
����������
�������

Citation: Abdulhussain, S.H.;

Mahmmod, B.M.; Flusser, J.;

AL-Utaibi, K.A.; Sait S.M. Fast

Overlapping Block Processing

Algorithm for Feature Extraction.

Symmetry 2022, 14, 715. https://

doi.org/10.3390/sym14040715

Academic Editor: Serkan Araci

Received: 1 March 2022

Accepted: 22 March 2022

Published: 1 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Fast Overlapping Block Processing Algorithm for
Feature Extraction

Sadiq H. Abdulhussain 1,† , Basheera M. Mahmmod 1,† , Jan Flusser 2,3,† , Khaled A. AL-Utaibi 4,*,†

and Sadiq M. Sait 5,†

1 Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad 10071, Iraq;
sadiqhabeeb@coeng.uobaghdad.edu.iq (S.H.A.); basheera.m@coeng.uobaghdad.edu.iq (B.M.M.)

2 Czech Academy of Sciences, Institute of Information Theory and Automation, Pod Vodárenskou vìží 4,
182 08 Prague, Czech Republic; flusser@utia.cas.cz

3 Faculty of Management, University of Economics, Jarosovska 1117/II,
377 01 Jindrichuv Hradec, Czech Republic

4 Department of Computer Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia
5 Department of Computer Engineering, Center for Communications and IT Research, Research Institute,

King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; sadiq@kfupm.edu.sa
* Correspondence: alutaibi@uoh.edu.sa
† These authors contributed equally to this work.

Abstract: In many video and image processing applications, the frames are partitioned into blocks,
which are extracted and processed sequentially. In this paper, we propose a fast algorithm for
calculation of features of overlapping image blocks. We assume the features are projections of the
block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the
symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary
matrices that virtually extends the original image and makes it possible to avoid a time-consuming
computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they
are independent of the image itself. We validated experimentally that the speed up of the proposed
method compared with traditional approaches approximately reaches up to 20 times depending on
the block parameters.

Keywords: overlapping block processing; feature extraction; orthogonal polynomials; orthogonal
moments

1. Introduction

In most image and video processing applications, image or video frame is partitioned
into blocks (usually overlapping ones) to make the processing local. Each block is then
processed separately. We focus on transformations, the goal of which is extracting features.
The features are stored in a memory location corresponding to the image block. Then, these
features are utilized as local image descriptors for recognition.

Traditional approaches in computer vision applications partition the image into smaller
two-dimensional blocks and process them sequentially, where a sequential double loop
over the blocks is carried out. However, the image matrix is usually stored in memory either
in a row-wise or column-wise order. As a result, accessing the entire matrix sequentially has
a predictable behavior from the perspective of memory since the accesses confine with the
spatial locality. On the other hand, when the image is processed in a block-wise sequence,
the memory access patterns are irregular, and thus cache misses and replacement increase.
The speed gap between the CPU and memory is considered a major drawback of computer
performance [1], making increased cache misses and replacement a performance issue [2].

To improve the performance of feature extraction, some processes have to be excluded,
namely partitioning the image into blocks, sequentially processing image blocks, and
accumulating the result. Motivated by this idea, a fast method for extracting local features
from overlapping blocks is introduced in this paper.

Symmetry 2022, 14, 715. https://doi.org/10.3390/sym14040715 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040715
https://doi.org/10.3390/sym14040715
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-6439-0082
https://orcid.org/0000-0002-6439-0082
https://orcid.org/0000-0002-4121-0843
https://orcid.org/0000-0003-3747-9214
https://orcid.org/0000-0002-3965-5018
https://orcid.org/0000-0002-4796-0581
https://doi.org/10.3390/sym14040715
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040715?type=check_update&version=1


Symmetry 2022, 14, 715 2 of 13

The presented method may find applications wherever the block-wise image repre-
sentation has been used. We refer to a few sample papers where this approach was used
in various application areas—in plant biology [3], in fingerprint recognition [4], in face
recognition on infrared images [5], in facial expression classification [6], in optical flow esti-
mation [7], in denoising of medical images [8], tamper detection [9], image compression [10],
and in scalable video coding [11].

