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Abstract: Cancer diseases lead to the second-highest death rate all over the world. For treating
tumors, one of the most common schemes is chemotherapy, which can decrease the tumor size and
control the progression of cancer diseases. To better understand the mechanisms of chemotherapy,
we developed a mathematical model of tumor growth under chemotherapy. This model includes
both immune system response and drug therapy. We characterize the symmetrical properties and
dynamics of this differential equation model by finding the equilibrium points and exploring the
stability and symmetry properties in a range of model parameters. Sensitivity analyses suggest that
the chemotherapy drug-induced tumor mortality rate and the drug decay rate contribute significantly
to the determination of treatment outcomes. Numerical simulations highlight the importance of CTL
activation in tumor chemotherapy.

Keywords: cancer; differential equation; chemotherapy; equilibrium; sensitivity analysis

1. Introduction

The tumor is a complex disease, which is the second leading cause of death in the
world [1,2]. The death rate caused by cancer has been increased worldwide in recent
years [3]. Although substantial medical research studies have been conducted, more
research studies are strongly needed to understand the mechanism of cancer initiation and
destruction as well as the effects of the anti-tumor therapy. Mathematical models provide
a valuable theoretical framework through which immuno-oncological mechanisms can
be discovered and clarified [4–8]. The applications of mathematical models enable us to
study the dynamics and symmetrical property of the immune system as well as to discover
the mechanisms controlling tumor cells, to design the therapy schemes, and to predict
the outcomes of new therapy strategies [9–19]. In addition, theoretical analysis, modeling
methodologies, and symmetrical analysis techniques have been applied to investigate
various properties of mathematical models using differential equations [20–23].

Medical practices show that surgery, chemotherapy, immunotherapy, and radiation
therapy so far are the widely used clinical schemes to treat cancer diseases successfully [11–18].
However, the treatment outcome depends on a number of factors, including the type and
degree of the tumor, the implementation of treatment schemes, and the intensity of the
patient’s autoimmune response. Mathematical modeling provides a theoretical framework
to predict the long-term treatment outcomes, which is difficult to be realized by clinical
studies. Currently, there are a variety of mathematical models for tumor growth and
treatment. However, each model only studies a couple of important factors in cancer
diseases and the medical treatment effects [14–18,24–32].

Among the treatment schemes for tumor diseases, the most common one is chemother-
apy. In the work of A.G. López et al. [11], they proposed a dynamical model of tumor

Symmetry 2022, 14, 704. https://doi.org/10.3390/sym14040704 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040704
https://doi.org/10.3390/sym14040704
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6191-0209
https://doi.org/10.3390/sym14040704
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040704?type=check_update&version=1


Symmetry 2022, 14, 704 2 of 15

growth, which includes the interactions and regulations between tumor cells, healthy host
cells, and immune effector cells. By analyzing the dynamical properties of the model, they
demonstrated the consistency between the theoretical analysis and empirical discovery
regarding the tumor progression and immune function. They introduced a chemother-
apeutic treatment scheme and proposed an approach to overcome problems in complex
pharmacokinetic modeling. A follow-up study proposed a differential equations model
for the interactions of tumor cells and immune cells under chemotherapy [13]. This study
suggested that intense chemotherapies could result in inferior tumor control. In addition,
more intense therapies might result in a stronger depletion of immune cells, which allows
an early re-growth of the tumor. However, these studies neither accounted for the dif-
ferent cell populations of innate and specific immune responses nor contained complex
pharmacokinetics.

Motivated by the need to better understand the mechanisms of chemotherapy treat-
ment and find more efficacious therapeutic methods, we propose a mathematical model to
study the effects of the immune system and chemotherapy to treat cancer diseases. The
purpose of this study is to explore the combined beneficial effects of the immune system
to regulate tumor growth and to find the side effects of chemotherapeutic drugs on both
the tumor cells and effector cells. Compared to previous models, the main innovation
of this work is the combination of important functions of the immune system and the
representation of dose-response dynamics in terms of mass action rather than exponential
decay. Thus, the proposed model describes three types of cells and one drug concentration.
We first analyze the local geometric and symmetrical properties of the equilibria of the
proposed model and then use simulations to confirm the theoretical results. In addition,
sensitivity analysis finds important parameters that have more impact on the variations of
tumor cell numbers, which provide predictions for designing treatment schemes.

