Article

Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc

1 Department of Mathematics, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
2 Department of Mathematics, Faculty of Science, Tanta University, Tanta 31527, Egypt; mohamed.saleem@science.tanta.edu.eg
3 Department of Basic Sciences, Common First Year, King Saud University, Alriyad 11451, Saudi Arabia; iali2.c@ksu.edu.sa
* Correspondence: ahhassan@science.zu.edu.eg

Abstract

Motivated by q-calculus, we define a new family of Σ, which is the family of bi-univalent analytic functions in the open unit disc U that is related to the Einstein function $E(z)$. We establish estimates for the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|,\left|a_{3}\right|$, and the Fekete-Szegö inequality $\left|a_{3}-\mu a_{2}^{2}\right|$ for the functions that belong to these families.

Keywords: analytic function; Einstein function; bernoulli numbers; bi-univalent function; quantum calculus; subordination

MSC: 30C45; 30C55; 11B68

1. Introduction and Basic Concepts

Let \mathcal{A} denote the family of functions f normalized by

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic and univalent in the open unit $\operatorname{disc} U=\{z:|z|<1\}$ and satisfy the usual normalization condition $f(0)=f^{\prime}(0)-1=0$. In addition, an important class of functions will be called $\mathcal{P} . \mathcal{P}$ is the family of analytic univalent functions ϕ with positive real part mapping U onto domains symmetric with respect to the real axis and starlike with respect to $\phi(0)=1$ such that $\phi^{\prime}(0)>0$. In 1994, Ma and Minda [1] introduced the following subset of functions: of the lemniscate of Bernoulli given by $\left|w^{2}-1\right|<1$;

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
This article is an open access article Licensee MDPI, Basel, Switzerland.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

Citation: El-Qadeem, A.H.; Mamon, M.A.; Elshazly, I.S. Application of Einstein Function on Bi-Univalent Functions Defined on the Unit Disc. Symmetry 2022, 14, 758. https:// doi.org/10.3390/sym14040758

Academic Editor: Erhan Deniz

Received: 21 March 2022
Accepted: 3 April 2022
Published: 6 April 2022
Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

$$
\mathcal{S}^{*}(\phi)=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)}<\phi(z), \phi \in \mathcal{P}, z \in U\right\}
$$

where the symbol " $<$ " refers to the subordination given in Definition 1 below. Ma and Minda [1] investigated certain useful problems, including distortion, growth and covering theorems.

Now, taking some particular functions instead of ϕ in $\mathcal{S}^{*}(\phi)$, we achieve many subfamilies of the collection \mathcal{A} which have different geometric interpretations, as for example:
(i) If $\phi(z)=\frac{1+A z}{1+B z}$ with $-1 \leq B<A \leq 1$, then $\mathcal{S}^{*}[A, B]:=\mathcal{S}^{*}\left(\frac{1+A z}{1+B z}\right)$ is the set of Janowski starlike functions; see [2]. Some interesting problems such as convolution properties, coefficient inequalities, sufficient conditions, subordinate results and integral preserving were discussed recently in [3-7] for some of the generalized families associated with circular domains;
(ii) The class $\mathcal{S}_{L}^{*}:=\mathcal{S}^{*}(\sqrt{1+z})$ was introduced by Sokól and Stankiewicz [8], consisting of functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)$ lies in the region bounded by the right-half
(iii) When we take $\phi(z)=e^{z}$, then we have $\mathcal{S}_{e}^{*}:=\mathcal{S}^{*}\left(e^{z}\right)$ [9];
(iv) The family $\mathcal{S}_{R}^{*}:=\mathcal{S}^{*}\left(1+\frac{z}{k} \frac{k+z}{k-z}\right), k=\sqrt{2}+1$, the rational function is studied in [10];
(v) For $\mathcal{S}_{\sin }^{*}:=\mathcal{S}^{*}(1+\sin z)$, the class $\mathcal{S}_{\sin }^{*}$ is introduced in [11];
(vi) By setting $\phi(z)=1+\frac{4}{3} z+\frac{2}{3} z^{2}$, the family $\mathcal{S}^{*}(\phi)$ reduces to $S_{c a r}$ introduced by Sharma and his coauthors [12], consisting of functions $f \in \mathcal{A}$ such that $z f^{\prime}(z) / f(z)$ lies in the region bounded by the cardioid given by $\left(9 x^{2}+9 y^{2}-18 x+5\right)^{2}-16\left(9 x^{2}+9 y^{2}-6 x+\right.$ $1)=0$, for more subclasses see [13-17].
In mathematics, Einstein function is a name occasionally used for one of the functions (see $[18,19]): E_{1}(z):=\frac{z}{e^{z}-1}, E_{2}(z):=\frac{z^{2} e^{z}}{\left(e^{z}-1\right)^{2}}, E_{3}(z):=\log \left(1-e^{-z}\right), E_{4}(z):=\frac{z}{e^{z}-1}-$ $\log \left(1-e^{-z}\right)$.