The paper is organized as follows. The main idea of the method is introduced in
Section 2. In Section 3, we present implementation details, complexity analysis, and
experimental comparison to traditional approaches.

2. The Proposed Algorithm

The main idea is to avoid a sequential processing of the blocks, which is usually
implemented as a slow “for” loop. We propose special auxiliary matrices that can be
pre-computed and and that transfer the sequential processing into a single-step one. Since
the auxiliary matrices do not depend on the image content, they can be stored and used
repeatedly for different images, which makes the method even more efficient.

Consider image I with the size of Ny × Nx partitioned into overlapped blocks of size
Sy × Sx each (as shown in Figure 1), such that the number of blocks is By × Bx, where

By =
Ny

Sy−2vy
and Bx = Nx

Sx−2vx
. Now, let us consider a separable integral transformation

with kernel function Unm(x, y) = Un(x)Um(y). This can stand for Fourier transform,
Laplace transform, z-transform, cosine transform, and many others, but we are particularly
interested in moment transform, where Un(x) is a polynomial of degree n (we refer to [12]
for more information about polynomials and moments in image analysis). The results of
this transformation, which is for a single block Bij, are given as

Mi,j
n,m =

Sx−1

∑
x=0

Sy−1

∑
y=0

Un(x)Um(y)Bi,j(x, y), (1)

are called moments of the block. We can arrange them into a moment matrix Mi,j
n,m , where n

and m are the orders of the moments.
Clearly, the computation of moments up to the given order can be expressed as a

matrix multiplication

Mi,j
n,m = UyBi,jUT

x (2)

where Ux and Uy represent the matrix of the discretized polynomials Un(x) and Um(y),
respectively. It is noteworthy that in most programming environments, such as MATLAB
and Python, the matrix multiplication is much faster than nested loops thanks to the Intel
Math Kernel Library (MKL) [13,14].

To compute the moments of all blocks of the image I using (2), we have

M =


UyB1,1UT

x UyB1,2UT
x · · · UyB1,Bx UT

x
UyB2,1UT

x UyB2,2UT
x · · · UyB2,Bx UT

x
...

...
. . .

...
UyBBy ,1UT

x UyBBy ,2UT
x · · · UyBBy ,Bx UT

x

, (3)

that can be equivalently rewritten into the form

M =


Uy O · · · O
O Uy · · · O
...

...
. . .

...
O O · · · Uy




B1,1 B1,2 · · · B1,Bx

B2,1 B2,2 · · · B2,Bx
...

...
. . .

...
BBy ,1 BBy ,2 · · · BBy ,Bx




Ux O · · · O
O Ux · · · O
...

...
. . .

...
O O · · · Ux


T

. (4)

In a shorter notation, Equation (4) can be expressed as



Symmetry 2022, 14, 715 3 of 13

M = RyIBRT
x . (5)

Matrix IB denotes the so-called extended image which is formed by the blocks of the
original image I arranged in such a way that they do not overlap one another, see Figure 2.

Figure 1. Image I with partitioned blocks.

Figure 2. Extended image IB formed by non-overlapping blocks extracted from I.



Symmetry 2022, 14, 715 4 of 13

An explicit construction of the extended image IB would be time consuming because
we would need to extract each block and shift it into a new location. So, we propose to
perform this process implicitly by multiplying I with “shift matrices” Ax and Ay

IB = AyIAT
x . (6)

Matrix Aα (where α stands for x or y) is a rectangular matrix of the size (Sα · Bα × Nα).
It is composed of Bα unit submatrices of the size Sα × Sα, which are arranged diagonally,
and in horizontal direction they are mutually shifted by vα.