2. The Model
2.1. Mathematical Model

We first propose a mathematical model to describe the interaction of tumor cells and
the anti-tumor immune system, as well as the influence of chemotherapy on both tumor
cells and the immune system. The model variables are T(t) for tumor cell population at
time t, N(t) for NK cell population, L(t) for cytotoxic T cell (CTLs) population, and u(t)
for the amount of drug at the tumor site. Figure 1 gives the schematic diagram for the
interactions of these variables. The proposed model is based on the following assumptions.

1. Both immune effector cells and chemotherapy decrease the tumor population.
2. The population of effector cells decreases due to the degradation process, consumption

when killing tumor cells, and the effect of chemotherapy.
3. Chemotherapy drugs can affect tumor cells and immune effector cells through a

mass-action mechanism.
4. A higher constant input of the drug dose can result in both higher tumor and immune

effector cell depletion.

The proposed model describes the population dynamics of tumor cells and the immune
system under chemotherapy, given by

N
′
(t) = aN(t)(1− bN(t))− α1N(t)T(t)− kNu(t)N(t),

L
′
(t) = rN(t)T(t)− µL(t)− β1L(t)T(t)− kLu(t)L(t),

T
′
(t) = cT(t)(1− dT(t))− α2N(t)T(t)− β2L(t)T(t)− kTu(t)T(t),

u
′
(t) = v−ωu(t),

(1)

with initial conditions N(0) = N0 ≥ 0, L(0) = L0 ≥ 0, T(0) = T0 ≥ 0, and u(0) = u0 ≥ 0.



Symmetry 2022, 14, 704 3 of 15

T
K uT

N
K uN L

K uL

1
NTα

1
LTβ 2

LTβ

T

N L Lµ

2
NTα

a
rNT

Figure 1. Model assumptions about the detailed interactions between tumor cells, the immune
system, and chemotherapy.

In the first equation of model (1), it is assumed that NK cells grow logistically through
the term aN(t)(1− bN(t)). However, they are inactivated through the interactions with
tumor cells based on −α1N(t)T(t). In the second equation, CTLs are present in the system
when the tumor cells are present. They are recruited by tumor cells through a linear term
rN(t)T(t). In addition, the death of CTLs is a linear process −µL(t). In addition, the
interactions with tumor cells will inactivate CTLs via −β1L(t)T(t). In the third equation,
a tumor is assumed to grow according to a logistic function as cT(t)(1− dT(t)) [12–14,
18,24,25]. In addition, the tumor cells are killed by both NK cells and CTLs, which are
realized by −α2N(t)T(t) and −β2L(t)T(t), respectively. The chemotherapy drug in the
last equation has a constant source v, and linearly fades out of the system by −ωu(t). In
our model (1), since the chemotherapy drug affects all three cell populations through a
mass-action dynamic and the drug mortality rate differs for each type of cell, we denote
the three different response coefficients by kN , kL, and kT . Table 1 lists the parameters in
model (1), along with their units, descriptions, estimated values, and references.

Table 1. Description and values of the parameters in model (1).

Parameters Units Description Value Reference

a day−1 Growth rate of NK cells none none
b cell−1 Inverse of NK cells capacity 3.17× 10−6 fitting
c day−1 Growth rate of tumor 5.14× 10−1 [33]
d cell−1 Inverse of tumor capacity 1.02× 10−9 [33]
r cell−1 day−1 Activation rate of CTLs 1.1× 10−7 [34,35]
µ day−1 CTL death rate 2.0× 10−2 [34]
α1 cell−1 day−1 NK cell death rate 1.0× 10−7 [33]
α2 cell−1 day−1 Tumor death rate of NK 6.41× 10−11 [33,36]
β1 cell−1 day−1 CTL death rate 3.42× 10−10 [37]
β2 cell−1 day−1 Rate of CTL-induced tumor death 3.5× 10−7 fitting
v dose Influx of drug none none
ω day−1 Drug decay rate 9× 10−1 [12]

kN , kL day−1 Immune cell killed by drug 6× 10−1 [12]
kT day−1 Tumor cell killed by drug 8× 10−1 [12]

2.2. The Reduced Model

To reduce the model complexity, we use the following non-dimensionalized state
variables to simplify the model, given by

N̄ =
α2

µ
N, L̄ =

α1α2

rµ
L, T̄ =

α1

µ
T, ū =

kN
µ

, dt =
1
µ

dτ.
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Then the simplified model is

N̄
′
(τ) = a

µ N̄(τ)(1− bµ
α2

N̄(τ))− N̄(τ)T̄(τ)− ū(τ)N̄(τ),

L̄
′
(τ) = N̄(τ)T̄(τ)− L̄(τ)− β1

α1
L̄(τ)T̄(τ)− ū(τ)L̄(τ),

T̄
′
(τ) = c

µ T̄(τ)(1− dµ
α1

T̄(τ))− N̄(τ)T̄(τ)− rβ2
α1α2

L̄(τ)T̄(τ)− kT
kN

ū(τ)T̄(τ),

ū
′
(τ) = kN v

µ2 − ω
µ ū(τ).