It is easily noticed that both E_{1} and E_{2} have these nice properties (see Figure 1); the image domain of $E_{1,2}\left(E_{1,2}\right.$ are convex functions with $\left.\operatorname{Re}\left(E_{1,2}(z)\right)>0 \forall z \in U\right)$ is symmetric along the real axis and starlike about $E_{1,2}(0)=1$. Unfortunately, $E_{1,2}^{\prime}(0) \ngtr 0$, thus, we shall define the new functions $E(z):=E_{1}(z)+z$ and $\mathbb{E}(z):=E_{2}(z)+\frac{1}{2} z$. Now, we can say that $E, \mathbb{E} \in \mathcal{P}$ (see Figure 2).

The series representations are given as follows:

$$
\begin{equation*}
E(z)=1+z+\sum_{n=1}^{\infty} \frac{B_{n}}{n!} z^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}(z)=1+\frac{1}{2} z+\sum_{n=1}^{\infty} \frac{(1-n) B_{n}}{n!} z^{n} \tag{3}
\end{equation*}
$$

where B_{n} is the nth Bernoulli number; it is known that the Bernoulli numbers B_{n} can be defined by the contour integral (see [20])

$$
\begin{equation*}
B_{n}=\frac{n!}{2 \pi i} \oint \frac{z}{e^{z}-1} \frac{d z}{z^{n+1}} \tag{4}
\end{equation*}
$$

where the contour encloses the origin, has radius less than $2 \pi i$, and is traversed in a counterclockwise direction; the first few members are

$$
B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, B_{6}=\frac{1}{42}, \ldots
$$

and

$$
B_{2 n+1}=0 \quad \forall n \in \mathbb{N}
$$

Here, in this paper, we will deal with the first function E, the function \mathbb{E} is left as open problem.

Let \mathcal{S} be the subfamily of \mathcal{A} consisting of all functions of the form (1) which are univalent in U.

It is well known, by using the Koebe one-quarter theorem [21], that every univalent function $f \in \mathcal{S}$ containing a disc of radius $\frac{1}{4}$ has an inverse function f^{-1}, which is defined by

$$
f^{-1}(f(z))=z, \quad(z \in \mathcal{U})
$$

and

$$
f\left(f^{-1}(\omega)\right)=\omega \quad\left(\omega \in \Delta=\left\{\omega \in \mathbb{C}:|\omega|<\frac{1}{4}\right\}\right)
$$

Figure 1. The images of unit disc U of the Einstein functions E_{1} and E_{2}.

Figure 2. The images of unit disc U of the modified Einstein functions E and \mathbb{E}.
A function $f \in \mathcal{S}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the subfamily of \mathcal{S}, consisting of all bi-univalent functions defined on the unit disc U. Since $f \in \Sigma$ has the Maclaurin series expansion given by (1), a simple calculation shows that its inverse $g=f^{-1}$ has the series expansion

$$
\begin{equation*}
g(\omega)=f^{-1}(\omega)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\ldots \tag{5}
\end{equation*}
$$

Examples of functions in the class Σ are

$$
\frac{z}{1-z^{\prime}} \quad-\log (1-z) \quad \text { and } \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not a member of Σ. Other common examples of functions in \mathcal{S}, such as

$$
z-\frac{z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ.
Now, we recall some notations about the q-difference operator which is used in investigating our main families. In view of Annaby and Mansour [22], the q-difference operator is defined by

$$
\partial_{q} f(z)= \begin{cases}\frac{f(q z)-f(z)}{z(q-1)}, & z \neq 0 \\ f^{\prime}(0) & , \quad z=0\end{cases}
$$

and

$$
\partial_{q}^{0} f(z)=f(z), \quad \partial_{q}^{1} f(z)=\partial_{q} f(z) \quad \text { and } \quad \partial_{q}^{m} f(z)=\partial_{q}\left(\partial_{q}^{m-1} f(z)\right) \quad(m \in \mathbb{N})
$$

