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Abstract: Combining topic discovery with topic-specific word embeddings is a popular, powerful
method for text mining in a small collection of documents. However, the existing researches purely
modeled on the contents of documents and led to discovering noisy topics. This paper proposes a gen-
erative model, the skip-gram topical word-embedding model (simplified as steoLC) on asymmetric
document link networks, where nodes correspond to documents and links refer to directed references
between documents. It simultaneously improves the performance of topic discovery and polysemous
word embeddings. Each skip-gram in a document is generated based on the topic distribution of the
document and the two word embeddings in the skip-gram. Each directed link is generated based
on the hidden topic distribution of the beginning document node. For a document, the skip-grams
and links share a common topic distribution. Parameter estimation is inferred and an algorithm is
designed to learn the model parameters by combining the expectation-maximization (EM) algorithm
with the negative sampling method. Experimental results show that our method generates more
useful topic-specific word embeddings and coherent latent topics than the state-of-the-art models.

Keywords: topic discovery; polysemous word embeddings; attributed network; EM algorithm

1. Introduction

With the development of internet technology, an enormous number of online informa-
tion service platforms generate more and more information with rich content and links,
such as paper citation networks and hyperlink networks of the World Wide Web, etc. Many
methods model these networked data as attributed networks. In the formalized representa-
tion, each node corresponds to a paper or a webpage, which is often associated with a rich
set of text attributes formed by word sequence features. An edge represents whether there
are associations between the two nodes. In this paper, we mainly focus on directed links,
and an undirected link equals two directed links. Summarizing the semantic structures
and topology structures hidden in these networked data can help people understand the
networked data, which have been exploited in the areas of natural language processing
and graph mining. In the former area, traditional topic discovery and word embedding
technologies purely mine the data based on the node contents of networked data. While in
the area of graph mining, research shows that the network topological structure and node
attributes are often strongly correlated with each other. For example, two papers with high
correlation topics would have a reference link. Semantic community detection methods
are always used, which jointly exploit the two information sources to enhance the learning
performance. The following will analyze the two kinds of methods.

Topic discovery is a popular tool for detecting the topic structure of the contents of
networked data, such as Probabilistic Latent Semantic Analysis (PLSA) [1] and Latent
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Dirichlet Allocation (LDA) [2]. Topic models can summarize documents as a mixture of
the topics, and the topics can be summarized as a distribution on the large vocabularies
of the document sets. However, they suffer from the coherence of discovered topics due
to one hot word representation. In parallel with the development of traditional topic
discovery, word embedding algorithms represent words as dense distributed vectors [3]
to avoid the semantic gaps and sparsity caused by one hot representation. However,
the embedding methods just learn local word co-ocurrence information, which loses the
global semantic information of the words. Recently, some studies integrate topic discovery
with word embedding. They aim to learn more comprehensive word embedding and
discover more accurate topics. There are three main kinds of methods, whose advantages
and disadvantages are compared in Table 1. The first kind makes use of the pre-trained
word embeddings to improve the performance of topic discovery. For example, TopicVec
modeled the generative process of words in each document given the topic embedding
and the embeddings of the word and its contexts [4]. The GaussianLDA [5,6] learned
pre-trained word embeddings, and modeled a multivariate Gaussian distribution with
the topic embedding as its mean to generate word embeddings. The second kind utilizes
topic discovery to aid word embeddings. For example, Topic Word Embedding (TWE) first
detected topics using the LDA model, and then treated each topic as a pseudo-word to learn
topic embedding, which was concentrated with word embeddings to get the final word
embeddings [7]. Briakou et al. [8] first learned topics from a large corpus and then learned
the topic-specific word embeddings spanned by anchor words. The aforementioned two
approaches are both two-step processes, and they cannot model the mutual influence of
topic discovery and word embeddings. Besides these two kinds of methods, the third
method integrates the advantages of topic discovery with word embedding and models
their mutual interactions [9–12]. The Collaborative Language Model (CLM) applied a
nonnegative matrix factorization to model both topic discovery and word embeddings [9].
The Joint Topic Word-embedding (JTW) model provided a deep generative model by com-
bining a variational autoencoder with the topic model [10]. Topic Modeling boosted with
Sparse Autoencoder (TMSA) modeled the mutual influence of topic discovery and word
embedding based topic modeling and an autoencoder [11]. The skip-gram Topical word
Embedding (STE) model extended the skip-gram model by considering topic discovery and
learned topic-specific word embeddings to solve the problem of polysemy [12]. Compared
with other similar methods, the skip-gram embedding (STE) model has two advantages. It
not only learns word embeddings and topics in a unified framework, but also explicitly
obtains topic-specific word embeddings, thus solving polysemy problems. However, the
STE model purely models the contents of documents, which always captains inconsistent
top words in the detected topics. This inaccuracy of topic results would further mislead
word embedding learning. In the area of graph mining, research has shown that seman-
tic community detection methods on document link networks were able to improve the
performance of topic discovery by either contents or links [13,14].

