly) |

+d (62)

By applying Lemma 1 to (62) and using (59), we obtain the required result which
completes the proof. O
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