Aα = (7)

Now, the computation of the moments can be performed directly without the necessity
of constructing the extended image. Substituting Equation (6) into Equation (5), we obtain

M = Ry

(
AyIAT

x

)
RT

x (8)

which can be further simplified to the form

M = QyIQT
x (9)

where Qx = RxAx and Qy = RyAy.
Equation (9) performs the main result of the paper. The moments of all blocks of I,

arranged into a matrix M (see Figure 3), can be calculated by a single matrix multiplication,
without any loops over the blocks and without construction of the extended image. The
matrices Qx and Qy depend only on the polynomial basis functions and on the block size
and overlap but do not depend on the image I at all. So, they can be pre-computed only
once and used repeatedly. Moreover, in most block-wise representations the blocks are
squares, their overlap is the same, and the kernel functions of the transform are the same in
both directions. Under these circumstances, the computation simplifies even more as we
have Ax = Ay and Rx = Ry.



Symmetry 2022, 14, 715 5 of 13

Figure 3. The matrix of moments of the original blocks.

Note that the proposed method is not restricted to 2D images. It can be generalized
for 3D signals by introducing a third matrix Az. Then, the algorithm performs analogously
to the 2D case, as can be seen from the flowchart in Figure 4 (for more elucidation, see
Algorithm 1).

Algorithm 1 Generate auxiliary matrices for moment computation.
Input: Nα, vα, Sα

Nα represents the size of the signal.
vα represents the overlap size.
Sα represents the block size. Output: Qα

1: Bα = Nα
Sα−2vα

. Compute number of blocks Bα

2: SB = Sα Bα . Total length of vector
3: Initialize Aα . Generate the matrix Aα

4: for i = 1 : Nα do
5: for j = 1 : SB do

6: if i =
((

j− dj/Sαe
)
2 vα

)
then

7: Aα(i, j) = 1
8: end if
9: end for

10: end for
11: Generate polynomial matrices Uα

12: Rα = I⊗Uα

13: Qα = Rα Aα



Symmetry 2022, 14, 715 6 of 13

Figure 4. The proposed algorithm to generate the matrices for overlapped block processing.

3. Performance Analysis

In this section, we present implementation details and an experimental analysis
of the proposed algorithm. First, the computation cost analysis is presented to show
the effectiveness of the proposed algorithm. Second, several numerical experiments are
performed on various public datasets and the performance is compared with traditional
methods. Finally, we present a similar experiment with 3D objects.

3.1. Computation Cost Analysis

In this section, we compare the computing complexity of our algorithm to traditional
methods. The implementation of the proposed algorithm consists of the four following
steps (which are described in Algorithms 1 and 2):

1. Input user-defined parameters: image size, block size, overlap size, polynomial basis,
and maximum moment order.

2. Matrices Uα, Rα, and Aα are generated.
3. Matrices Qα are calculated.
4. The moment matrix M is computed using (9).

For the traditional algorithms used in [15,16], the procedure is described in Algorithm 3.
Our hypothesis is that Step 3 of the traditional algorithms, which contains a “for” loop

that must be run By · Bx times is a bottleneck which makes the calculation slow. Below,
we verify this hypothesis experimentally for various setups of the input parameters and
various images (see Algorithm 2).

Algorithm 2 Moment computation using the proposed overlap block processing.
Input: Image I with parameters Nx, Ny, Sx, Sy, vx, and vy

Nx and Ny represent the size of the image.
Sx and Sy represent the block size in the x and y directions.
vx and vy represent the overlap size in the x and y directions.

Output: M
1: Generate polynomial matrices Qx and Qy using Algorithm 1
2: for each image in the dataset do
3: M = QyIQT

x . Computing moments
4: end for

3.2. Numerical Experiments

In the first experiments, we used the well-known “boat” image, see Figure 5. The
experiment was repeated 10 times with different values of image sizes (128× 128, 256× 256,
and 512× 512), different block sizes (8, 16, and 32), and different overlaps.



Symmetry 2022, 14, 715 7 of 13

Figure 5. Test image used in the experiment.

Table 1 depicts the computational time for image size of 128× 128. In addition, Table 1
includes the speed-up ratio between the proposed algorithm and existing works in [15,16]
(see Algorithm 3). The results show that the time required to compute the moments using
the proposed algorithm is less than the existing works [15,16] for all values of tested
moment orders (2, 4, and 8). In addition, the reported improvement (speed-up ratio) shows
that the proposed algorithm outperforms the existing works.