Table 1. The SOTA methods for topic discovery and word embeddings.

Word Embedding-Based Topic Discovery

Classical Models TopicVec [4], GaussianLDA [5], LF-LDA [6]
Advantages Word embeddings supplement topic discovery

Disadvantages Wrong word embeddings limit topic discovery

Topic Discovery-Based Word Embeddings

Classical Models TWE [7]
Advantages Pre-trained topics improve word embeddings

Disadvantages Unaccuracy topics make word embeddings worse
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Table 1. Cont.

Mutual Model for Topic Discovery and Word Embeddings

Classical Models CTM [9], TMSA [11], STE [12]
Advantages Topic discovery and word embeddings improve mutually

Disadvantages Rich Links are not modeled

Several semantic community detection methods combine links and contents of the
attributed networks to detect communities with common topics [13–17]. Different from
community detection methods on the topology network, they are devoted to detecting
semantic communities considering the text features of the nodes. Different from topic
discovery, they make use of links to improve the performance of traditional topic discovery
and discover topics with link patterns [18]. However, these existing methods largely use
one hot encoding to represent words and documents. This representation loses many
semantics of the documents and words due to the semantic gaps and the sparsity, and also
increases the complexity of the algorithm due to the high dimension vector. Community-
Enhanced Topic Embedding (CeTe) was the first model that integrated the contents and
links for topic embedding and word embedding on attributed networks [19]. The CeTe
model represented each word by just one word embedding vector, which did not explicitly
model topic-specific word embeddings. In addition, the community detection on links was
used in the preprocessing stage, which was not unified with topic discovery on contents
and do not fully combine contents and links for topic discovery. This motivates us to
design an integrated model for topic-specific embedding learning and semantic community
discovery based on links and content, which uses links to improve the integrated models
of word embeddings and topic discovery methods.

All in all, the STE model integrated word embeddings with topic discovery to improve
the two tasks on the word sequences of documents. However, it ignored the rich links
between documents, which were able to complement the semantic fuzziness problem of
content-driven topic discovery. The CeTe model was an example that improved topic-
specific word embedding on document contents by community detection. However, the
community detection on links was not integrated with topic discovery and each word was
not represented based on topics. Our model is designed to solve the above problems.

To learn better word embeddings and topics based on attributed networks, we propose
a joint probabilistic model named the steoLC model for word embedding learning and topic
discovery on document link networks. This model assumes that the topic distributions
are decided by both content and links. Topic discovery and word embeddings influence
each other. Each skip-gram word pair and each link are generated based on the given
topic distributions. The topic distributions are decided by the topic distributions of skip-
grams and links, and the more accurate topics are estimated according to links and content.
Then word embedding is improved by the topic distribution. This model alleviates the
semantic ambiguity of word embeddings caused by the ambiguity of topics and learns
more accurate word embeddings. An algorithm for the steoLC model is designed based on
the EM algorithm, which iteratively estimates the hidden topic distributions and model
parameters. In each iteration, the skip-gram negative sampling method is used to learn the
word embeddings.

