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Abstract: This study focused on methods estimation and compensation frequency offset in commu-
nication systems with LoRa modulation. LoRa being used in IoT applications rapidly expands its
markets. The article discusses three methods for estimation and compensation frequency offset as
well as details of the comparative analysis made. Aside from the well-known methods by Ghanaatian
and Golden Section Search (GSS), the third method is offered by the authors of the article and repre-
sents an improved version of the method proposed by Ghanaatian. The proposed method is based
on a symmetric processing signal that is divided into two parts. The advantages and drawbacks of
the considered methods are described. As a result of the performed study, a software model was
developed, the dependence of the root mean-square error (RMSE) estimation of the frequency offset,
and cumulative density function (CDF) of the frequency estimation error was calculated. Modeling
was performed under identical conditions. The frequency offset accuracy provided by the proposed
method exceeded the accuracy of the considered methods.

Keywords: wireless communication system; LoRa; IoT; frequency offset

1. Introduction

Internet of Things (IoT) is the connection of network-enabled devices and recently,
it also refers to the value-chain created by connecting things, data, humans, and services.
IoT devices are accumulator-operated and it is crucial to keep all of the sensors and other
devices connected to the network. This situation is also required for new economic-efficient
solutions such as low-power wide area networks (LPWANs).

LPWANs determine the category of wireless communications technology, which
recently acquired a significant impulse and has been the subject of much modern research
work [1,2]. Organizations in the development of industry, academies, and standards have
devoted significant efforts on LPWANs in recent years [3]. Such technologies usually offer
a communication range within several kilometers where one gateway supports thousands
of devices such as sensors [4]. Consequently, LPWAN technology includes IoT applications
such as smart homes or cities due to its low cost. Among the LPWAN technologies,
LoRaWAN and LoRa (long range) modulation (used in this LoRaWAN protocol) are the
technologies that have captured significant attention from the modern scientific sector,
which is reflected in the following works [5–7]. This fact can be explained as follows: the
open access specification [8]; the availability of certified equipment [9]; simplified process
of establishment connections and low power consumption [10,11], which is extremely
important for IoT devices.

LoRa is a recent technology related to the LPWAN and is created by the Semtech
company, and is also one of the most popular protocols for IoT systems, where the linear
frequency modulation (LFM) is applied. LoRa provides scaling of the time-bandwidth
product and has low power consumption. Aside from IoT systems, the LFM modulation
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is applied to communicate with unmanned aerial vehicles (UAVs) [12], power line com-
munications [13], and satellite communications [14,15]. In such communication systems,
developers are forced to increase the duration of the signals to fight against negative effects
and increase the communication range. Large signal duration makes it more vulnerable to
frequency offset [16].

When considering methods, these can be divided into two categories. The first category
includes methods based on the calculation of the phase difference between the reference
signal and the test signal. The second category includes methods based on the calculation
of the maximum likelihood function [17] (MLF). The first category of method estimation
accuracy is limited by phase calculation algorithms. The second category of methods are
reliable and high-precision but have large computational costs when considering the large
sample length.

The obtained results could be useful for developers of satellite communication systems,
radar, and IoT systems.

This article is arranged as follows. In Section 2, the considering methods and LoRa
background are described. Section 3 explains the modeling and experimental results and
Section 4 concludes the outcomes of this article.

2. LoRa Background

In LoRa, LFM signals are used and called chirps [18,19]. There are two types of chirps,
the first type has an increasing frequency—upchirp, and the second type has a decreasing
frequency—downchirp. Chirp signals have large time-bandwidth products. The main
parameters of the chirps according to the LoRa specification [20] are as follows:

• Signal bandwidth, BW = 125, 250, 500 kHz;
• Spreading factor, SF = 7, 8, 9, 10, 11, 12;
• Symbol duration, Ts = 2SF/BW; and
• number of the preamble symbols, N = 8.