Algorithm 3 Moment computation using the traditional overlap block processing.
Input: Image I with parameters Nx, Ny, Sx, Sy, vx, and vy

Nx and Ny represent the size of the image.
Sx and Sy represent the block size in the x and y directions.
vx and vy represent the overlap size in the x and y directions.

Output: M
1: Generate polynomial matrices Ux and Uy

2: Bx = Nx
Sx−2vx

. Compute number of blocks in the x direction

3: By =
Ny

Sy−2vy
. Compute number of blocks in the y direction

4: for each image in the dataset do
5: for i do=1 to Bx
6: for j do=1 to By
7: Compute start and end indices (xstart, xend, ystart, yend) for block Bi,j
8: Extract block Bi,j

9: Mi,j = Uy Bi,j Ux . Compute moment for each block
10: end for
11: end for
12: end for

It is noteworthy that the speed-up factor decreases as the moment order increases. This
is because our algorithm does not alter the moment computation itself, it only efficiently
handles the blocks. For high-order moments, their computation takes more and more



Symmetry 2022, 14, 715 8 of 13

time and the impact of block handling is not so apparent. However, in most practical
applications one usually works with low-order moments only.

Table 1. Computation time comparison for image size of 128× 128.

Order = 2 Order = 4 Order = 8

B
lo

ck
Si

ze

O
ve

rl
ap

Si
ze

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

8 0 3.15 0.12 26.25 3.26 0.15 21.73 3.32 0.26 12.77

8 1 2.87 0.05 57.40 2.92 0.07 41.71 3.18 0.16 19.88

8 2 2.92 0.04 73.00 2.95 0.08 36.88 3.07 0.15 20.47

8 4 3.20 0.05 64.00 3.26 0.08 40.75 3.25 0.17 19.12

16 0 1.06 0.02 53.00 1.03 0.04 25.75 1.04 0.07 14.86

16 1 1.22 0.03 40.67 1.54 0.05 30.80 1.24 0.07 17.71

16 2 1.35 0.03 45.00 1.51 0.05 30.20 1.25 0.07 17.86

16 4 1.41 0.03 47.00 1.30 0.05 26.00 1.31 0.07 18.71

16 8 1.37 0.03 45.67 1.37 0.05 27.40 1.39 0.09 15.44

32 0 0.56 0.01 56.00 0.57 0.02 28.50 0.58 0.04 14.50

32 1 0.77 0.02 38.50 0.82 0.03 27.33 0.80 0.04 20.00

32 2 0.79 0.02 39.50 0.80 0.03 26.67 0.82 0.05 16.40

32 4 0.81 0.02 40.50 0.86 0.03 28.67 0.83 0.05 16.60

32 8 0.87 0.02 43.50 0.90 0.03 30.00 0.92 0.05 18.40

32 16 0.98 0.02 49.00 0.99 0.04 24.75 1.10 0.06 18.33

Average Improvement 47.93 29.81 17.40

We also repeated this series of experiments for images of the size 256× 256, 512× 512,
and 1024× 1024 pixels. The results are summarized in Tables 2–4, respectively. We can
observe that the results are consistent, but the overall improvement for the given block size
decreases as the image size increases. This is probably because the auxiliary matrices in our
algorithm are large and their multiplication is not as fast as in the case of smaller images.

In the second experiment, two different datasets have been employed—the ORL and
FEI facial datasets. The ORL face database, obtained from AT&T [17], has been used by
many researchers for evaluation purposes. It includes 40 distinct classes (persons). Each
class contains 10 images which were taken at different positions and lighting conditions.
The size of each image is 92× 112 pixels [18].

We calculated the block moments of all ORL images using the proposed method and
the reference method. We ran the experiment ten times and calculated the average time.
We used the blocks of the size 20× 16 with the overlap (0,0), (2,2), and (4,4). The results are
reported in Table 5; the time in milliseconds is an average over 10 runs and all images. As
in the previous experiment, we witness a significant speed up.



Symmetry 2022, 14, 715 9 of 13

Table 2. Computation time comparison for image size of 256× 256.