The contributions of this work are as follows:

• First, we present a joint probabilistic generative model, called steoLC, for word em-
bedding learning and topic discovery based on directed document link networks. It
models the generative process of both the document word pairs and links by word em-
bedding distributions on topics, the topic distributions of documents, the skip-gram
distributions on topics, and the link distributions on topics;

• Second, an algorithm is inferred and designed to estimate the parameters of the steoLC
model, which combines the EM algorithm framework with a negative sampling algorithm;
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• Finally, the performance of the steoLC model is tested on four aspects, including
the visualization of word embedding on different topics, document classification,
computing nearest words, and the evaluation of topic consistency.

The remainder of the paper is organized as follows. Section 2 introduces the generative
process of our model in detail. The algorithm for the estimation of model parameters is
inferred and designed in Section 3. Experimental results on three data sets are presented in
Section 4. The paper summarizes our model and looks forward to future work in Section 5.

2. A Generative Model for Topic Discovery and Word Embeddings on
Attributed Networks

We aim to design a joint probabilistic model for topic discovery and word embedding
considering the links and contents of an attributed network. It integrates the contents
and links to improve the performance of topic discovery, which is further used to learn
word embeddings, degrading the representation fuzziness of polysemy. In this section, we
present the steoLC model in detail. The graphical representation of the steoLC model is
shown in Figure 1.

Figure 1. Graphical representation of the steoLC model. Part 1 in the box outlined by dotted lines
denotes the component of generating document contents. Part 2 in the box outlined by solid lines
denotes the component of generating document links.

The steoLC model is composed of two parts. One part generates the skip-grams in
a document given the topic distribution, which is similar to the STE model [12]. To get a
more accurate topic distribution, our model extends the STE model by combining the links
between documents with contents. The other part models the generative process of each
link of a document given a particular topic. The following gives a detailed introduction of
the two parts.

Component of generating document contents. There are N documents, noted
as a set of documents D = {d1, . . . , dN}. The i-th document di has Li words, and its
content information is denoted as a word sequence di = {w1, . . . , wLi}. The generative
process of document content models for each skip-gram in a document, i.e., contexts
wt+j, (j ∈ [−n, n], j 6= 0), given each central word wt. For a central word wt, its context
words include n words that appear before wt and the n words that follow wt. Each pair
of (wt+j, wt) is a skip-gram of the document di. As in the STE model, the probability of
(wt+j, wt) depends on the topic z of the central word wt and the embeddings of wt as a
central word and wt+j as a context word. We assume the document set includes K topics,
and each document has a topic distribution on the K topics, noted as p(z|d).

The probability of each skip-gram (wt+j, wt) in a document d is computed in
the following.

p(wt+j | wt, d) = ∑
z

p(z | d)p(wt+j | wt, z) (1)

The probability of skip-gram < wt+j, wt >, given the topic z, is evaluated by

p(wt+j | wt, z) =
exp(Vwt+j ,z ·Uwt ,z)

∑
w′∈∧

exp(Vw′ ,z ·Uwt ,z)
, (2)



Symmetry 2022, 14, 703 5 of 14

where Uw and Vw are the word embedding matrix with K × S dimension as the central
word and a context, respectively, S is the dimension of the embedding space, and ∧ is the
vocabulary number of the document set.

Component of generating document links. This section describes the generative
process of links between two documents. Link set C is the set of all possible links between
every two documents in the corpus, C = {C1, C2, . . . , CN}. Ci is the link set of the document
di. It is assumed that a document d connects to c since they exist the same topic z. The
document d has a topic distribution p(z|d) in terms of its links and contents. The probability
from d to c, given all the topics, is computed as:

p(c | d) = ∑
z

p(z | d)p(c | z). (3)

After finishing the definition of the two components, a complete generative process of
links and contents in an attributed network is shown in the following.

For each document di(i ∈ {1, . . . , N}) :
(a) Draw a topic z(z ∈ {1, . . . , K}) according to p(z|di);
(b) Draw a link cl(l ∈ 1, . . . , |Ci|) from documents di with probability p(cl |z);
(c) For each central word, wt(t ∈ {L1, . . . , Li}) in di:

Draw a topic z according to p(z|di);
Draw each context wt+j ∼ p(wt+j|wt, z).