The unmodulated chirp is described by the following expression [21,22]:

X[n] =
1√
2SF

exp
(

j · π · n2

2SF

)
; n = 1 . . . 2SF (1)

where 1√
2SF is a scale coefficient.

Modulation performing is as follows [23,24]: SF bits are selected from the information
bit stream and converted into a decimal number system. As a result, the bit is transformed
into a decimal information number within K = 0 . . . 2SF − 1. Then, the modulated chirp
can be written as:

Y[n] =
1√
2SF

exp
(

j · π · (n2 + 2 · K · n) · 1
2SF

)
; n = 1 . . . 2SF (2)

When demodulating, the input chirp is multiplied by the complex-conjugate unmodu-
lated chirp. The fast Fourier transform (FFT) is applied for the multiplication result. Then,
the search of the sample number corresponding to the maximum spectrum value must
be performed:

K = max〈FFT(Y[n] · X∗[n])〉 (3)

Afterward, the obtained information number is converted into a binary system to
obtain a demodulated bit sequence.

In [1], the two-stage method for estimation and compensation frequency offset is
proposed. In the first stage, the coarse estimation is performed. In the second stage, the
fine estimation is carried out. A coarse estimation process is based on the demodulation
procedure. Since the preamble does not consist of modulated chirps, it is used for the
estimation process. The fine estimation is performed by calculating the phase difference
between the two adjoined chirps.



Symmetry 2022, 14, 747 3 of 17

The received preamble chirps are multiplied by the reference chirp (unmodulated
complex-conjugate chirp) and for the result of the multiplication, FFT is calculated using
Equation (4). Then, the spectrum peak search and calculating information symbol value K
is performed. For the preamble chirps, the information symbol equals 0. In the presence
of frequency offset, the information symbol value will differ from 0. The chirp consists
of 2SF samples, the frequency interval between the samples will depend on SF and BW,
then its value is equal to fSAMP = BW/2SF. Therefore, to calculate the frequency offset, the
demodulated value of the information symbol K is multiplied by fSAMP (4).[

f̂1, f̂2, . . . f̂N

]
= fSAMP · {max〈FFT(Yi[n] · X∗[n])〉}, n = 1 . . . 2SF (4)

where i is a preamble symbol number;
FFT is the fast Fourier transform;
Yi[n] are the received preamble chirps;
X∗[n] is a reference chirp (complex-conjugate unmodulated chirp (1)); and
f̂1, f̂2, . . . f̂N ∈ fSAMP ·

[
0 . . . 2SF − 1

]
is a coarse frequency offset estimation calculated

for each preamble symbol.
Then, the averaging of the calculated estimations is performed:

∆ f̂COARSE =
f̂1 + f̂2 + . . . f̂N

N
(5)

where N is a number of transmitted preamble symbols.
Functional diagram of the coarse estimation process is presented in Figure 1.
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When performing a coarse estimation, the maximum error of the frequency offset
estimation is equal to fFRAQ_MAX = fSAMP/2. Therefore, frequency error estimation is
within the [− fFRAQ_MAX : + fFRAQ_MAX] Hz sweep. Residual frequency offset close enough
to ( fSAMP ·m)/2; m = 1, 3, 5, 7, . . . , SF− 1 leads to demodulation errors and additional
compensation operation is needed.

After performing coarse estimation, the frequency offset compensation can be ex-
pressed as follows in Equation (6).

ỸCOARSE, i[n] = Yi[n] · e
j·2·π·n( ∆ f̂COARSE

fSR
)

(6)

where fSR is a sampling frequency (sample rate); and
ỸCOARSE, i[n] chirps after coarse estimation and compensation frequency offset.
The frequency offset leads to phase offset between two adjoint chirps. This feature is

used in the Ghanaatian method to perform the fine estimation. Between two adjoint chirps
in the preamble, the phase offset can be calculated as:

∆Φ = arg

〈
2SF

∑
n=1

Y[n] · Y∗
[
n + 2SF

]〉
(7)

where ∆Φ is a phase offset between two adjoint chirps.
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Operation (7) is performed between all chirps in the preamble, then the average
estimation is calculated:

∆Φ =
∆Φ1 + ∆Φ2 + . . . ∆ΦN

N
(8)

The obtained phase offset estimation can be used to calculate the frequency offset:

∆ f̂FINE =
∆Φ

2 · π · Ts
(9)

where ∆ f̂FINE is a fine frequency offset estimation.
Functional diagram of the fine estimation process is presented in Figure 2.
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The resulting frequency offset estimation is equal to:

∆ f̂EST = ∆ f̂COARSE + ∆ f̂FINE (10)

The frequency offset compensation can be performed as:

ỸFINE, i[n] = ỸCOARSE, i[n] · e
j·2·π·n( ∆ f̂EST

fSR
)

(11)

where ỸFINE, i[n] represents chirps after fine estimation and compensation frequency offset.
Considering the GSS method allows one to calculate the fine frequency offset estima-

tion where an iterative mathematical algorithm GSS is applied to find the extremum of the
MLF. It is assumed that a coarse estimation is performed using the Ghanaatian method [2].

First, one needs to define the unmodulated chirp (2) consisting frequency offset:

YOFFSET[n] =
1√
2SF

ej·π· n2

2SF · ej·2·π· ∆ f ·(n+i·2SF)
BW , n = 1 . . . 2SF (12)

where ∆ f is a frequency offset.
The second exponential component in expression (12) defines the frequency offset.

The result of multiplying the input chirps by this component, having the opposite sign,
will be the compensated frequency offset chirp:

Zi[n] = YOFFSET, i[n] ·W[n], n = 1 . . . 2SF (13)

where Z[n] is a compensated frequency offset chirp; and
W[n] is the frequency offset component with opposite sign.

W[n] = e−j·2·π· ∆ f ′ ·(n+i·2SF)
BW n = 1 . . . 2SF (14)

where ∆ f ′ is the compensated frequency offset value.
The compensated frequency offset chirp (13) is multiplied by unmodulated complex-

conjugate chirp, then all samples are modulo addition. The obtained result is the number
in the range 0 . . . 1 (this is due to scale coefficient in expression (1)).∣∣∑(Zi[n] · X∗[n])

∣∣ = 0 . . . 1 (15)
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The calculation (15) for all possible residual frequency offsets is the MLF (16). MLF
has the maximum value when ∆ f equals ∆ f ′.

Ri(∆FDIFF) = R(∆ f − ∆ f ′) =
∣∣∑(Zi[n] · X∗[n])

∣∣ (16)

where ∆FDIFF is a frequency offset estimation error;
Ri(∆FDIFF) ∈ 0 . . . 1 is the maximum likelihood function; and
∆ f ′ ∈ −FX . . . + FX is the sweep of the residual frequency offset.
Figures 3–5 show the function R(∆FDIFF) for cases when frequency offset in the input

chirp are equal to +FX Hz, −FX Hz and 0 Hz, respectively. Functional diagram of the GSS
method is presented in Figure 6. Note that in the absence of the frequency offset, the MLF
has a symmetric shape (Figure 5).
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The use of the GSS method allows one to quickly find the extremum of MLF (16) and
does not require computations to be performed for all residual frequency offsets [25]. An
example of GSS functioning is shown in Figure 7. The description for the GSS method is
given below in Figure 7.

Furthermore, the execution of the first iteration is given. In the range Ai and Di, the
point Bi is chosen in such a way that the ratio of the intervals [Bi : Di] and [Ai : Bi] is equal
to the proportion of the golden section 1.618. Similar to point Bi, the position of point Ci is
calculated (detailed formulas for calculating are given in [2]). At points Bi and Ci the value
of the function (16) is calculated:

R1, i(∆FDIFF) = R1, i(∆ f − Bi) = |∑(Z1, i[n] · X∗i [n])|;
R2, i(∆FDIFF) = R2, i(∆ f −Ci) = |∑(Z2, i[n] · X∗i [n])|.