Thus, for the function $f \in \mathcal{A}$ defined by (1), we have

$$
\begin{equation*}
\partial_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1} \quad(z \neq 0) \tag{6}
\end{equation*}
$$

where

$$
[v]_{q}=\frac{q^{v}-1}{q-1}=\sum_{j=0}^{v-1} q^{j}, \quad v \in \mathbb{N} .
$$

We note that $\lim _{q \rightarrow 1^{-}}[n]_{q}=n$ and $\lim _{q \rightarrow 1^{-}} \partial_{q} f(z)=f^{\prime}(z)$.
Definition $1([23,24])$. An analytic function f is said to be subordinate to another analytic function g, written as $f(z)<g(z) \quad(z \in U)$, if there exists a Schwarz function ω, which is analytic in U with $\omega(0)=0$ and $|\omega(z)|<1 \quad(z \in U)$, such that $f(z)=g(w(z))$. In particular, if the function g is univalent in U, then we have the following equivalence:

$$
f(z)<g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

The aim of this article is to introduce new subfamilies of analytic bi-univalent functions subordinate to the Einstein function $E(z)$. Furthermore, we deduce some estimations to $\left|a_{2}\right|$, $\left|a_{3}\right|$ and also the Fekete-Szegö inequalities for the functions that belong to these subfamilies.

Definition 2. Consider $0 \leq \delta \leq 1,0 \leq \lambda \leq 1$ and $q \in(0,1)$. The function $f \in \Sigma$ is said to be in $\mathcal{M}_{\Sigma}(\delta, \lambda ; E)$ if it satisfies

$$
\begin{equation*}
(1-\delta)\left(\frac{z}{f(z)}\right)^{1-\lambda} \partial_{q} f(z)+\delta \frac{\partial_{q}\left(z \partial_{q} f(z)\right)}{\partial_{q} f(z)} \prec E(z) \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\delta)\left(\frac{\omega}{g(\omega)}\right)^{1-\lambda} \partial_{q} g(\omega)+\delta \frac{\partial_{q}\left(\omega \partial_{q} g(\omega)\right)}{\partial_{q} g(\omega)}<E(\omega) \tag{8}
\end{equation*}
$$

where $g=f^{-1}$ is given by (5) and $z, \omega \in U$.
Definition 3. Consider $0 \leq \alpha \leq 1,0 \leq \beta \leq 1$ and $q \in(0,1)$. The function $f \in \mathcal{A}$ is said to be in $\mathcal{N}_{\Sigma}(\alpha, \beta ; E)$ if it satisfies

$$
\begin{equation*}
(1-\alpha) \frac{f(z)}{z}+\alpha \partial_{q} f(z)+\beta z \partial_{q}^{2} f(z)<E(z) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{g(\omega)}{\omega}+\alpha \partial_{q} g(\omega)+\beta \omega \partial_{q}^{2} g(\omega)<E(\omega) \tag{10}
\end{equation*}
$$

where $g=f^{-1}$ is given by (5) and $z, \omega \in U$.
Lemma 1 ([25,26]). Let $\alpha, \beta \in \mathbb{R}$ and $p_{1}, p_{2} \in \mathbb{C}$. If $\left|p_{1}\right|,\left|p_{2}\right|<\zeta$, then

$$
\left|(\alpha+\beta) p_{1}+(\alpha-\beta) p_{2}\right| \leq \begin{cases}2|\alpha| \zeta, & |\alpha| \geq|\beta| \\ 2|\beta| \zeta, & |\alpha| \leq|\beta| .\end{cases}
$$

Lemma 2 ([21]). Suppose that $\chi(z)$ is analytic in the unit open disc U with $\chi(0)=0,|\chi(z)|<1$, and that

$$
\begin{equation*}
\chi(z)=\rho_{1} z+\sum_{n=2}^{\infty} \rho_{n} z^{n} \quad \text { for all } \quad z \in U \tag{11}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\left|\rho_{1}\right| \leq 1, \quad \text { and } \quad\left|\rho_{n}\right| \leq 1-\left|\rho_{1}\right|^{2} \quad(n \in \mathbb{N} \backslash\{1\}) . \tag{12}
\end{equation*}
$$

2. Main Results

Unless otherwise mentioned, we assume in the reminder of this article that $0 \leq \delta \leq 1,0 \leq \lambda \leq 1,0 \leq \alpha \leq 1,0 \leq \beta \leq 1, q \in(0,1)$, and also $z, \omega \in U$.