(2)

By rewriting N̄, L̄, T̄, ū, τ as N, L, T, u, and t, respectively, we have the following di-
mensionless model, given by

N
′
(t) = pN(t)(1− 1.8× 10−2N(t))− N(t)T(t)− u(t)N(t),

L
′
(t) = N(t)T(t)− L(t)− 3.42× 10−3L(t)T(t)− u(t)L(t),

T
′
(t) = 25.7T(t)(1− 2.04× 10−4T(t))− N(t)T(t)

−6.02× 103L(t)T(t)− ku(t)T(t),
u
′
(t) = s− f u(t),

(3)

where p = a
µ , k = kT

kN
, s = kN v

µ2 , f = ω
µ . Using the values in Table 1, the values in

model (3) are bµ
α2

= 1.8× 10−2, β1
α1

= 3.42× 10−3, c
µ = 2.57× 10, dµ

α1
= 2.04× 10−4, and

rβ2
α1α2

= 6.02× 103.

3. Dynamics

This section will first find the positive invariant set of model (3). Then we study the
existence of equilibrium states and their corresponding stability properties. We give the
first result for the positive invariant set.

Lemma 1. The solutions of model (3) are positive if all initial values are positive and R4
+ =

{(N(t), L(t), T(t), u(t))|N(t) ≥ 0, L(t) ≥ 0, T(t) ≥ 0, u(t) ≥ 0} is a positive invariant set of
model (3).

Proof. Let X(t) = (N(t), L(t), T(t), u(t)) be a positive solution of model (3) based on the
initial solution X(0) = (N0, L0, T0, u0) ∈ R4

+. Following the dimensionless model (3), we
have the following equations

N(t) = N0e
∫ t

0 (p(1−1.8×10−2 N(m))−T(m)−u(m))dm,

L
′
(t) ≥ −L(t)− 3.42× 10−3L(t)T(t)− u(t)L(t),

T(t) = T0e
∫ t

0 (2.57×10(1−2.04×10−4T(m))−N(m)−6.02×103L(m)−ku(m))dm,

u(t) = u0e
∫ t

0 ( s
u(m)
− f )dm.

(4)

If N0 ≥ 0, T0 ≥ 0, and u0 ≥ 0, we can derive that N(t) ≥ 0, T(t) ≥ 0, u(t) ≥ 0. In addition,
the second inequality in (4) gives

L(t) ≥ L0e
∫ t

0 (−1−3.42×10−3T(m)−u(m))dm. (5)

Using the comparison principle, we can obtain that, if L0 ≥ 0, then L(t) ≥ 0. Thus, if
N0 ≥ 0, , T0 ≥ 0, u0 ≥ 0, then N(t) ≥ 0, L(t) ≥ 0, T(t) ≥ 0, u(t) ≥ 0. That is, all solutions
of model (3) are positive when their initial values are positive. Thus, R4

+ is a positively
invariant set of model (3).
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3.1. Equilibria of Dimensionless Model

We first note that the fourth equation in (3) can be decoupled from the model. The
equilibrium of variable u is u∗ = s

f . Thus, we need to consider the model with the
remaining three equations,

N
′
(t) = pN(t)(1− 1.8× 10−2N(t))− N(t)T(t)− u(t)N(t)

L
′
(t) = N(t)T(t)− L(t)− 3.42× 10−3L(t)T(t)− u(t)L(t)

T
′
(t) = 25.7T(t)(1− 2.04× 10−4T(t))− N(t)T(t)

−6.02× 103L(t)T(t)− ku(t)T(t).

(6)

We set each equation equals to zero. The null-surfaces of model (6) are given by

N
′
(t) = 0 =⇒ N = 0 or N = p−T−u

1.8×10−2 p ,

L
′
(t) = 0 =⇒ L = (p−T−u)T

1.8×10−2 p(1+3.42×10−3T+u) ,

T
′
(t) = 0 =⇒ T = 0 or T = 1.91× 102(25.7− N − 6.02× 103L− ku).

(7)

where u = s
f . Then the types of equilibrium states can be given as follows.

