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Abstract: This paper intends to define degenerate q-Hermite polynomials, namely degenerate q-
Hermite polynomials by means of generating function. Some significant properties of degenerate
q-Hermite polynomials such as recurrence relations, explicit identities and differential equations are
established. Many mathematicians have been studying the differential equations arising from the
generating functions of special numbers and polynomials. Based on the results so far, we find the
differential equations for the degenerate q-Hermite polynomials. We also provide some identities
for the degenerate q-Hermite polynomials using the coefficients of this differential equation. Finally,
we use a computer to view the location of the zeros in degenerate q-Hermite equations. Numerical
experiments have confirmed that the roots of the degenerate q-Hermit equations are not symmetric
with respect to the imaginary axis.

Keywords: differential equations; heat equation; Hermite polynomials; degenerate q-Hermite poly-
nomials; generating functions; complex zeros

1. Introduction

Hermite polynomials are classic orthogonal polynomials, and many studies have
been conducted by various mathematicians. These Hermite polynomials also have many
applications such as in physics and probability theory (see [1–11]). Throughout this paper, C
indicates the set of complex numbers and R designates a set of real numbers. Furthermore,
the variable q ∈ C, such that |q| < 1. q-analogues of x ∈ C is specified as

[x]q =
1− qx

1− q
.

Note that limq→1[x]q = x.
The q-Hermite polynomials Hn,q(x) [11,12] are defined by

Hn,q(x) = n!
[ n

2 ]

∑
k=0

(−1)k2n−2k[x]n−2k
q

k!(n− 2k)!
.

The differential equation and the generating function for Hn,q(x) are given by(
q− 1

qx log q
d2

dx2 +

(
1− q

qx − 2(1− qx)

1− q

)
d

dx
+ 2n

log q
q− 1

qx
)

Hn,q(x) = 0,

Hn,q(0) =

(−1)k (2k)!
k!

, if n = 2k,

0, otherwise,
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and
∞

∑
n=0

Hn,q(x)
tn

n!
= e2[x]qt−t2

, (1)

respectively.
Additionally, the polynomials Hn,q(x) satisfy the following differential equation((

d
d[x]q

)2
− 2[x]q

(
d

d[x]q

)
+ 2n

)
Hn,q(x) = 0,

Hn,q(0) =

(−1)k (2k)!
k!

, if n = 2k,

0, otherwise.

Mathematicians have studied the differential equations arising from the generating
functions of special numbers and polynomials (see [12–14]). Based on the results so far, in
this work, we can derive the differential equations generated from the generating function
of degenerate q-Hermite polynomialsHn,q(x|λ). By using the coefficients of this differential
equation, we obtain explicit identities for the degenerate q-Hermite polynomialsHn,q(x|λ).
The rest of the paper is organized as follows. In Section 2, we derive the differential
equations generated from the generating function of degenerate q-Hermite polynomials
Hn,q(x|λ). Using the coefficients of this differential equation, we obtain explicit identities
for the degenerate q-Hermite polynomialsHn,q(x|λ). In Section 3, we use the software to
check the zeros of the degenerate q-Hermite equations. In addition, we observe the pattern
of scattering phenomenon about the zeros of degenerate q-Hermite equations.

2. Basic Properties for the Degenerate q-Hermite Polynomials

In this section, we construct the degenerate q-Hermite polynomials Hn,q(x|λ). We
obtain some properties of the degenerate q-Hermite polynomialsHn,q(x|λ).

Definition 1. The degenerate q-Hermite polynomialsHn,q(x|λ) and degenerate q-Hermite num-
bersHn,q(λ) are usually defined by the generating functions

(1 + λ)

2[x]qt− t2

λ =
∞

∑
n=0
Hn,q(x|λ) tn

n!
, (2)

and

(1 + λ)

−t2

λ =
∞

∑
n=0
Hn(λ)

tn

n!
,

respectively.