(17)

where Z1, i[n] is a compensated frequency offset chirp for the point Bi;
Z2, i[n] is the compensated frequency offset chirp for the point Ci;
R1, i(∆FDIFF) is the MLF for point Bi; and
R2, i(∆FDIFF) is the MLF for point Ci.
Thus, the arguments for calculating the MLF are selected symmetrically relative to the

considered interval [Ai : Di].
After calculating (17), R1(∆FDIFF) is compared to R2(∆FDIFF). Then, a new interval

for search extremum MLF is selected. This interval is also divided into proportion of the
golden section, as described above, but the calculation of the function value is performed
only at one point, since one value of the function is known from the previous iteration.
For example, if R1(∆FDIFF) is greater than R2(∆FDIFF), then the new interval is defined
as follows:
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• Ai+1 = Ai;
• Bi+1 is chosen in such a way that the ratio [Bi : Di]/[Ai : Bi] = 1.618;
• Ci+1 = Bi; and
• Di+1 = Ci.
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In the results, points B and C form the interval, where the extremum of the MLF is
located. The length of this interval is determined by setting the accuracy.

As can be seen, frequency estimation error of the GSS method is defined by the
accuracy and approximate value of the ratio of the golden section. However, at the same
time, the method provides a quick search for extremum MLF.

The frequency offset compensation can be performed as in expressions (13) and (14).
The proposed method is an improved version of the Ghanaatian method. Before

performing the fine estimation (9), an additional frequency offset estimation is applied
using half of the chirps.

The need for an additional estimation is conditioned by the fact that the frequency
offsets that are close in magnitude to the ( fSAMP ·m)/2, especially when the SNR is low
(0 dB), so it is not always possible to perform estimation correctly, since there is a sign
ambiguity of the frequency estimation. It can lead to the large frequency estimation errors
due to the correct estimation of the magnitude, but the incorrect sign.

This occurs because the arg function (used in fine frequency estimation) returns the
phase offset value in the interval [−π : π] [26]. When noise power is high, the arg function
can work incorrectly. LoRa technology can provide robust communication, even in the
presence of high noise level [27]. After the coarse estimation, the residual offset can be
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significantly compensated by performing additional estimation. Therefore, fine estimation
can be performed correctly.

The received preamble chirp (1) and the reference chirp (complex-conjugate (1)) are
divided into two equal parts:{

y1[m] = Y[m];
x∗1 [m] = X∗[m];

m = 1 . . . 2SF

2{
y2[k] = Y[k];
x∗2 [k] = X∗[k];

k = 2SF

2 + 1 . . . 2SF
(18)

The y1[m] component of the received chirp is multiplied by the component x∗1 [m] of
the reference chirp, and respectively y2[k] is multiplied by x∗2 [k]:

z1[m] = y1[m] · x∗1 [m];
z2[k] = y2[k] · x∗2 [k];

(19)

Furthermore, the results of the multiplication (19) FFT can be calculated in the follow-
ing way:

z1[w] = FFT(z1[m]);
z2[w] = FFT(z2[k]);

(20)

where z1[w] and z2[w] is a multiplication spectrum (19).
Furthermore, the search for the maximum value of the spectrum is performed, then

the arg function is calculated for this value. Its operations are performed for components
y1[m] and y2[k].

∆φ1 = arg〈max(|z1[w]|)〉;
∆φ2 = arg〈max(|z2[w]|)〉; (21)

where ∆φ1 is a phase offset in the y1[m] component; and
∆φ2 is the phase offset in the y2[k] component.
The result of the subtraction component from expression (21) can be used to calculate

the full phase frequency offset.