(i) The dead state, at which all three cell populations are zero, namely

E0(0, 0, 0,
s
f
)

(ii) The tumor-free state, at which the population of tumor cells is zero but the NK
cells survive. The equilibrium point is given by

E1(
p− s

f

1.8× 10−2 p
, 0, 0,

s
f
), when p >

s
f

.

(iii) The tumor-present state, at which the populations of NK cells and CTLs are zero
but the tumor cells survive.

E2(0, 0, 1.91× 102(25.7− ks
f
),

s
f
), when 25.7 >

ks
f

.

(iv) The coexisting state, at which immune and tumor cells have nonzero populations.
There are the following possible equilibrium states E3(N∗i , L∗i , T∗i , s

f ),(i = 1, 2, 3), where T∗i
is a positive solution to the following equation

AT2 + BT + C = 0, (8)

where

A = f 2(9.44× 10−3 − 3.23× 10−7 p),

B = f 2 + 1.01 f s− 7.95× 10−3 f 2 p− 9.43× 10−5 f sp− 6.16× 10−5ksp f ,

C = f s + s2 − 5.37× 10−1 f 2 p− 5.37× 10−1 f sp− 1.8× 10−2ksp f − 1.8× 10−2ks2 p.

The coexisting state can also be classified into two cases.
(1) When A = 0, that is, p = 2.92× 104, we have positive equilibrium E3(N∗1 , L∗1 , T∗1 , s

f ).
Here
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N∗1 = 1.9× 10−3(2.92× 104 − T∗ − s
f
), (9)

L∗1 =
1.9× 10−3(2.92× 104 − T∗ − s

f )T
∗

1 + 3.42× 10−3T∗ + s
f

, (10)

T∗1 =
1.57× 104 f 2 + s2 − 1.57× 104 f s− 5.26× 102ks f − 5.26× 102ks2

f (2.31× 102 f + 1.74s + 1.8ks)
. (11)

When 0 < T∗1 < 2.92× 104 − s
f , we have that N∗1 > 0, L∗1 > 0. Therefore, a positive

equilibrium E3(N∗1 , L∗1 , T∗1 , s
f ) exists if and only if k > 5.23× 10−3 and f > f ∗1 .

(2) When A 6= 0, we have a unique positive equilibrium E3(N∗2 , L∗2 , T∗2 , s
f ) or E3(N∗3 , L∗3 ,

T∗3 , s
f ). Here

N∗i =
p− T∗i −

s
f

1.8× 10−2 p
, (12)

L∗i =
(p− T∗i −

s
f )T
∗
i

1.8× 10−2 p(1 + 3.42× 10−3T∗i + s
f )

, (13)

T∗i =
−B±

√
B2 − 4AC

2A
, (i = 2, 3). (14)

It is clear that, when p− T∗i −
s
f > 0, we have N∗i > 0, L∗i > 0, i = 2, 3.

Thus, the coexisting equilibrium states exist if and only if 0 < T∗1 < 2.92× 104 − s
f ,

or 0 < T∗i < p− s
f , i = 2, 3. Based on Vieta’s theorem, the endemic equilibrium states of

model (3) are given in Table 2.

Table 2. Endemic equilibrium states of model (3) and the corresponding parameter ranges.

No. p k f Equilibrium Points

1 2.92× 104 (5.23× 10−3, +∞) ( f ∗1 , +∞) E3(N∗1 , L∗1 , T∗1 , s
f )

2 (1.23× 104, 2.92× 104) (0, 1
1.8×10−2 p ) (0, f ∗3 ) E3(N∗2 , L∗2 , T∗2 , s

f )

3 (0, 5.06× 103) (0, k∗1) ( f ∗2 , +∞) E3(N∗3 , L∗3 , T∗3 , s
f )

The values of parameters in Table 2 are given by

f ∗1 = 0.5s + 1.68× 10−2ks + 3.18× 10−5
√

s2(2.46× 108 + 2.77× 105k2 + 4.95× 107k),

f ∗2 =
−B1+

√
B2

1−4A1C1
2A1

,

f ∗3 =
−B2−

√
B2

2−4A2C2
2A2

,

k∗1 = 0.99−9.37×10−5 p
6.16×10−5 p ,

A1 = 4.17× 10−13 p3 + 5.55× 10−5 p− 1.41× 10−8 p2 + 2.62× 10−2,

B1 = 1.21× 10−10sp2 − 4.13× 10−6sp + 1.73× 10−2s
+ 7.96× 10−11ksp2 − 6.8× 10−4ks− 2.3× 10−6ksp,

C1 = −s2(1.1× 10−10 p + 6.78× 10−4k),
A2 = −5.37× 10−1 p,

B2 = s(1− 5.37× 10−1 p− 1.8× 10−2kp),
C2 = s2(1− 1.8× 10−2kp).