Order = 2 Order = 4 Order = 8

B
lo

ck
Si

ze

O
ve

rl
ap

Si
ze

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

8 0 11.95 0.56 21.34 9.59 0.58 16.53 9.98 1.26 7.92

8 1 9.52 0.20 47.60 10.36 0.40 25.90 9.91 1.00 9.91

8 2 9.57 0.17 56.29 9.63 0.43 22.40 9.95 0.81 12.28

8 4 9.99 0.21 47.57 10.04 0.47 21.36 10.65 0.98 10.87

16 0 2.76 0.09 30.67 2.81 0.21 13.38 2.97 0.42 7.07

16 1 3.19 0.09 35.44 3.19 0.20 15.95 3.52 0.42 8.38

16 2 3.26 0.09 36.22 3.24 0.19 17.05 3.48 0.41 8.49

16 4 3.56 0.09 39.56 3.38 0.20 16.90 3.78 0.44 8.59

16 8 4.05 0.12 33.75 3.82 0.23 16.61 3.93 0.47 8.36

32 0 1.17 0.08 14.63 1.22 0.13 9.38 1.30 0.21 6.19

32 1 2.36 0.07 33.71 1.61 0.11 14.64 1.63 0.20 8.15

32 2 1.76 0.08 22.00 1.49 0.11 13.55 1.67 0.20 8.35

32 4 1.96 0.08 24.50 1.61 0.12 13.42 1.67 0.20 8.35

32 8 1.82 0.08 22.75 1.83 0.10 18.30 1.91 0.21 9.10

32 16 2.39 0.09 26.56 2.17 0.11 19.73 3.14 0.24 13.08

Average Improvement 32.84 17.01 9.01

Table 3. Computation time comparison for image size of 512× 512.

Order = 2 Order = 4 Order = 8

B
lo

ck
Si

ze

O
ve

rl
ap

Si
ze

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

8 0 34.61 1.54 22.47 34.70 3.43 10.12 36.26 7.62 4.76

8 1 35.58 0.83 42.87 36.24 2.45 14.79 38.35 6.09 6.30

8 2 36.05 1.32 27.31 36.33 2.81 12.93 39.05 7.55 5.17

8 4 38.05 1.17 32.52 38.08 2.41 15.80 40.15 5.90 6.81

16 0 9.61 0.36 26.69 9.72 0.73 13.32 10.32 2.46 4.20

16 1 11.18 0.67 16.69 11.86 1.34 8.85 11.87 2.51 4.73

16 2 11.69 0.64 18.27 12.71 1.06 11.99 12.46 3.20 3.89

16 4 14.10 0.71 19.86 12.06 1.20 10.05 12.66 3.36 3.77

16 8 13.61 0.73 18.64 13.19 0.77 17.13 14.11 3.28 4.30



Symmetry 2022, 14, 715 10 of 13

Table 3. Cont.

Order = 2 Order = 4 Order = 8

B
lo

ck
Si

ze

O
ve

rl
ap

Si
ze

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

32 0 3.81 0.36 10.58 4.03 0.64 6.30 3.65 1.27 2.87

32 1 5.07 0.35 14.49 5.24 0.38 13.79 5.47 0.71 7.70

32 2 5.45 0.37 14.73 5.30 0.62 8.55 5.30 0.69 7.68

32 4 5.40 0.23 23.48 5.85 0.71 8.24 5.57 0.94 5.93

32 8 6.21 0.33 18.82 6.23 0.71 8.77 6.23 0.78 7.99

32 16 7.76 0.30 25.87 7.99 0.78 10.24 9.84 1.43 6.88

Average Improvement 22.22 11.39 5.53

Table 4. Computation time comparison for image size of 1024× 1024.