Theorem 1. Let $f \in \mathcal{M}_{\Sigma}(\delta, \lambda ; E)$, then

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{1}{\sqrt{\left|K_{2}+K_{4}-\frac{2}{3} K_{1}^{2}\right|+4 K_{1}^{2}}} \tag{13}\\
& \left|a_{3}\right| \leq \frac{\left|K_{2}\right|+\left|K_{4}\right|}{2 K_{3}\left|K_{2}+K_{4}\right|^{\prime}} \tag{14}
\end{align*}
$$

where

$$
\left.\begin{array}{c}
K_{1}=(1-\delta)\left([2]_{q}+\lambda-1\right)+\delta[2]_{q}\left([2]_{q}-1\right), \\
K_{2}=(1-\delta)(\lambda-1)\left([2]_{q}+\frac{\lambda}{2}-1\right)-\delta[2]_{q}\left([2]_{q}-1\right), \tag{15}\\
K_{3}=(1-\delta)\left([3]_{q}+\lambda-1\right)+\delta[3]_{q}\left([3]_{q}-1\right), \\
K_{4}=(1-\delta)(\lambda-1)\left([2]_{q}+\frac{\lambda}{2}+1\right)-\delta[2]_{q}^{2}\left([2]_{q}-1\right)+2(1-\delta)[3]_{q}+2 \delta[3]_{q}\left([3]_{q}-1\right) .
\end{array}\right\}
$$

Proof. Let f and g be in $\mathcal{M}_{\Sigma}(\delta, \lambda ; E)$, then, it satisfies the conditions (7) and (8). However, according to subordination principle Definition 1 and Lemma 2, there exist two Schwarz functions $u(z)$ and $v(\omega)$ of the form

$$
u(z)=\sum_{n=1}^{\infty} c_{n} z^{n}, \text { and } \quad v(\omega)=\sum_{n=1}^{\infty} d_{n} \omega^{n}
$$

such that

$$
\begin{equation*}
(1-\delta)\left(\frac{z}{f(z)}\right)^{1-\lambda} \partial_{q} f(z)+\delta \frac{\partial_{q}\left(z \partial_{q} f(z)\right)}{\partial_{q} f(z)}=E(u(z)) \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\delta)\left(\frac{\omega}{g(\omega)}\right)^{1-\lambda} \partial_{q} g(\omega)+\delta \frac{\partial_{q}\left(\omega \partial_{q} g(\omega)\right)}{\partial_{q} g(\omega)}=E(v(\omega)) \tag{17}
\end{equation*}
$$

After some simple calculations, we deduce

$$
\begin{align*}
E(u(z)) & =\frac{u(z) e^{u}(z)}{e^{u(z)}-1} \\
& =1+\frac{u(z)}{2}+\frac{(u(z))^{2}}{12}-\frac{(u(z))^{4}}{720}+\cdots \\
& =1+\frac{c_{1}}{2} z+\frac{1}{2}\left(c_{2}+\frac{c_{1}^{2}}{6}\right) z^{2}+\cdots, \tag{18}\\
E(v(\omega)) & =\frac{v(\omega) e^{v}(\omega)}{e^{v(\omega)}-1} \\
& =1+\frac{v(\omega)}{2}+\frac{(v(\omega))^{2}}{12}-\frac{(v(\omega))^{4}}{720}+\cdots \\
& =1+\frac{d_{1}}{2} \omega+\frac{1}{2}\left(d_{2}+\frac{d_{1}^{2}}{6}\right) \omega^{2}+\cdots . \tag{19}
\end{align*}
$$

Moreover,

$$
\begin{gather*}
(1-\delta)\left(\frac{z}{f(z)}\right)^{1-\lambda} \partial_{q} f(z)+\delta \frac{\partial_{q}\left(z \partial_{q} f(z)\right)}{\partial_{q} f(z)}=1+K_{1} a_{2} z+\left(K_{3} a_{3}+K_{2} a_{2}^{2}\right) z^{2}+\cdots \tag{20}\\
(1-\delta)\left(\frac{\omega}{g(\omega)}\right)^{1-\lambda} \partial_{q} g(\omega)+\delta \frac{\partial_{q}\left(\omega \partial_{q} g(\omega)\right)}{\partial_{q} g(\omega)}=1-K_{1} a_{2} \omega+\left(K_{4} a_{2}^{2}-K_{3} a_{3}\right) \omega^{2}+\cdots, \tag{21}
\end{gather*}
$$