Clearly,Hn(λ) = Hn,q(0|λ).
Since (1 + λ)

t
λ → et as λ → 0, it is evident that (2) reduces to (1). We recall that the

classical Stirling numbers of the first kind S1(n, k) and the second kind S2(n, k) are defined
by the relations

(x)n =
n

∑
k=0

S1(n, k)xk

and

xn =
n

∑
k=0

S2(n, k)(x)k,
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respectively (see [15]). Here (x)n = x(x − 1) . . . (x − n + 1) denotes the falling factorial
polynomial of order n. We also have

∞

∑
n=m

S2(n, m)
tn

n!
=

(et − 1)m

m!
and

∞

∑
n=m

S1(n, m)
tn

n!
=

(log(1 + t))m

m!
.

We also need the binomial theorem: for a variable x,

(1 + λ)[x]qt/λ =
∞

∑
m=0

(
t[x]q

λ

)
m

λm

m!

=
∞

∑
m=0

(
m

∑
l=0

S1(m, l)
(

t[x]q
λ

)l
λm

m!

)

=
∞

∑
l=0

(
∞

∑
m=l

S1(m, l)[x]lqλm−l l!
m!

)
tl

l!
.

(3)

By (2) and (3), we have

∞

∑
n=0
Hn,q(x|λ) tn

n!

= (1 + λ)

2[x]qt
λ (1 + λ)

−
t2

λ

=
∞

∑
k=0

(
− log(1 + λ)

λ

)k t2k

k!

∞

∑
l=0

(
∞

∑
m=l

S1(m, l)2l [x]lqλm−l l!
m!

)
tl

l!

=
∞

∑
n=0

 [ n
2 ]

∑
k=0

∞

∑
m=n−k

(−1)k[x]n−2k
q

2n−2kn!S1(m, n− k)λm+k−n(n− k)!
k!m!(n− 2k)!

 tn

n!
.

(4)

By comparing of the coefficients tn

n! on the both sides of (4), the following representation
ofHn,q(x|λ) is obtained

Hn,q(x|λ) =
[ n

2 ]

∑
k=0

∞

∑
m=n−k

(−1)k[x]n−2k
q

2n−2kn!S1(m, n− k)λm+k−n(n− k)!
k!m!(n− 2k)!

,

and [ ] denotes use of the integer part.
The following elementary properties of the degenerate q-Hermite polynomials Hn,q(x|λ)

are readily derived form (2). We, therefore, choose to omit the details involved.
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Theorem 1. For any positive integer n, we have

(1) Hn,q(x|λ) = n!
[ n

2 ]

∑
k=0

(
log(1 + λ)

λ

)n−k (−1)k[x]n−2k
q

k!(n− 2k)!
.

(2) Hn,q(x|λ) =
n

∑
k=0

(
n
k

)
Hk,q(x|λ)(−1)k4n−k[x]n−k

q

(
log(1 + λ)

λ

)n−k
.

(3) Hn,q(x|λ) =
n

∑
k=0

(
n
k

)
2n−k[x]n−k

q Hk(λ)

(
log(1 + λ)

λ

)n−k
.

(4) Hn,q(x|λ) =
n

∑
k=0

∞

∑
m=n−k

(
n
k

)
2n−k[x]n−k

q Hk(λ)
S1(m, n− k)λm+k−n(n− k)!

m!
.

(5) lim
λ→0
Hn,q(x|λ) = n!

[ n
2 ]

∑
k=0

(−1)k2n−2k[x]n−2k
q

k!(n− 2k)!
.

(6) Hn,q(x1 + x2|λ) =
n

∑
k=0

(
n
k

)
Hk,q(x1)2n−kqx1(n−k)[x2]

n−k
q ,

where [ ] denotes use of the integer part.

Theorem 2. The degenerate q-Hermite polynomialsHn,q(x|λ) in generating function (2) are the
solution of the following equation:(

λ

log(1 + λ)

(
d

d[x]q

)2
−

2[x]q log(1 + λ)

λ

(
d

d[x]q

)
+

2n log(1 + λ)

λ

)
Hn,q(x|λ) = 0,

Hn,q(0|λ) =

(−1)k
(

log(1 + λ)

λ

)
(2k)!

k!
, if n = 2k,

0, otherwise.