Order = 2 Order = 4 Order = 8

B
lo

ck
Si

ze

O
ve

rl
ap

Si
ze

Ti
m

e
(T

ra
di

ti
on

al
)m

se
c

[1
5,

16
]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

Tr
ad

it
io

na
l[

15
,1

6]

Ti
m

e
(P

ro
po

se
d)

m
se

c

Im
pr

ov
em

en
t

8 0 134.58 9.51 14.15 136.34 23.55 5.79 144.51 53.93 2.68

8 1 140.77 9.94 14.16 142.47 23.47 6.07 147.35 49.68 2.97

8 2 142.26 7.04 20.21 144.32 20.93 6.90 156.78 48.73 3.22

8 4 147.96 7.73 19.14 149.74 21.07 7.11 160.01 55.23 2.90

16 0 38.26 4.95 7.73 39.31 9.33 4.21 40.82 24.04 1.70

16 1 43.34 4.94 8.77 44.07 10.34 4.26 47.84 20.32 2.35

16 2 44.94 5.00 8.99 44.88 9.08 4.94 48.97 20.65 2.37

16 4 46.51 5.04 9.23 46.20 9.26 4.99 50.93 23.68 2.15

16 8 51.29 5.12 10.02 50.56 10.17 4.97 56.11 19.70 2.85

32 0 14.41 2.57 5.61 14.02 4.94 2.84 14.56 9.28 1.57

32 1 19.57 2.59 7.56 20.29 5.29 3.84 20.15 6.10 3.30

32 2 19.86 2.61 7.61 19.23 5.01 3.84 20.35 7.87 2.59
32 4 20.73 2.69 7.71 19.93 5.01 3.98 21.66 9.70 2.23

32 8 23.58 2.64 8.93 23.52 4.88 4.82 26.74 9.87 2.71

32 16 29.60 2.73 10.84 29.10 4.48 6.50 41.20 8.49 4.85

Average Improvement 10.71 5.00 2.70



Symmetry 2022, 14, 715 11 of 13

The FEI dataset [19] is a Brazilian facial dataset composed of 200 faces. In the experi-
ment, we have included 10 images of each person with a size of 480× 640. The images show
various expressions and head poses. We used the block size of 48× 48 and five overlap
sizes as shown in Table 6. The results again show a substantial speed up in all settings.

Table 5. Computation time (in msec) and improvement for the proposed and reference algorithms on
the ORL dataset.

Overlap Size Traditional Algorithms Proposed Algorithm Improvement

(0,0) 1.381 0.137 10.12

(2,2) 1.762 0.151 11.70

(4,4) 2.518 0.167 15.07

Table 6. Computation time (in msec) and improvement for the proposed and reference algorithms
performed on the FEI dataset.

Overlap Size Traditional Algorithms Proposed Algorithm Improvement

(1,1) 13.715 5.298 2.59

(2,2) 14.334 5.361 2.67

(4,4) 15.857 5.497 2.88

(6,6) 18.965 5.619 3.38

(8,8) 20.943 5.863 3.57

Average 16.770 5.530 3.03

Finally, we tested the performance of the 3D version of our algorithm. We used
19 model images from the well known McGill benchmark dataset [20]. We alternated each
sample by shift and rotation such that 1252 versions of each object were generated, which
resulted in a total number of 23,788 objects. The Charlier polynomials are used in this
experiment [21]. The speed analysis for various block sizes and overlaps is given in Table 7.
The last column of the table shows the improvement factor.

Table 7. Computation time (msec) for the proposed and traditional algorithms in 3D.

Block Size Overlap Size Traditional Algorithm Proposed Algorithm Improvement

64× 64× 64

0, 0, 0 22.075 7.941 2.78

2, 2, 2 24.909 9.826 2.54

4, 4, 4 28.700 10.157 2.83

32× 32× 32

0, 0, 0 27.926 8.400 3.32

2, 2, 2 35.139 10.637 3.30

4, 4, 4 42.128 11.348 3.71

16× 16× 16

0, 0, 0 89.398 12.130 7.37

2, 2, 2 118.817 16.045 7.41

4, 4, 4 154.998 20.003 7.75

Average 4.56

4. Conclusions

In this paper, we proposed a method for fast calculation of features of overlapping
image blocks. The main idea is based on a construction of auxiliary matrices that virtually
“extend” the original image and make it possible to avoid time-consuming calculations in
loops. These matrices can be pre-calculated, stored, and used repeatedly since they are



Symmetry 2022, 14, 715 12 of 13

independent of the image itself. We verified experimentally that the speed up, compared
with the traditional approach, may be up to 20 times depending on the block parameters.
The method is applicable to the calculation of any integral features such as moments
and other transform coefficients (including Meixner [22] and Krawtchouk [23]), if the
multivariate basis functions of the transformation are separable. The algorithm may find
an application wherever a local, block-based image processing description and recognition
is required.