where $K_{j}: j=1,2,3,4$ are stated in (15).
By substituting from (20), (21), (18) and (19) into (16) and (17), and by comparing the coefficients on both sides, we obtain

$$
\begin{align*}
K_{1} a_{2} & =\frac{c_{1}}{2} \tag{22}\\
K_{3} a_{3}+K_{2} a_{2}^{2} & =\frac{1}{2}\left(c_{2}+\frac{c_{1}^{2}}{6}\right), \tag{23}\\
-K_{1} a_{2} & =\frac{d_{1}}{2} \tag{24}\\
-K_{3} a_{3}+K_{4} a_{2}^{2} & =\frac{1}{2}\left(d_{2}+\frac{d_{1}^{2}}{6}\right) . \tag{25}
\end{align*}
$$

As a direct result of Equations (22) and (23), we get

$$
\begin{equation*}
c_{1}=-d_{1}, \tag{26}
\end{equation*}
$$

and also,

$$
\begin{equation*}
c_{1}^{2}+d_{1}^{2}=8 K_{1}^{2} a_{2}^{2} \tag{27}
\end{equation*}
$$

By adding (23) to (25) and then using (27), we obtain

$$
\begin{equation*}
\left(K_{2}+K_{4}-\frac{2}{3} K_{1}^{2}\right) a_{2}^{2}=\frac{1}{2}\left(c_{2}+d_{2}\right) . \tag{28}
\end{equation*}
$$

Equations (26) and (28) together with using Lemma 2 imply that

$$
\begin{equation*}
\left|K_{2}+K_{4}-\frac{2}{3} K_{1}^{2}\right|\left|a_{2}\right|^{2} \leq 1-\left|c_{1}\right|^{2} . \tag{29}
\end{equation*}
$$

However, from Equation (22), we can deduce

$$
\begin{equation*}
\left|c_{1}\right|^{2}=4 K_{1}^{2}\left|a_{2}\right|^{2} \tag{30}
\end{equation*}
$$

By using (30) into (29), we obtain

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{\sqrt{\left|K_{2}+K_{4}-\frac{2}{3} K_{1}^{2}\right|+4 K_{1}^{2}}} \tag{31}
\end{equation*}
$$

Further, from (23) and (25) and also using (26), we get

$$
\begin{equation*}
K_{3}\left(K_{2}+K_{4}\right) a_{3}=\frac{1}{2}\left(c_{2} K_{4}-K_{2} d_{2}+\frac{c_{1}^{2}}{6}\left(K_{4}-K_{2}\right)\right) . \tag{32}
\end{equation*}
$$

Thus, by virtue of Lemma 2, we find

$$
\begin{equation*}
K_{3}\left|K_{2}+K_{4} \|\left|a_{3}\right| \leq \frac{1}{2}\left(\left|K_{2}\right|+\left|K_{4}\right|+\left|c_{1}\right|^{2}\left(\frac{\left|K_{4}-K_{2}\right|}{6}-\left|K_{2}\right|-\left|K_{4}\right|\right)\right) .\right. \tag{33}
\end{equation*}
$$

On the other hand, from the properties of the modulus, the term $\frac{\left|K_{4}-K_{2}\right|}{6}-\left|K_{2}\right|-\left|K_{4}\right| \leq 0$. Then, we conclude

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\left|K_{2}\right|+\left|K_{4}\right|}{2 K_{3}\left|K_{2}+K_{4}\right|} \tag{34}
\end{equation*}
$$

Thus, the proof is completed.
Theorem 2. Let $f \in \mathcal{N}_{\Sigma}(\alpha, \beta ; E)$, then

$$
\begin{align*}
\left|a_{2}\right| \leq \frac{1}{\sqrt{2|\mathrm{Y}(\alpha, \beta ; q)|+4\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}}}, \tag{35}\\
\left|a_{3}\right| \leq \begin{cases}\frac{1}{2\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)^{\prime}}, & \frac{2\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}}{1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}} \geq 1, \\
\frac{\mathrm{Y}(\alpha, \beta ; q)+1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}}{2\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)\left(\mathrm{Y}(\alpha, \beta ; q)+2\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}\right)^{2}}, & \frac{2\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}}{1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}} \leq 1,\end{cases} \tag{36}
\end{align*}
$$

where

$$
\begin{equation*}
\mathrm{Y}(\alpha, \beta ; q)=1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}-\frac{1}{3}\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2} \tag{37}
\end{equation*}
$$