Based on the above discussion, Table 3 gives the existence of the equilibrium states of
model (3). Based on different parameter values, model (3) may have different numbers of
equilibria from these possible states. When developing a chemotherapy scheme, the goal is
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to let the model reach a region in which there are only harmless equilibrium states, which

may be either the tumor-free equilibrium state at E1(
p− s

f
1.8×10−2 p , 0, 0, s

f ) or the coexisting
equilibrium state with a small number of tumor cells but a large number of immune cells.

Table 3. The existence of equilibrium states of model (3) (s ∈ (0,+∞)).

No. p k f Equilibrium Points

1 (0,+∞) (0,+∞) (0,+∞) E0(0, 0, 0, s
f )

2 ( s
f ,+∞) (0,+∞) (0,+∞) E1(

p− s
f

1.8×10−2 p , 0, 0, s
f )

3 (0,+∞) (0,+∞) ( ks
25.7 ,+∞) E2(0, 0, 1.91× 102(25.7− ks

f ),
s
f )

4 2.92× 104 (5.23× 10−3,+∞) ( f ∗1 ,+∞) E3(N∗1 , L∗1 , T∗1 , s
f )

5 (1.23× 104, 2.92× 104) (0, 1
1.8×10−2 p ) (0, f ∗3 ) E3(N∗2 , L∗2 , T∗2 , s

f )

6 (0, 5.06× 103) (0, k∗1) ( f ∗2 ,+∞) E3(N∗3 , L∗3 , T∗3 , s
f )

3.2. Stability of Equilibrium States

To study the stability of equilibrium states, we consider the Jacobian matrix of
model (3)

J =


a11 0 −N −N
T a22 N − 3.42× 10−3L −L
−T −6.02× 103T a33 −kT
0 0 0 − f


where

a11 = p− 3.6× 10−2 pN − T − s
f

,

a22 = −1− 3.42× 10−3T − s
f

,

a33 = 25.7− 1.05× 10−2T − N − 6.02× 103L− ks
f

.

3.2.1. Dead Equilibrium State

The Jacobian matrix of model (3) at E0(0, 0, 0, s
f ) is given by

J(E0) =


p− s

f 0 0 0
0 −1− s

f 0 0
0 0 25.7− ks

f 0
0 0 0 − f

.

The eigenvalues of this matrix are

λ1 = p− s
f

, λ2 = −1− s
f
< 0, λ3 = 25.7− ks

f
, λ4 = − f < 0. (15)

Using the Routh–Hurwitz theorem [38], the dead equilibrium state E0(0, 0, 0, s
f ) is locally

asymptotically stable if λ1 and λ3 are negative, namely

s > p f , s >
25.7 f

k
. (16)

We have the following results about the stability of the dead equilibrium state E0(0, 0, 0, s
f ).

(1) E0 is a locally asymptotically stable node when s > max{ p f , 25.7 f
k }.

(2) E0 is an unstable saddle node when s = p f or ks = 25.7 f .
(3) E0 is a saddle point when s < p f or s < 25.7 f

k .
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3.2.2. Tumor-Free Equilibrium State

When p > s
f , the tumor-free equilibrium state E1(

p− s
f

1.8×10−2 p , 0, 0, s
f ) exists. The Jacobian

matrix of model (3) at this state becomes

J(E1) =


−(p− s

f ) 0 −
p− s

f
1.8×10−2 p −

p− s
f

1.8×10−2 p

0 −1− s
f

p− s
f

1.8×10−2 p 0

0 0 25.7−
p− s

f
1.8×10−2 p −

ks
f 0

0 0 0 − f

.

The eigenvalues of the above matrix are

λ5 = −(p− s
f
), λ6 = −1− s

f
< 0, λ7 = 25.7−

p− s
f

1.8× 10−2 p
− ks

f
, λ8 = − f < 0. (17)

Since p > s
f , then λ5 = −(p− s

f ) < 0. Therefore, the tumor-free equilibrium state E1

is locally asymptotically stable if and only if λ7 < 0. After calculation, we obtain that λ7 is
always negative when parameters values satisfy any one of the following conditions (18)
and (19):

0.5374p f < s < p f , k >
s− 0.5374p f
1.8× 10−2 ps

; (18)

0 < s < 0.5374p f . (19)

Using the Routh–Hurwitz theorem [38], we can obtain the stability results of the
tumor-free equilibrium state E1.