Author Contributions: Conceptualization, S.H.A. and B.M.M.; methodology, S.H.A. and B.M.M.;
software, S.H.A. and B.M.M.; validation, J.F., K.A.A.-U. and S.M.S.; investigation, K.A.A.-U., S.M.S.
and B.M.M.; resources, J.F. and S.H.A.; writing—original draft preparation, B.M.M. and K.A.A.-U.;
writing—review and editing, J.F. and S.M.S.; visualization, S.M.S., K.A.A.-U. and B.M.M.; project
administration, S.H.A. and J.F. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the links and how to obtain the presented data in this paper, if it is
publicly available, can be found through the referenced papers.

Acknowledgments: The authors would also like to thank the University of Baghdad, University of
Hai’l, and King Fahad University of Petroleum and Minerals for their help and support. Jan Flusser
has been supported by the Czech Science Foundation under the grant No. GA21-03921S, by the
Praemium Academiae, and by Joint Laboratory Salome 2.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimension
3D Three dimension
MKL Math Kernel Library
msec millisecond

References
1. Alted, F. Why modern CPUs are starving and what can be done about it. Comput. Sci. Eng. 2010, 12, 68–71. [CrossRef]
2. Abdulhussain, S.H.; Rahman Ramli, A.; Mahmmod, B.M.; Iqbal Saripan, M.; Al-Haddad, S.; Baker, T.; Flayyih, W.N.; Jassim, W.A.

A Fast Feature Extraction Algorithm for Image and Video Processing. In Proceedings of the 2019 International Joint Conference
on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [CrossRef]

3. Oyewola, D.O.; Dada, E.G.; Misra, S.; Damaševičius, R. Detecting cassava mosaic disease using a deep residual convolutional
neural network with distinct block processing. PeerJ Comput. Sci. 2021, 7, e352. [CrossRef] [PubMed]

4. Kim, B.G.; Park, D.J. Adaptive image normalisation based on block processing for enhancement of fingerprint image. Electron. Lett.
2002, 38, 696–698. [CrossRef]

5. Farokhi, S.; Sheikh, U.U.; Flusser, J.; Yang, B. Near infrared face recognition using Zernike moments and Hermite kernels. Inf. Sci.
2015, 316, 234–245. [CrossRef]

6. Fan, X.; Tjahjadi, T. A dynamic framework based on local Zernike moment and motion history image for facial expression
recognition. Pattern Recognit. 2017, 64, 399–406. [CrossRef]

7. Li, Z.; Xiang, J.; Gong, L.; Blaauw, D.; Chakrabarti, C.; Kim, H.S. Low complexity, hardware-efficient neighbor-guided sgm optical
flow for low-power mobile vision applications. IEEE Trans. Circuits Syst. Video Technol. 2018, 29, 2191–2204. [CrossRef]

8. Rai, S.; Bhatt, J.S.; Patra, S. An unsupervised deep learning framework for medical image denoising. arXiv 2021, arXiv:2103.06575.
9. Mousa, A.K. Tamper Detection in Color Image. Baghdad Sci. J. 2008, 5, 155–159.
10. AL-Hadithy, S.S.; Ghadah, K.; Al-Khafaji; Siddeq, M. Adaptive 1-D Polynomial Coding of C621 Base for Image Compression.