∆ f̂EST_EXTRA =
∆φ2 − ∆φ1

π · Ts
(22)

Functional diagram of the proposed method is shown in Figure 8. As can be seen from
Figure 8, the functional diagram of the proposed method has a symmetric structure.
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3. Results

In the model, the preamble symbols from 2 to 8 are used when performing the fre-
quency estimation. Aside from frequency offset estimation and compensation, the CDF
and RMSE of the frequency error estimation were calculated. Random frequency offset
in the interval [−3000 : 3000] Hz was used with the total number of iterations of 40,000.
Table 1 shows the parameters of the model.

Table 1. System parameters.

Parameter Name Parameter Value

Signal bandwidth, BW 125 kHz
Sampling frequency, fSR 125 kHz

Spreading factor, SF 7
Signal-to-noise ratio, SNR 0 dB

Frequency estimation accuracy (GSS method) 1 Hz

Based on [16], when using the chirp parameters given in Table 1, a bit error occurs
when the frequency offset exceeds 488 Hz. Therefore, if there are cases when the fre-
quency estimation error exceeds the value of 488 Hz, then it is concluded that the method
works incorrectly.

3.1. Discussion of Modeling Results

Figures 9–11 show two cases: the CDF of the frequency estimation error when using
two and eight preamble symbols with SF = 7 to perform an estimation.

As can be seen from Figure 9, when using 2 preamble symbols, the Ghanaatian method
worked incorrectly. In some cases, frequency error estimation was close in magnitude to
the fSAMP = 976 Hz (Figure 9).

As mentioned earlier, the frequency offset of this value is compensated with the use
of a coarse estimation. Therefore, the problem is not coarse, but in an accurate frequency
estimation. This is due to the sign ambiguity of the frequency estimation, as stated in
Section 2.
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Despite the fact that the frequency estimation accuracy GSS method was set equal
to 1 Hz, from Figure 10, it can be seen that the frequency estimation error in some cases
reached 100 Hz. Obviously, this error was due to a low SNR (0 dB).

The GSS method provides correct frequency offset estimation and compensation.
Figure 11 shows that the proposed method provided the most accurate frequency

estimation compared to the two other methods.
After CDF calculation, the RMSE calculation is performed:

RMSE =

√√√√√ M
∑

u=1

(
δ fu − δ f

)2

M
(23)

where u is an iteration number;
M = 40,000 is the total amount of the iterations;
δ fu is the frequency error estimation; and
δ f is the average value of the vector frequency error estimation.
Figure 12 shows the dependence of the RMSE from the number of preamble symbols

used. Below are the results provided by all methods.
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As can be seen from Figure 12, when using up to six preamble symbols inclusive,
the Ghanaatian method has the worst RMSE of all three methods. The RMSE in the GSS
method is less than 82.5% at two symbols and 5.43% at six symbols. Furthermore, at seven
and eight characters used, the Ghanaatian method worked slightly better than the GSS in
1% and 1.8%, respectively. The difference in the RMSE between these two methods was
sharply reduced with an increase in the number of preamble symbols used. This was due
to the presence of incorrect frequency estimations in the Ghanaatian method, which can be
seen in Figure 9. Therefore, it can be concluded that this method is relevant when using a
large number of preamble symbols. In other cases, the GSS is preferable due to the high
frequency estimation accuracy. The proposed method provided the best RMSE less than
90% at two symbols and 2.9% at eight symbols compared with the Ghanaatian method, and
less than 5.9% at two symbols and 4.6% at eight symbols compared with the GSS method.
It can be seen that a sharp increase in the difference in the RMSE (the average value was
5.1%) with an increase in the number of symbols used did not occur.

Table 2 shows the comparative analysis of the considered methods including the mini-
mum and maximum values of the frequency correction error and the RMSE. Additionally,
the correctness of the estimation is shown.

Table 2. Comparison of the considered methods.

Characteristic Ghanaatian GSS Proposed

Correctness of the estimation Incorrect Correct Correct
Frequency estimation error From 21 to 976 Hz From 48 to 110 Hz From 18 to 72 Hz

RMSE From 10 to 171 From 13 to 25 From 5 to 18

Based on the results obtained, it can be concluded that the proposed method showed
the best results in frequency estimation accuracy. The GSS method was inferior to the
accuracy, but allowed one to set the frequency estimation accuracy. The Ghanaatian method
showed the worst results—the largest RMSE and the presence of incorrect frequency estimation.