Proof. Note that

G(t, [x]q|λ) = (1 + λ)

2[x]qt− t2

λ

satisfies
∂G(t, [x]q|λ)

∂t
−
(

log(1 + λ)

λ

)(
2[x]q − 2t

)
G(t, [x]q|λ) = 0. (5)

Substitute the series in (2) for G(t, [x]q|λ) to obtain

Hn+1,q(x|λ)− 2[x]q

(
log(1 + λ)

λ

)
Hn,q(x|λ) + 2nHn−1,q(x|λ) = 0, n = 1, 2, . . . . (6)

This is the recurrence relation for degenerate q-Hermite polynomials. Another recur-
rence relation comes from(

d
d[x]q

)
G(t, [x]q|λ)− 2

(
log(1 + λ)

λ

)
tG(t, [x]q|λ) = 0.

This implies(
d

d[x]q

)
Hn,q(x|λ)− 2n

(
log(1 + λ)

λ

)
Hn−1,q(x|λ) = 0, n = 1, 2, . . . . (7)
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EliminateHn−1,q(x|λ) from (6) and (7) to obtain

Hn+1,q(x|λ)− 2[x]q

(
log(1 + λ)

λ

)
Hn,q(x|λ) +

(
λ

log(1 + λ)

)(
d

d[x]q

)
Hn,q(x|λ) = 0.

Differentiate this equation and use (6) and (7) again to obtain(
λ

log(1 + λ)

)(
d

d[x]q

)2
Hn,q(x|λ)− 2[x]q

(
log(1 + λ)

λ

)(
d

d[x]q

)
Hn,q(x|λ)

+ 2n
(

log(1 + λ)

λ

)
Hn,q(x|λ) = 0, n = 0, 1, 2, . . . .

Thus, we obtain the desired result.

Another application of the differential equation forHn,q(x|λ) is as follows:

Theorem 3. The degenerate q-Hermite polynomialsHn,q(x|λ) in generating function (2) are the
solution of the following equation:(

λ(q− 1)
qx log q log(1 + λ)

d2

dx2 +

(
λ(1− q)

qx log(1 + λ)
− 2(1− qx) log(1 + λ)

λ(1− q)

)
+

2n log(1 + λ)qx log q
λ(q− 1)

)
Hn,q(x|λ) = 0,

Hn,q(0|λ) =

(−1)k
(

log(1 + λ)

λ

)
(2k)!

k!
, if n = 2k,

0, otherwise.

Proof. Note that

G(t, [x]q|λ) = (1 + λ)

2[x]qt− t2

λ

satisfies
dG(t, [x]q|λ)

dx
− log q

q− 1

(
log(1 + λ)

λ

)
qx2tG(t, [x]q|λ) = 0. (8)

Substitute the series in (8) for G(t, [x]q|λ) to obtained

dHn,q(x|λ)
dx

− 2nqx log(1 + λ) log q
λ(q− 1)

Hn−1,q(x|λ) = 0, n = 1, 2, . . . . (9)

Differentiate this equation and use (8) and (9) again to derive

2n log(1 + λ)qx log q
λ(q− 1)

Hn,q(x|λ) +
(

λ(1− q)
qx log(1 + λ)

− 2(1− qx) log(1 + λ)

λ(1− q)

)
dHn,q(x|λ)

dx

+
λ(q− 1)

qx log q log(1 + λ)

d2Hn,q(x|λ)
dx2 = 0.

Therefore, the proof is complete.

Recently, many mathematicians have studied differential equations that appeared
based on the generative functions of special polynomials (see [12–14]). In line with these
studies, in this paper, we study the following: We obtain the differential equations generated
using the generating function of Hermite polynomials:(

∂

∂t

)N
G(t, [x]q|λ)− a0(N, [x]q|λ)G(t, [x]q|λ)− · · · − aN(N, [x]q|λ)tNG(t, [x]q|λ) = 0.
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We obtain some identities and properties for the degenerate q-Hermite polynomials
using the coefficients of this differential equation in Section 3. In Section 4, we find some fig-
ures to explore the zeros of the degenerate q-Hermite equations using numerical methods.

3. Differential Equations Associated with Degenerate q-Hermite Polynomials

Many researchers have studied differential equations arising from the generating
functions of special polynomials, since they can find some useful identities and properties
for special polynomials (see [12–14]). In this section, we introduce differential equations
using the generating functions of degenerate q-Hermite polynomials. From these differ-
ential equations, we find some significant identities and properties for the degenerate
q-Hermite polynomials.