(4) When model parameters satisfy one of the above inequalities (18) and (19), the
tumor-free equilibrium state E1 is locally asymptotically stable.

(5) When 25.7 =
p− s

f
1.8×10−2 p + ks

f , and p > s
f , E1 is an unstable saddle node.

(6) When 25.7 >
p− s

f
1.8×10−2 p + ks

f , and p > s
f , E1 is a saddle node.

Note that if the tumor-free equilibrium state of model (3) is unstable, the tumor cells
cannot be eliminated by any amount of chemotherapy drugs.

3.2.3. Tumor-Present Equilibrium State

Note that when 25.7− ks
f > 0, there is the tumor-present equilibrium state E2(0, 0,

1.91× 102(25.7− ks
f ),

s
f ). The Jacobian matrix at this equilibrium state has the form

J(E2) =


¯a11 0 0 0

1.91× 102(25.7− ks
f ) ¯a22 0 0

−1.91× 102(25.7− ks
f ) −1.15× 106(25.7− ks

f ) −(25.7− ks
f ) ¯a33

0 0 0 − f

.

where

¯a11 = p− 1.91× 102(25.7− ks
f
)− s

f
,

¯a22 = −1− 6.53× 10−1(25.7− ks
f
)− s

f
,

¯a33 = −1.91× 102k(25.7− ks
f
).

The eigenvalues of matrix J(E2) are



Symmetry 2022, 14, 704 9 of 15

λ9 = p− 1.91× 102(25.7− ks
f
)− s

f
, (20)

λ10 = −1− 6.53× 10−1(25.7− ks
f
)− s

f
< 0, (21)

λ11 = −(25.7− ks
f
), (22)

λ12 = − f < 0. (23)

Since λ9 = p− 1.91× 102(25.7− ks
f )−

s
f and 25.7 > ks

f , we have that
(i) when p− s

f < 0, λ9 < 0;

(ii) when p− s
f > 0 and λ9 < 0, we can derive that s > (p−4.91×103) f

1−1.91×102k ;
(iii) λ11 < 0.
Thus, we can obtain the stability results of the tumor-present equilibrium state E2

according to Routh–Hurwitz theorem [38].
(7) If and only if the parameters satisfy the inequalities (24) or (25), the tumor-present

equilibrium state E2 is locally asymptotically stable.

p f < s <
25.7 f

k
; (24)

(p− 4.91× 103) f
1− 1.91× 102k

< s < min{ p f ,
25.7 f

k
}. (25)

(8) When p = 1.91× 102(25.7− ks
f ) +

s
f , 25.7 > ks

f , the tumor-present equilibrium E2

is an unstable saddle node.
(9) When p > 1.91× 102(25.7− ks

f ) +
s
f , 25.7 > ks

f , the tumor-present equilibrium E2

is a saddle node.

3.2.4. Coexisting Equilibrium State

The key interest of this study is to find the existence and stability of the coexisting
equilibrium state with a small number of tumor cells but a large number of immune effector
cells. The Jacobian matrix of model (3) at E3(N∗i , L∗i , T∗i , s

f ), (i = 1, 2, 3) is given by

J(E3) =


a∗11 0 −N∗i −N∗i
T∗i a∗22 N∗i − 3.42× 10−3L∗i −L∗i
−T∗i −6.02× 103T∗i a∗33 −kT∗i

0 0 0 − f

.

where

a∗11 = p− 3.6× 10−2 pN∗i − T∗i −
s
f

,

a∗22 = −1− 3.42× 10−3T∗i −
s
f

,

a∗33 = 25.7− 1.05× 10−2T∗i − N∗i − 6.02× 103L∗i −
ks
f

.

Using the same analysis method, we can obtain the stability results of the coexisting
equilibrium state E3(N∗i , L∗i , T∗i , s

f ), (i = 1, 2, 3) as follows.

(10) When k > 5.23× 10−3 and f > f ∗1 , E3(N∗1 , L∗1 , T∗1 , s
f ) is locally asymptotically stable.

(11) When 1.23 × 104 < p < 2.92 × 104, 0 < k < 1
1.8×10−2 p , and 0 < f < f ∗3 ,

E3(N∗2 , L∗2 , T∗2 , s
f ) is a locally asymptotically stable focus.