Optimizating objection. According to the generative process, the likelihood of gener-
ating links and contents on an attributed network is defined in the following.

p(D) =
N

∏
i=1

p(di)p(Ci)

=
N

∏
i=1
{(

Li

∏
t=1

n

∏
j=−n
,j 6=0

p(wt+j|wt, di))×
|Ci |

∏
l=1

p(cl |di)}

=
N

∏
i=1

(
Li

∏
t=1

n

∏
j=−n
,j 6=0

K

∑
z=1

p(z | di)p
(
wt+j | wt, z

)
)×

|Ci |

∏
l=1

K

∑
z=1

p(z | di)p(cl | z)

(4)

where p(z|di) is shared by link modeling and content modeling, which integrates the
document contents and document links by a common probabilistic distribution for more
accurate topic discovery.

The above function is difficult to compute, and is always transformed as the log-
likelihood as follows:

log p(D) =
N

∑
i=1

(
Li

∑
t=1

n

∑
j=−n
,j 6=0

log p(wt+j|wt, di)) +
N

∑
i=1

|Ci |

∑
l=1

log p(cl |di) (5)

In real applications, content components and link components have different impor-
tance. The loglikelihoods of the two components in Equation (5) are assigned with a weight
α and a weight 1− α, respectively, as follows:

L = α
N

∑
i=1

Li

∑
t=1

n

∑
j=−n
,j 6=0

log p(wt+j | wt, di) + (1− α)
N

∑
i=1

|Ci |

∑
l=1

log p(cl | di). (6)

3. Parameter Estimating Algorithm

In this section, we introduce how to learn the values of model parameters given a
corpus, including the word embeddings U, V, as well as the topic distribution of documents
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p(z|d), the link distribution on topics p(c|z), and the skip-gram distribution on topics
p(wt+j|wt, z). Next, the algorithm of estimating parameters is described and its complexity
is analyzed.

3.1. EM Algorithm with Negative Sampling for the setoLC Model

Since the parameters of the steoLC model contain hidden variables z, the EM algorithm
is used to maximize the likelihood of Equation (6). In addition, to estimate parameters
U, V in Equation (2), the negative sampling algorithm is used. The algorithm framework of
the steoLC model combines the EM algorithm with the negative sampling algorithm. It is
summarized in Algorithm 1.

Algorithm 1. The algorithm for the steoLC model.
Input: word sequence set D and link set C
Output: U, V, p(z|d), p(c|z)
1: Initialize U, V, p(z|d), p(c|z).
2: for iter=1 to Max_iteration do
3: for each document di in D do
4: for each skip-gram < wt+j, wt > in di do
5: Sample negative instances from distribution P.
6: Update p(wt+j | wt, z), p(z | di, wt, wt+j) by Equations (13) and (7).
7: Update U, V using the gradient decent method with Equations (14) and (15).
8: for each link cl in Ci do
9: Update p(z | di, cl) by Equation (8).

10: for each document di in D do
11: Update p(z | di) using Equation (11).
12: for each link cl in di do
13: Update p(cl | z) using Equation (12)

The EM algorithm is an iterative algorithm, and each iteration includes an E step
and an M step. In the E step, the distributions of hidden variables z, given each skip-
gram < wt+j, wt > and given each link < d, c >, are estimated. At the same time, the
expectation of the log-likelihood is computed in the E step. In the M step, by maximizing
the expectation of the likelihood, the algorithm updates the word embeddings U, V, as well
as p(z|d) and p(c|z). To update the word embedding matrices, the algorithm iterates over
each skip-gram and several negative sampling instances with the gradient descent method.
The algorithm is inferred in detail.