Let

G = G(t, [x]q|λ) = (1 + λ)

2[x]qt− t2

λ =
∞

∑
n=0
Hn,q(x|λ) tn

n!
, x, t ∈ R. (10)

Then, by (10), we have

G(1) = ∂

∂t
G(t, [x]q|λ) =

∂

∂t

(1 + λ)

2[x]qt− t2

λ


= (1 + λ)

2[x]qt− t2

λ

(
log(1 + λ)

λ

)
(2[x]q − 2t)

=

(
log(1 + λ)

λ

)
(2[x]q − 2t)G(t, [x]q|λ)

=

(
2[x]q log(1 + λ)

λ

)
G(t, [x]q|λ) +

(
−2 log(1 + λ)

λ

)
tG(t, [x]q|λ),

G(2) = ∂

∂t
G(1)(t, [x]q|λ)

=

(
−2 log(1 + λ)

λ

)
G(t, [x]q|λ) +

(
log(1 + λ)

λ

)
(2[x]q − 2t)G(1)(t, [x]q|λ)

=

(
−2 log(1 + λ)

λ
+

(
log(1 + λ)

λ

)2

4[x]2q

)
G(t, [x]q|λ)

+

(
−8
(

log(1 + λ)

λ

)2

[x]q

)
tG(t, [x]q|λ)

+

(
(−2)2

(
log(1 + λ)

λ

)2
)

t2G(t, [x]q|λ).

If we continue this process, we can make the following guess.

G(N) =

(
∂

∂t

)N
G(t, [x]q|λ) =

N

∑
i=0

ai(N, [x]q|λ)tiG(t, [x]q|λ), (N = 0, 1, 2, . . .). (11)
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Differentiating (11) with respect to t, we have

G(N+1) =
∂G(N)

∂t

=
N

∑
i=0

ai(N, [x]q|λ)iti−1G(t, [x]q|λ) +
N

∑
i=0

ai(N, [x]q|λ)tiG(1)(t, [x]q|λ)

=
N

∑
i=0

ai(N, [x]q|λ)iti−1G(t, [x]q|λ)

+
N

∑
i=0

ai(N, [x]q|λ)ti
(

2[x]q

(
log(1 + λ)

λ

)
− 2
(

log(1 + λ)

λ

)
t
)
G(t, [x]q|λ)

=
N

∑
i=0

iai(N, [x]q|λ)ti−1G(t, [x]q|λ)

+
N

∑
i=0

(
2[x]q log(1 + λ)

λ

)
ai(N, [x]q|λ)tiG(t, [x]q|λ)

+
N

∑
i=0

(
−2 log(1 + λ)

λ

)
ai(N, [x]q|λ)ti+1G(t, [x]q|λ)

=
N−1

∑
i=0

(i + 1)ai+1(N, [x]q|λ)tiG(t, [x]q|λ)

+
N

∑
i=0

(
2[x]q log(1 + λ)

λ

)
ai(N, [x]q|λ)tiG(t, [x]q|λ)

+
N+1

∑
i=1

(
−2 log(1 + λ)

λ

)
ai−1(N, [x]q|λ)tiG(t, [x]q|λ).

(12)

Now, replacing N by N + 1 in (11), we find

G(N+1) =
N+1

∑
i=0

ai(N + 1, [x]q|λ)tiG(t, [x]q|λ). (13)

Comparing the coefficients on both sides of (12) and (13), we obtain

a0(N + 1, [x]q) = a1(N, [x]q|λ) +
(

2[x]q log(1 + λ)

λ

)
a0(N, [x]q|λ),

aN(N + 1, [x]q|λ) =
(

2[x]q log(1 + λ)

λ

)
aN(N, [x]q|λ)

+

(
−2 log(1 + λ)

λ

)
aN−1(N, [x]q|λ),

aN+1(N + 1, [x]q|λ) =
(
−2 log(1 + λ)

λ

)
aN(N, [x]q|λ),

(14)

and, for 1 ≤ i ≤ N − 1,

ai(N + 1, [x]q|λ) = (i + 1)ai+1(N, [x]q|λ)

+

(
2[x]q log(1 + λ)

λ

)
ai(N, [x]q|λ) +

(
−2 log(1 + λ)

λ

)
ai−1(N, [x]q|λ).