(12) When 0 < p < 5.06 ×103, 0 < k < k∗1, and f > f ∗2 , E3(N∗3 , L∗3 , T∗3 , s
f ) is a saddle point.
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4. Parameter Sensitivity Analysis

In this section, sensitivity analysis is used to assess the impact of small parameter
changes on treatment outcomes by simulating the progression of cell numbers over 25 days.
We fix all the model parameter values except one parameter. By varying the parameter
value to a certain range, we check the difference of model outcome to that of the model
outcome using the original model parameters. Figure 2 gives the sensitivity analysis results.
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Figure 2. Sensitivity analysis of model (3) by changing the values of four parameters. (a) Parameter
p. (b) Parameter k. (c) Parameter s. (d) Parameter f .

In model (3), we set k = 0.1, f = 0.1, s = 10, and parameter p ∈ (0, 1) with an
increment of 0.1. The initial condition is N0 = 1× 105, L0 = 1× 102, T0 = 1× 107 and
u0 = 10. The simulation time period is t = 30 days. Figure 2a shows that the number of
tumor cells decreases with the increase of the NK cell growth rate p. However, there are no
significant changes in the number of tumor cells, which indicates that NK cells have minor
effects on the output of the model. This suggests that NK cells are not as important as the
CTLs to kill tumor cells.

Similarly, we fix p = 20, f = 0.1 and s = 10, but use k ∈ (0, 0.2) with an increment of
0.01. Figure 2b suggests that the tumor cell number decreases if the fatality rate of tumor
cells k by the chemotherapy drug increases. Figure 2b also suggests that a small variation
in parameter k may have a substantial influence on the tumor cell number.

In the third test, we fix p = 20, k = 0.1 and f = 0.1, but s takes a value of 0 to 100. The
parameter s represents the constant input of the chemotherapeutic drug. Figure 2c shows
that the tumor cell number changes slightly when the drug input constant is changed. This
indicates that the model is not particularly sensitive to parameter s, which suggests that we
cannot achieve the therapeutic effect by increasing the drug input dose alone.

Finally, we choose p = 20, k = 0.1, and s = 10, but f takes a value of 0 to 0.5, with an
increment of 0.01. Figure 2d gives the number of tumor cells at t = 30 days. This figure
indicates that the faster the rate of chemotherapy drug decay, the larger the number of
tumor cells in the host.
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Figure 2 suggests that the model is sensitive to the tumor mortality rate k induced by
chemotherapy drug, as well as the drug decay rate f . These results imply that in addition
to the decay rate of the chemotherapy drug, any improvement in the drug efficiency may
change the treatment results substantially. Since k = kT

kN
, we can increase the chemotherapy

drug-induced tumor mortality rate kT , or decrease the side effects of therapy drug kN .
However, the tumor cell number is not very sensitive to the NK cells growth rate p and the
chemotherapeutic drug input constant s. Thus, the cytolytic activity of the NK cells alone
may not be a vital factor for the treatment outcomes. The activity of CTLs should also be
considered.

5. Numerical Simulations
5.1. Numerical Simulations of the Equilibrium States

This subsection gives numerical simulations for the stability properties of the equilib-
rium states that have been proved in the previous section. The parameter values are given
in Table 1 except p, k, s, and f . We use the same initial immune system strengths. Here,
the parameters p, k, s, and f of each case are shown in Table 4. The initial conditions of all
cases are (N0, L0, T0, u0) = (1× 105, 1× 102, 1× 107, 10).

In Figure 3a, except for the drug concentration, the number of all cell populations
tends to zero, that is, the equilibrium point E0 is stable, indicating the death of the host.
In Figure 3b, after a period of time, only NK cells and drugs are present, and the tumor
cells are zero. Thus, the equilibrium point E1 is stable. This is the ideal case for treatment.
Figure 3c shows that only drugs and tumor cells remain, but the immune cells tend to
zero. Thus, the equilibrium point E2 is stable, which indicates that tumor cells can not
be controlled by drug therapy, leading to the death of the host. Figure 3d depicts the
coexistence of the immune cells and tumor cells.

(a) (b)

(c) (d)

Figure 3. Numerical simulations of the model for four equilibrium states. (a). Dead equilibrium
state E0. (b) Tumor–free equilibrium state E1. (c) Tumor–present equilibrium state E2. (d) Coexisting
equilibrium state E3.
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Table 4. The values of the fixed parameter p, k, s, and f for each simulation graph.