In the E-step, the posterior probability distribution of hidden variables given each
skip-gram < wt+j, wt > in di is evaluated by the Bayes rule as follows:

p(z | di, wt, wt+j) =
p(wt+j | wt, z)p(z | di)

K
∑

z=1
p(wt+j | wt, z)p(z | di)

. (7)

Further, the posterior probability distribution of hidden variables given each link
< di, cl > from the document di is computed as:

p(z | di, cl) =
p(cl | z)p(z | di)

|K|
∑

z=1
p(cl | z, )p(z | di)

. (8)

Next, the hidden variable posterior distributions obtained from Equations (7) and (8)
are used to compute the expectation of the log-likelihood, which is defined as:
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Q =α
N

∑
i=1

Li

∑
t=1

n

∑
j=−n
,j 6=0

K

∑
z=1

p(z | di, wt, wt+j)× log(p(wt+j | wt, z)× p(z | di))

+(1− α)
N

∑
i=1

|Ci |

∑
l=1

K

∑
z=1

p(z | di, cl)× log(p(cl | z)× p(z | di))

(9)

The topic distribution given a document satisfies the constraint
K
∑

z=1
p(z | di) = 1. The

skip-gram distribution given a topic satisfies the constraint
n
∑

j=−n
,j 6=0

p
(
wt+j | wt, z

)
= 1. The

link distribution given a topic satisfies the constraints
|Ci |
∑

l=1
p(cl | z) = 1.

The Lagrange multiplier method is used to estimate model parameters. The Lagrange
function combines the expectation of the log-likelihood function in Equation (9) with the
three constraint conditions defined as:

F =α
N

∑
i=1

Li

∑
t=1

n

∑
j=−n
,j 6=0

K

∑
z=1

p(z | d, wt, wt+j) log(p(wt+j | wt, z)p(z | di))

+(1− α)
N

∑
i=1

|Ci |

∑
l=1

K

∑
z=1

p(z | di, cl) log(p(cl | z, )p(z | di))

+
N

∑
i=1

β1(1−
K

∑
z=1

p(z | di)) +
|K|

∑
z=1

β2(1−
|Ci |

∑
l=1

p(cl | z))

+
K

∑
z=1

Li

∑
t=1

β3(1−
n

∑
j=−n
,j 6=0

p(wt+j | wt, z))

(10)

In order to maximize the Lagrange function, the partial derivatives with respect to
p(z | di), p(cl | z) are computed. The updating equations of the topic distribution of a
document and the link distribution for each topic are obtained by making partial derivatives
equal to zero. The equations are as follows:

p(z | di) =

α
Li
∑

t=1

n
∑

j=−n
,j 6=0

p(z | di, wt, wt+j) + (1− α)
|Ci |
∑

l=1
p(z | di, cl)

|K|
∑

z=1
(α

Li
∑

t=1

n
∑

j=−n
,j 6=0

p(z | di, wt, wt+j) + (1− α)
|Ci |
∑

l=1
p(z | di, cl))

(11)

p(cl | z) =

N
∑

i=1
p(z | di, cl)

N
∑

i=1

|Ci |
∑

l=1
p(z | di, cl)

(12)

To update the word embeddings, U, V, the immediate method is to compute the partial
derivatives of U, V in Equation (2). However, ∑w∈∧ exp(Vwt+j ,z ·Uwt ,z) is intractible. The
negative sampling method is used to compute U, V, in which the probability distribution
of p(wt+j|wt, z) is computed as follows:
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log p(wt+j | wt, z) ∝ log σ(Vwt+j ,z ·Uwt ,z) +
m

∑
i=1

Ewi∼P(log σ(−Vwi ,z ·Uwt ,z)) (13)

where σ represents the sigmoid function, σ(x) = 1/(1 + exp(−x)), and wi is a negative
instance which is sampled from the distribution P(). P(w) is a unigram distribution
Unigram(w) raised to the 3

4 rd power [12].
The negative sampling algorithm is a gradient algorithm. The gradient of the objective

function concerning U and V is as follows:

∂L
∂Uwt ,z

= ∑
w′∈{wt+j}
∪{Wneg}

(−(ξw′wt − σ(Vw′ ,z ·Uwt ,z)) ·Vw′ ,z)× p(z | di, wt, wt+j)

Uwt ,z = Uwt ,z + d× ∂L
∂Uwt ,z

(14)

∂L
∂Vw′ ,z

=− (ξw′wt − σ(Vw′ ,z ·Uwt ,z) ·Uwt ,z)× p(z | di, wt, wt+j),

Vw′ ,z = Vw′ ,z + d′ × ∂L
∂Vw′ ,z

,
(15)

where Wneg is the negative instances corresponding to wt, d,d′ are step lengths, and

ξw′wt =

{
1, if w′ is a word in the context window of wt.
0, otherwise.