(15)

In addition, by (11), we have

G(t, [x]q|λ) = G(0)(t, [x]q|λ) = a0(0, [x]q|λ)G(t, [x]q|λ), (16)
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which gives
a0(0, [x]q|λ) = 1. (17)

It is not difficult to show that(
2[x]q log(1 + λ)

λ

)
G(t, [x]q|λ) +

(
−2 log(1 + λ)

λ

)
tG(t, [x]q|λ)

= G(1)(t, [x]q|λ)

=
1

∑
i=0

ai(1, [x]q|λ)G(t, [x]q|λ)

= a0(1, [x]q|λ))G(t, [x]q|λ) + a1(1, [x]q|λ)tG(t, [x]q|λ).

(18)

Thus, by (13), we also find

a0(1, [x]q|λ) = 2[x]q

(
log(1 + λ)

λ

)
, a1(1, [x]q|λ) = −2

(
log(1 + λ)

λ

)
. (19)

From (14), we note that

a0(N + 1, [x]q|λ) = a1(N, [x]q|λ) +
(

2[x]q log(1 + λ)

λ

)
a0(N, [x]q|λ),

a0(N, [x]q|λ) = a1(N − 1, [x]q|λ) +
(

2[x]q log(1 + λ)

λ

)
a0(N − 1, [x]q|λ), . . . ,

a0(N + 1, [x]q|λ) =
N

∑
i=0

(
2[x]q log(1 + λ)

λ

)i

a1(N − i, [x]q|λ) +
(

2[x]q log(1 + λ)

λ

)N+1

,

(20)

aN(N + 1, [x]q|λ) =
(

2[x]q log(1 + λ)

λ

)
aN(N, [x]q) +

(
−2 log(1 + λ)

λ

)
aN−1(N, [x]q|λ),

aN−1(N, [x]q|λ) =
(

2[x]q log(1 + λ)

λ

)
aN−1(N − 1, [x]q)

+

(
−2 log(1 + λ)

λ

)
aN−2(N − 1, [x]q|λ), . . . ,

aN(N + 1, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N
(N + 1)

(
2[x]q log(1 + λ)

λ

)
,

(21)

and

aN+1(N + 1, [x]q|λ) =
(
−2 log(1 + λ)

λ

)
aN(N, [x]q|λ),

aN(N, [x]q|λ) =
(
−2 log(1 + λ)

λ

)
aN−1(N − 1, [x]q|λ), . . . ,

aN+1(N + 1, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N+1

.

(22)

For i = 1 in (15), we have

a1(N + 1, [x]q|λ) = 2
N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a2(N − k, [x]q|λ)

+

(
−2 log(1 + λ)

λ

) N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a0(N − k, [x]q|λ),
(23)



Symmetry 2022, 14, 706 9 of 15

Continuing this process, we can deduce that, for 1 ≤ i ≤ N − 1,

ai(N + 1, [x]q|λ) = (i + 1)
N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai+1(N − k, [x]q|λ)

+

(
−2 log(1 + λ)

λ

) N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai−1(N − k, [x]q|λ).
(24)

Note that, here, the matrix ai(j, [x]q|λ)0≤i,j≤N+1 is given by

1 2[x]q

(
log(1 + λ)

λ

)
−2
(

log(1 + λ)

λ

)
+ 4[x]2q

(
log(1 + λ)

λ

)2

· · · ·

0
(
−2 log(1 + λ)

λ

)
(−2)2(2[x]q)

(
log(1 + λ)

λ

)2

· · · ·

0 0
(
−2 log(1 + λ)

λ

)2

· · · ·

0 0 0 · · · ·

...
...

...
. . .

...

0 0 0 0
(
−2 log(1 + λ)

λ

)N+1


Therefore, by (14)–(24), we obtain the following theorem.