No. p k s f Equilibrium Points

1 10 0.4 10 0.1 E0
2 10 10 1 0.1 E1
3 20 0.1 10 0.2 E2
4 20 0.01 10 0.6 E3

5.2. Simulations Using Different Immune Strengths

To demonstrate the effect of immune system strengths, we hypothesize that the drug
has the same input constant and the same decay rate. However, different hosts have
different immune system strengths. Therefore, we fix the parameter values k = 2, f = 1,
and s = 10. The value of parameter p is in the range of [10, 20]. Thus, p = 20 is the strongest
immune system strength, but p = 10 is the weakest one. The initial concentrations of
the drug and tumor cell number are the same, namely (T0, u0) = (1× 107, 10). However,
the initial numbers of immune cells are different. So the initial condition in Figure 4a
is N0 = 1× 105, and L0 = 1× 102. However, the initial condition is N0 = 1× 104 and
L0 = 1× 10 in Figure 4b.

Figure 4 shows that different hosts with different immune system strengths have
different influences on tumor cells treated with the same drug. Figure 4a shows that, after a
period of treatment, only NK cells and chemotherapy drugs remain in the host. Figure 4b
suggests that, under the same chemotherapeutic drug, a large number of tumor cells are
present in the host when the immune system is weaker. These results suggest that a host
with a stronger immune system can eliminate a small number of tumor cells under a single
chemotherapy. Therefore, treatments that increase the strength of the immune system
should be developed, which is a different treatment scheme (i.e., immunotherapy).

(a) (b)

Figure 4. The numbers of tumor cells and immune cells under chemotherapy with different immune
intensities. (a) Simulation using a strong immune system strength with p = 20. (b) Simulation using
a weak immune system strength with p = 10.

6. Discussion

Through the analysis of system equations, we determine the existence of the equilib-
rium points and the conditions of corresponding stability and symmetry. For a specific
parameter set, we find the model may have four equilibrium states. The first one is the
dead equilibrium state, which means that both immune cells and tumor cells approach zero.
The second one is the tumor-free equilibrium state, in which there are only NK cells but the
tumor cell number is zero. The third case is the tumor-present equilibrium state, in which
there are only tumor cells in the host. The last one is the coexisting equilibrium point, which
suggests that both immune and tumor cells coexist with nonzero populations. The purpose
of this study is to explore the model conditions that lead to the elimination of tumor cells,
namely the zero-tumor burden or tumor-free equilibrium points. Therefore, the stability of
the tumor-free equilibrium is very important. The instability of the tumor-free equilibrium
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state means that any successful treatment must be able to alter system parameters in order
to stabilize this equilibrium. However, the stability of the tumor equilibrium with a large
value means that the reduction of tumor burden through chemotherapy alone is not enough
to eliminate tumor cells. Once chemotherapy is stopped, the system eventually returns
to the state with a large tumor number. According to the above results, the tumor-free
equilibrium point E1 is stable when parameters p and s satisfy the conditions (18) or (19).
Therefore, we can change the stability of the equilibrium with zero tumor number by
modifying the model parameters with chemotherapy. These results suggest a potential
approach to improve the effects of chemotherapy and to design new therapy schemes.

We also analyze the sensitivity of model parameters. It should be noted that the
chemotherapy drug-induced tumor mortality rate k and the drug decay rate f have the
greatest influence on the treatment outcome, as seen in Figure 2. However, the number of
NK cells does not have much influence on tumor growth. In addition, the cytolytic activity
of the NK cells should be considered together with the CTL activity to eliminate tumor
cells. Numerical simulations in Figure 3 show the importance of the host immune system
and explain the side effects of chemotherapy drugs. As can be seen from the simulations
in Figure 4, treatments that increase the strength of the host’s immune system should be
implemented. Based on the qualitative conclusions, it is suggested to search for adjuvant
treatments that increase the chemotherapy drug-induced tumor mortality rate, decrease
the drug decay rate, and/or reduce the side effects of therapeutic drugs.

The main contribution of this paper is the application of two immune cell populations
and chemotherapy drugs to decrease the tumor burden. However, the chemotherapeutic
drug considered in our model is a constant input, which is a limitation to this study.
Nevertheless, we believe that our simple model can lay the foundation for the development
of more sophisticated models for tumor treatment. The future work will improve the
model in this work by taking into account drug diffusion, drug-delivery methods, and drug
resistance. More sophisticated models will provide more realistic simulations of tumor
populations and the effects of different treatment schemes.

7. Conclusions

In conclusion, this work has extended previous mathematical models that describe
tumor–immune interactions. We introduce chemotherapy into the model and propose
a model to describe tumor–immune interactions under chemotherapy. We analyze the
equilibrium states of the proposed model and also investigate the stability and symmetrical
properties of these steady states. Sensitivity analysis is conducted to find important model
parameters that have more influence on the model dynamics than other parameters. The
theoretical results provide predictions for designing new treatment schemes.
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