Proof. Suppose f and g are in $\mathcal{N}_{\Sigma}(\alpha, \beta ; E)$, then they satisfy the conditions (7) and (8). According to subordination principle Definition 1 and Lemma 2, there exist two Schwarz functions $u(z)$ and $v(\omega)$ of the form

$$
u(z)=\sum_{n=1}^{\infty} c_{n} z^{n}, \text { and } v(\omega)=\sum_{n=1}^{\infty} d_{n} \omega^{n}
$$

such that

$$
\begin{equation*}
(1-\alpha) \frac{f(z)}{z}+\alpha \partial_{q} f(z)+\beta z \partial_{q}^{2} f(z)=E(u(z)) \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{g(\omega)}{\omega}+\alpha \partial_{q} g(\omega)+\beta \omega \partial_{q}^{2} g(\omega)=E(v(\omega)) . \tag{39}
\end{equation*}
$$

With some simple calculations, we get

$$
\begin{equation*}
(1-\alpha) \frac{f(z)}{z}+\alpha \partial_{q} f(z)+\beta z \partial_{q}^{2} f(z)=1+\sum_{n=2}^{\infty}\left(1+\alpha\left([n]_{q}-1\right)+\beta[n-1]_{q}[n]_{q}\right) a_{n} z^{n} \tag{40}
\end{equation*}
$$

and

$$
\begin{equation*}
(1-\alpha) \frac{g(\omega)}{\omega}+\alpha \partial_{q} g(\omega)+\beta \omega \partial_{q}^{2} g(\omega)=1-\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right) a_{2} \omega+\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right) a_{2} \omega^{2}+\cdots \tag{41}
\end{equation*}
$$

By substituting from (18), (19), (40) and (41) into (38) and (39) as well as by comparing the coefficients on both sides, we conclude

$$
\begin{gather*}
\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right) a_{2}=\frac{c_{1}}{2} \tag{42}\\
\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right) a_{3}=\frac{1}{2}\left(c_{2}+\frac{c_{1}^{2}}{6}\right), \tag{43}\\
-\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right) a_{2}=\frac{d_{1}}{2} \tag{44}
\end{gather*}
$$

and

$$
\begin{equation*}
\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)\left(2 a_{2}^{2}-a_{3}\right)=\frac{1}{2}\left(d_{2}+\frac{d_{1}^{2}}{6}\right) \tag{45}
\end{equation*}
$$

From (42) and (44), we obtain

$$
\begin{equation*}
c_{1}=-d_{1}, \tag{46}
\end{equation*}
$$

and also,

$$
\begin{equation*}
c_{1}^{2}+d_{1}^{2}=8\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2} a_{2}^{2} \tag{47}
\end{equation*}
$$

By adding (43) to (45) with using (47), we get

$$
\begin{equation*}
2 Y(\alpha, \beta ; q) a_{2}^{2}=\frac{1}{2}\left(c_{2}+d_{2}\right) \tag{48}
\end{equation*}
$$

In view of Lemma 2, Equation (48) together with (46) imply that

$$
\begin{equation*}
2|\mathrm{Y}(\alpha, \beta ; q)|\left|a_{2}\right|^{2} \leq 1-\left|c_{1}\right|^{2} . \tag{49}
\end{equation*}
$$

On the other hand, from Equation (42), we can write

$$
\begin{equation*}
\left|c_{1}\right|^{2}=4\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}\left|a_{2}\right|^{2} \tag{50}
\end{equation*}
$$

By using (50) in (49), we get

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{1}{\sqrt{2|\mathrm{Y}(\alpha, \beta ; q)|+4\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}}} \tag{51}
\end{equation*}
$$

where $\mathrm{Y}(\alpha, \beta ; q)$ is defined in (37).
Further, by subtracting (45) from (43) and using (46), we have

$$
\begin{equation*}
a_{3}=a_{2}^{2}+\frac{c_{2}-d_{2}}{4\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)} . \tag{52}
\end{equation*}
$$

In view of Lemma 2, Equation (52) together with (50) imply that

$$
\begin{equation*}
\left|a_{3}\right| \leq\left(1-\frac{2\left(1+\alpha\left([2]_{q}-1\right)+\beta[2]_{q}\right)^{2}}{1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}}\right)\left|a_{2}\right|^{2}+\frac{1}{2\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)} \tag{53}
\end{equation*}
$$