Theorem 4. For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q|λ) =

(
N

∑
i=0

ai(N, [x]q|λ)ti

)
G(t, [x]q|λ) (25)

has a solution

G = G(t, [x]q|λ) = (1 + λ)

2[x]qt− t2

λ ,

where

a0(N, [x]q|λ) =
N−1

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a1(N − 1− k, [x]q) +
(

2[x]q log(1 + λ)

λ

)N

,

aN−1(N, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N−1

N
(

2[x]q log(1 + λ)

λ

)
,

aN(N, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N
,

ai(N + 1, [x]q|λ) = (i + 1)
N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai+1(N − k, [x]q|λ)

+

(
−2 log(1 + λ)

λ

) N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai−1(N − k, [x]q|λ), (1 ≤ i ≤ N − 2).

Theorem 5. For N = 0, 1, 2, . . . , we have

Hm+N,q(x|λ) =
m

∑
i=0

Hm−i,q(x|λ)ai(N, [x]q|λ)m!
(m− i)!

.
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where

a0(N, [x]q|λ) =
N−1

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a1(N − 1− k, [x]q) +
(

2[x]q log(1 + λ)

λ

)N

,

aN−1(N, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N−1

N
(

2[x]q log(1 + λ)

λ

)
,

aN(N, [x]q|λ) =
(
−2 log(1 + λ)

λ

)N
,

ai(N + 1, [x]q|λ) = (i + 1)
N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai+1(N − k, [x]q|λ)

+

(
−2 log(1 + λ)

λ

) N

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

ai−1(N − k, [x]q|λ), (1 ≤ i ≤ N − 2).

Proof. Making N-times derivative for (2) with respect to t, we have

(
∂

∂t

)N
G(t, [x]q|λ) =

(
∂

∂t

)N
(1 + λ)

2[x]qt− t2

λ =
∞

∑
m=0
Hm+N,q(x|λ) tm

m!
. (26)

By (25) and (26), we have

a0(N, [x]q|λ)G(t, [x]q|λ) + · · ·+ a1(N, [x]q|λ)tNG(t, [x]q|λ) =
∞

∑
m=0
Hm+N,q(x|λ) tm

m!
.

Hence, we obtain the desired result.

Corollary 1. For N = 0, 1, 2, . . . , we have

HN,q(x|λ) = a0(N, [x]q|λ),

where

a0(N, [x]q|λ) =
N−1

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a1(N − 1− k, [x]q|λ) +
(

2[x]q log(1 + λ)

λ

)N

,

a1(N, [x]q|λ) = 2
N−1

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a2(N − k− 1, [x]q|λ)

+

(
−2 log(1 + λ)

λ

) N−1

∑
k=0

(
2[x]q log(1 + λ)

λ

)k

a0(N − k− 1, [x]q|λ).

Proof. If we take m = 0 in Theorem 5, then we have the desired result.

For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q|λ) =

(
N

∑
i=0

ai(N, [x]q|λ)ti

)
G(t, [x]q|λ)

has a solution

G = G(t, [x]q|λ) = (1 + λ)

2[x]qt− t2

λ .

This is a plot of the surface for this solution.
In Figure 1 (left), we choose −2 ≤ x ≤ 2, q = 1/10, λ = 1/10, and 0 ≤ t ≤ 2. In

Figure 1 (right), we choose −2 ≤ x ≤ 2, q = 1/10, λ = 9/10, and 0 ≤ t ≤ 2.
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Figure 1. Surface for the solution G(t, [x]q|λ).

4. Zeros of the Degenerate q-Hermite Polynomials

Recently, mathematicians have used software because it makes many concepts easier.
These studies have allowed mathematicians to generate and visualize new ideas, to examine
the properties of shapes, to create many conjectures. Based on this trend, we investigate the
distribution and pattern of zeros of degenerate q-Hermite polynomialsHn,q(x|λ) according
to the change of degree n in this section.

First, a few examples of the specific polynomials ofHn,q(x|λ) defined in Section 2 are
shown below:

H0,q(x|λ) = 1,

H1,q(x|λ) = 2 log(1 + λ)

λ(1− q)
− 2qx log(1 + λ)

λ(1− q)
,

H2,q(x|λ) = −2 log(1 + λ)

λ
+

4 log(1 + λ)2

λ2(1− q)2 −
8qx log(1 + λ)2

λ2(1− q)2 +
4q2x log(1 + λ)2

λ2(1− q)2 ,

H3,q(x|λ) = −12 log(1 + λ)2

λ2(1− q)
+

12qx log(1 + λ)2

λ2(1− q)
+

8 log(1 + λ)3

λ3(1− q)3 −
24qx log(1 + λ)3

λ3(1− q)3

+
24q2x log(1 + λ)3

λ3(1− q)3 − 8q3x log(1 + λ)3

λ3(1− q)3 .