Turk. J. Comput. Math. Educ. (Turcomat) 2021, 12, 5720–5731.
11. Baldev, S.; Rathore, P.K.; Peesapati, R.; Anumandla, K.K. A directional and scalable streaming deblocking filter hardware

architecture for HEVC decoder. Microprocess. Microsyst. 2021, 84, 104029. [CrossRef]
12. Flusser, J.; Suk, T.; Zitová, B. 2D and 3D Image Analysis by Moments; John Wiley & Sons: Hoboken, NJ, USA, 2016.

http://doi.org/10.1109/MCSE.2010.51
http://dx.doi.org/10.1109/IJCNN.2019.8851750
http://dx.doi.org/10.7717/peerj-cs.352
http://www.ncbi.nlm.nih.gov/pubmed/33817002
http://dx.doi.org/10.1049/el:20020507
http://dx.doi.org/10.1016/j.ins.2015.04.030
http://dx.doi.org/10.1016/j.patcog.2016.12.002
http://dx.doi.org/10.1109/TCSVT.2018.2854284
http://dx.doi.org/10.1016/j.micpro.2021.104029


Symmetry 2022, 14, 715 13 of 13

13. Do, Q.; Acuña, S.; Kristiansen, J.I.; Agarwal, K.; Ha, P.H. Highly Efficient and Scalable Framework for High-Speed Super-
Resolution Microscopy. IEEE Access 2021, 9, 97053–97067. [CrossRef]

14. Rinkevicius, Z.; Li, X.; Vahtras, O.; Ahmadzadeh, K.; Brand, M.; Ringholm, M.; List, N.H.; Scheurer, M.; Scott, M.; Dreuw, A.; et al.
VeloxChem: A Python-driven density-functional theory program for spectroscopy simulations in high-performance computing
environments. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2020, 10, e1457. [CrossRef]

15. Hameed, I.M.; Abdulhussain, S.H. An efficient multistage CBIR based on Squared Krawtchouk-Tchebichef polynomials. In IOP
Conference Series: Materials Science and Engineering; IOPscience: Samawah, Iraq, 2021; Volume 1090, p. 012100. [CrossRef]

16. Parekh, R. Fundamentals of Image, Audio, and Video Processing Using MATLAB®: With Applications to Pattern Recognition; CRC Press:
Boca Raton, FL, USA, 2021.

17. AT&T Corp. The Database of Faces; AT&T Corp.: Dallas, TX, USA, 2016.
18. Aggarwal, A.; Alshehri, M.; Kumar, M.; Sharma, P.; Alfarraj, O.; Deep, V. Principal component analysis, hidden Markov model,

and artificial neural network inspired techniques to recognize faces. Concurr. Comput. Pract. Exp. 2021, 33, e6157. [CrossRef]
19. FEI Face Database. 2010. Available online: https://fei.edu.br/~cet/facedatabase.html (accessed on 1 April 2021).
20. Siddiqi, K.; Zhang, J.; Macrini, D.; Shokoufandeh, A.; Bouix, S.; Dickinson, S. Retrieving articulated 3-D models using medial

surfaces. Mach. Vis. Appl. 2008, 19, 261–275. [CrossRef]
21. Abdul-Hadi, A.M.; Abdulhussain, S.H.; Mahmmod, B.M. On the computational aspects of Charlier polynomials. Cogent Eng.

2020, 7, 1763553. [CrossRef]
22. Abdulhussain, S.H.; Mahmmod, B.M. Fast and efficient recursive algorithm of Meixner polynomials. J. Real-Time Image Process.

2021, 18, 2225–2237. [CrossRef]
23. AL-Utaibi, K.A.; Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.; Sait, S.M. Reliable Recurrence Algorithm for

High-Order Krawtchouk Polynomials. Entropy 2021, 23, 1162. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ACCESS.2021.3094840
http://dx.doi.org/10.1002/wcms.1457
http://dx.doi.org/10.1088/1757-899X/1090/1/012100
http://dx.doi.org/10.1002/cpe.6157
https://fei.edu.br/~cet/facedatabase.html
http://dx.doi.org/10.1007/s00138-007-0097-8
http://dx.doi.org/10.1080/23311916.2020.1763553
http://dx.doi.org/10.1007/s11554-021-01093-z
http://dx.doi.org/10.3390/e23091162
http://www.ncbi.nlm.nih.gov/pubmed/34573787

	Introduction
	The Proposed Algorithm
	Performance Analysis
	Computation Cost Analysis
	Numerical Experiments

	Conclusions
	References