By the virtue of (51), we can get the desired result. Thus, we completed the proof.
Theorem 3. Suppose $f \in \mathcal{M}_{\Sigma}(\delta, \lambda ; E)$ and $\mu \in \mathbb{R}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{2 K_{3}}\left\{\begin{array}{c}
|\Phi(\mu, \delta, \lambda ; q)|, \quad\left|\begin{array}{l}
\Phi(\mu, \delta, \lambda ; q) \\
1,
\end{array}\right| \geq 1 \tag{54}\\
\Phi(\mu, \delta, \lambda ; q) \mid \leq 1
\end{array}\right.
$$

where

$$
\begin{equation*}
\Phi(\mu, \delta, \lambda ; q)=\frac{K_{4}-K_{2}-2 \mu K_{3}}{K_{2}+K_{4}-\frac{2}{3} K_{1}^{2}} \tag{55}
\end{equation*}
$$

and K_{1}, K_{2}, K_{3}, and K_{4} are given by (15).
Proof. To investigate the desired result, subtract (25) from (23) by using (26), we get

$$
\begin{equation*}
a_{3}=\frac{K_{4}-k-2}{2 K_{3}} a_{2}^{2}+\frac{\left(c_{2}-d_{2}\right)}{4 K_{3}} . \tag{56}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\left(\frac{K_{4}-K_{2}-2 \mu K_{3}}{2 K_{3}}\right) a_{2}^{2}+\frac{\left(c_{2}-d_{2}\right)}{4 K_{3}} . \tag{57}
\end{equation*}
$$

As a result of subsequent computations performed by using (28), we obtain

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{1}{4 K_{3}}\left|(\Phi(\mu, \delta, \lambda ; q)+1) c_{2}+(\Phi(\mu, \delta, \lambda ; q)-1) d_{2}\right|, \tag{58}
\end{equation*}
$$

where $\Phi(\mu, \delta, \lambda ; q)$ is given by (55).
However, in view of Kanas et al. [27] and (12), we can obtain

$$
\begin{equation*}
\left|c_{2}\right| \leq 1-\left|c_{1}\right|^{2} \leq 1 \text { and also }\left|d_{2}\right| \leq 1-\left|d_{1}\right|^{2} \leq 1 \tag{59}
\end{equation*}
$$

Now, applying Lemma 1 to (58), we can obtain the desired result directly. Thus, we completed the proof.

Theorem 4. Let us consider $f \in \mathcal{N}_{\Sigma}(\alpha, \beta ; E)$ and $\mu \in \mathbb{R}$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq\left\{\begin{array}{c}
\left|\frac{1-\mu}{2 \mathrm{Y}(\alpha, \beta ; q)}\right|, \tag{60}\\
\frac{1}{2\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)}, \quad\left|\begin{array}{c}
\frac{1-\mu}{\mathrm{Y}(\alpha, \beta ; q)} \\
\frac{1-\mu}{\mathrm{Y}(\alpha, \beta ; q)}
\end{array}\right| \leq \frac{1}{1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}}, \\
1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}
\end{array},\right.
$$

where $\mathrm{Y}(\alpha, \beta ; q)$ is defined by (37).
Proof. In order to investigate the desired result (60), subtract (45) from (43) taking in consideration (46), we conclude

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=(1-\mu) a_{2}^{2}+\frac{c_{2}-d_{2}}{4\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)} . \tag{61}
\end{equation*}
$$

By virtue of (48), we can get that

$$
\begin{align*}
a_{3}-\mu a_{2}^{2}= & c_{2}\left(\frac{1-\mu}{4 \mathrm{Y}(\alpha, \beta ; q)}+\frac{1}{4\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)}\right) \\
& +d_{2}\left(\frac{1-\mu}{4 \mathrm{Y}(\alpha, \beta ; q)}-\frac{1}{4\left(1+\alpha\left([3]_{q}-1\right)+\beta[2]_{q}[3]_{q}\right)}\right) \tag{62}
\end{align*}
$$

By applying Lemma 1 to (62) and using (59), we obtain the required result which completes the proof.