Using a computer, we investigate the distribution of zeros of the degenerate q-Hermite
polynomials Hn,q(x|λ) = 0. Plots of the zeros of the degenerate q-Hermite polynomials
Hn,q(x|λ) for n = 20 and x ∈ R are as follows (Figure 2).

In the top-left picture of Figure 2, we chose n = 20, q = 1/10 and λ = 1/10. In the
top-right picture of Figure 2, we chose n = 20, q = 1/10 and λ = 3/10. In the bottom-left
picture of Figure 2, we chose n = 20, q = 1/10 and λ = 7/10. In the bottom-right picture of
Figure 2, we chose n = 20, q = 1/10 and λ = 9/10.
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Figure 2. Zeros ofHn,q(x|λ).

Stacks of zeros of the degenerate q-Hermite polynomials Hn,q(x|λ) for 1 ≤ n ≤ 30
from a 3-D structure are presented (Figure 3).

Figure 3. Stacks of zeros ofHn,q(x|λ), 1 ≤ n ≤ 30.

In the left picture of Figure 3, we chose q = 5/10 and λ = 1/10. In the right picture of
Figure 3, we chose q = 5/10 and λ = 9/10.

Our numerical results for approximate solutions of real zeros of the degenerate
q-Hermite polynomialsHn,q(x|λ), q = 1/2, λ = 1/10, x ∈ R are displayed (Table 1).

We can see a regular pattern of the complex roots of the degenerate q-Hermite polyno-
mialsHn,q(x|λ) = 0 and hope to verify the same kind of regular structure of the complex
roots of the degenerate q-Hermite polynomialsHn,q(x|λ) = 0 (Table 1).

The plot of real zeros of the degenerate q-Hermite polynomials Hn,q(x|λ) for
q = 1/2, 1 ≤ n ≤ 30 structure are presented (Figure 4).
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Table 1. Numbers of real and complex zeros ofHn,q(x|λ), q = 1/2, λ = 1/10.

Degree n Real Zeros

1 1

2 2

3 3

4 4

5 4

6 5

7 6

8 6

9 7

10 8

11 8

12 9

13 10

14 10

Figure 4. Stacks of zeros ofHn,q(x|λ), 1 ≤ n ≤ 30.

In the left picture of Figure 4, we chose λ = 1/10. In the right picture of Figure 4, we
chose λ = 9/10.

Next, we calculated an approximate solution that satisfies Hn,q(x|λ) = 0, q = 1/2,
λ = 9/10, x ∈ R. The results are shown in Table 2.
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Table 2. Approximate solutions ofHn,q(x|λ) = 0, q = 1/2, λ = 9/10, x ∈ R.

Degree n x

1 0

2 −0.504526, 0.782538

3 −0.786709, 0, 1.8632

4 −0.983545, −0.390258, 0.536646, 5.46234

5 −1.13494, −0.648504, 0, 1.20937

6 −1.25805, −0.840698, −0.331348, 0.430875, 2.25785

7 −1.36185, −0.993392, −0.56881, 0, 0.9526 , 6.77359

8 −1.45162, −1.11987, −0.752868, −0.293593
0.369016, 1.66722

5. Conclusions

This paper focused on some explicit identities, recurrence relations and differential
equations for c. Thus, we defined the degenerate q-Hermite polynomialsHn,q(x|λ) in Defi-
nition 1 and obtained their formulas (Theorem 1), including explicit formulae (Theorem 5
and Corollary 1) and differential equations (Theorems 2–4). Finally, we examined the
distribution and pattern of zeros of degenerate q-Hermite polynomialsHn,q(x|λ) accord-
ing to the change in degree n. We expect that research in this direction will be a new
approach to using numerical methods for the study of degenerate q-Hermite polynomials
Hn,q(x|λ) = 0.
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