For more information on the quality of the functioning of methods, modeling when
SF = 12 was performed. The CDF of the frequency estimation error when using two and
eight preamble symbols is shown in Figures 13–15. The dependence of the RMSE from the
number of preamble symbols used is shown in Figure 16.
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Figure 16. Dependence of the RMSE from using the number of preamble symbols with SF = 12.

As can be seen from Figures 13–16, when using SF = 12, the accuracy of the frequency
offset estimation provided by all methods increased significantly. The following key
features can be noted:

1. The Ghanaatian method provided the correct frequency offset estimation because
according to [16], when the SF = 12, demodulation errors occur if frequency error
estimation exceeds 61 Hz.

2. The proposed method provided the most accurate frequency estimation.
3. Improving the frequency offset estimation can be explained by an increase in signal

energy and these characteristics can deteriorate when SNR is low.

In addition, percentage ratio comparison of computational time considering methods
was calculated. The Ghanaatian method computational time demonstrated the best result
and was chosen as the reference time. Relative to the Ghanaatian method, the GGS
method provided a computational time increase of up to 71% and the proposed method
computational time increased up to 39%.

3.2. Experiment

The purpose of the study was to obtain results for the methods at the frequency offset
equal to fOFFSET = 488 Hz.

3.2.1. Program and Methods of Experimental Research

According to the scheme from Figure 17, an experimental stand was built.
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The PC was used to create a massive of the chirp signals and send it to an arbitrary
waveform generator model 33500B to perform digital to analog conversion. The N5166B
vector signal generator was used to upconvert the signal to the frequency of 800 MHz. The
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ROHDE and SCHWARZ spectrum analyzer was used to receive the signal and upload the
data to the PC. Then, the PC was used to process the received signals.

3.2.2. Discussion of Experiment Results

In the experiment, the value of the SNR was set to 0 dB. To receive data from spectrum
analyzer, R&S IQWizard was used. Processing of the data on a PC was performed in
GNU OCTAVE.

As a result of modeling, it was confirmed that the frequency offset of 488 Hz was
the most critical for the considered configuration. For this reason, in the experiment, the
frequency offset was set equal to 488 Hz using the vector signal generator N5166B.

3.2.3. Comparison Results of the Modeling and Experiment

Figures 18–20 present the modeling comparison and experimental results. Figure 18
shows a comparison of the curves of the Ghanaatian method, Figure 19 shows the curves
of the GSS method, and Figure 20 shows the curves of the proposed method, respectively.
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To complete the calculation of the RMSE, for each method, we used the CDF calculation
of the frequency error offset when using two and eight preamble symbols for averaging.
The results are shown in Figures 21–23.
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4. Discussion

The divergence of results between the experiment and modeling results, especially the
Ghanaatian algorithm was due to two factors:

1. In the experiment, a non-coherent reception was performed (i.e., the phase of the
signal was random); and

2. Frequency offset was set to 488 Hz value. This is the most challenging case for
frequency estimation methods.

The Ghanaatian method is sensitive to the frequency offset values defined in [16] and
in low SNR conditions works incorrectly. The increase in the preamble characters used in
performing the estimation significantly improved the estimation accuracy. The Ghanaatian
method is not intended for use in low SNR conditions without performing additional
estimation operations.

The GSS method provides the correct frequency estimation, and also allows the user
to set the accuracy of the calculations. It also allows one to optimize the speed or the
accuracy of the method. The significant drawbacks of the algorithm is the complexity of
the calculations when using a high-precision estimation mode as well as a high influence of
the SNR on the estimation results.

The proposed algorithm provides a more accurate frequency error estimation than the
GSS and the Ghanaatian methods. The computational costs were close to the GSS method
(when 1 Hz precision mode was used).
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