Author Contributions: Formal analysis, A.H.E.-Q.; Methodology, M.A.M.; Resources, I.S.E. All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Common First Year Research Unit King Saud University for giving us the funds for this article.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: No data were used in this paper.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ma, W.C.; Minda, D. Unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis; American Mathematical Society: Rhode Island, RI, USA, 1992; pp. 157-169.
2. Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1971, 23, 159-177. [CrossRef]
3. Ahmad, K.; Arif, M.; Liu, J.L. Convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator. Turk. J. Math. 2019, 43, 1712-1720. [CrossRef]
4. Arif, M.; Ahmad, K.; Liu, J.L.; Sokół, J. A new class of analytic functions associated with Sălăgean operator. J. Funct. Spaces 2019, 2019, 6157394. [CrossRef]
5. Shi, L.; Khan, Q.; Srivastava, G.; Liu, J.L.; Arif, M. A study of multivalent q-starlike functions connected with circular domain. Mathematics 2019, 7, 670. [CrossRef]
6. Srivastava, H.M.; Khan, B.; Khan, N.; Ahmad, Q.Z. Coeffcient inequalities for q-starlike functions associated with the Janowski functions. Hokkaido Math. J. 2019, 48, 407-425. [CrossRef]
7. Srivastava, H.M.; Tahir, M.; Khan, B.; Ahmad, Q.Z.; Khan, N. Some general classes of q-starlike functions associated with the Janowski functions. Symmetry 2019, 11, 292. [CrossRef]
8. Sokoł, J.; Stankiewicz, J. Radius of convexity of some subclasses of strongly starlike functions. Zesz. Nauk. Politech. Rzesz. Mat. 1996, 19, 101-105.
9. Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365-386. [CrossRef]
10. Kumar, S.; Ravichandran, V. A subclass of starlike functions associated with a rational function. Southeast Asian Bull. Math. 2016, 40, 199-212.
11. Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213-232. [CrossRef]
12. Sharma, K.; Jain, N.K.; Ravichandran, V. Starlike functions associated with a cardioid. Afr. Mat. 2016, 27, 923-939. [CrossRef]
13. Ravichandran, V.; Sharma, K. Sufficient conditions for starlikeness. J. Korean Math. Soc. 2015, 52, 727-749. [CrossRef]
14. Sharma, K.; Ravichandran, V. Application of subordination theory to starlike functions. Bull. Iran. Math. Soc. 2016, 42, 761-777.
15. Alotaibi, A.; Arif, M.; Alghamdi, M.A.; Hussain, S. Starlikness associated with cosine hyperbolic function. Mathematics 2020, 8, 1118. [CrossRef]
16. Kargar, R.; Ebadian, A.; Sokół, J. On booth lemniscate and starlike functions. Anal. Math. Phys. 2019, 9, 1-12. [CrossRef]
17. Raina, R.K.; Sokol, J. On coefficient estimates for a certain class of starlike functions. Hacet. J. Math. Stat. 2015, 44, 1427-1433. [CrossRef]
18. Abramowitz, M.; Stegun, I.A. Debye Functions, §27.1. In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover: New York, NY, USA, 1972; pp. 999-1000.
19. Lemmon, E.W.; Span, R. Short Fundamental Equations of State for 20 Industrial Fluids. J. Chem. Eng. Data 2006, 51, 785-850. [CrossRef]
20. Arfken, G. Bernoulli Numbers, Euler-Maclaurin Formula, §5.9. In Mathematical Methods for Physicists, 3rd ed.; Academic Press: Orlando, FL, USA, 1985; pp. 327-338.
21. Duren, P.L. Univalent Functions, Grundlehen der Mathematischen Wissenschaften 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983.
22. Annaby, M.H.; Mansour, Z.S. Q-Fractional Calculus and Equations; Springer: New York, NY, USA, 2012; Volume 2056.
23. Miller, S.S.; Mocanu, P.T. Differenatial Subordinations: Theory and Applications; Series on Monographs and Textbooks in Pure and Appl. Math. No. 255; Marcel Dekker, Inc.: New York, NY, USA, 2000.
24. Bulboaca, T. Differential Subordinations and Superordinations: Recent Results; House of Science Book Publ.: Cluj-Napoca, Romania, 2005.
25. Zaprawa, P. Estimates of initial coefficients for bi-univalent functions. Abst. Appl. Anal. 2014, 2014, 357480. [CrossRef]
26. El-Qadeem, A.H.; Mamon, M.A. Estimation of initial Maclaurin coefficients of certain subclasses of bounded bi-univalent functions. J. Egypt. Math. Soc. 2019, 27, 16. [CrossRef]
27. Kanas, S.; Adegani, E.A.; Zireh, A. An unified approach to second Hankel determinant of bi-Subordinate functions. Mediterr. J. Math. 2017, 14, 233. [CrossRef]