(16)

3.2. Complexity Analysis of the Algorithm

The process of steoLC is shown in Algorithm 1. In each iteration, the algorithm
first computes the distributions of hidden variables p(z|di, wt+j, wt), p(z|di, cl) in line
3–9. Since p(wt+j|wt, z, di) affects p(z|di, wt+j, wt) in Equation (7), it is computed before
p(z|di, wt+j, wt) in line 7. At the same time, the parameters of word embedding matri-
ces U and V are updated by a gradient decent method in line 7, and the number of the
iterations is set as a constant. The number of document words is L1 + L2 + · · · + LN ,
which is simplified as L. Next, all the skip-grams are N × L× n× 2. The time complex-
ity of line 3–7 is O(N × L× n× Neg× K), where n is the length of left or right window
sampling contexts, Neg represents the number of negative samples, and K is the num-
ber of topics. The time complexity of P(zk|di, cl) in line 8–9 is O(C × K), where C is the
number of links among the documents. The time complexities of p(z|di) and p(cl |z) are,
respectively, O(N × K) and O(C× K). To summarized, the time complexity of the whole
algorithm is O(Max_iteration× (N × L× n× Neg× K + C× K)), where Max_iteration is
the iteration times.

4. Results

In this section, we present a detailed analysis of the performance of our method. We
first introduce several experimental settings, including the dataset, parameter settings, and
the baselines used in the experiment. Next, document classification is used to evaluate
the quality of document representations on the topic distribution estimated by the steoLC
model. Subsequently, we explain whether word embedding results are able to model poly-
semous words on topics by qualitative analysis. Finally, we evaluate the topic coherence of
the steoLC model.



Symmetry 2022, 14, 703 9 of 14

4.1. Experiment Settings

Dataset description. To verify the performance of the steoLC model, we experiment
on three public datasets as the CeTe model [19], including the DBLP dataset [20] and two
different scale hep-th datasets. The DBLP dataset includes many papers on the computer
field, and the five largest categories are used to construct attributed networks. The titles and
abstracts are represented as the contents of papers, and the citation relationships correspond
to the links of papers. The hep-th includes a large corpus of physics-related papers. The
four largest categories form one subdataset, named large-hep. The three smaller categories
form the other subdataset were called small-hep. The dataset details are shown in Table 2.

Table 2. Dataset information.

Dataset Documents Edges Words Categories

DBLP 6936 12,353 506,269 5
Small-hep 397 812 18,718 3
Large-hep 11,752 134,956 622,642 4

Baselines. The algorithm of the steoLC model is compared with three state-of-the-art
methods. The first model is a traditional topic model, i.e., Latent Dirichlet Allocation
(LDA) [2], which models topic discovery on one hot word space. The STE model [12]
integrates topic discovery with word embedding based on texts of documents and attempts
to solve polysemy. The CeTe model also combines topic discovery with word embedding.
In addition, it improves the performance by utilizing community detection on links as a
pre-processing step of topic embedding modeling. The CeTe model has been compared
with three kinds of state-of-the-art methods for specific-topic embedding modeling. If the
performance of our algorithm is better than the CeTe model, our algorithm is superior to
the three kinds of methods.

Parameter settings and Hardware specifications. In the experiments, the number of
topics K is set as 10, such that topical specific word embedding on a fine-grained topic is
possible. The iteration number of the document set and the number of gradient descent
for U, V are both set as 15. The dimension of the embedding space is 400. The size n of the
context window equals 10. For each skip-gram, eight negative instances are sampled. These
settings are similar to the ste model. The steoLC model aims to learn word embeddings,
document embeddings, and topic embeddings. Thus, the component of content is more
important, and the α is set as 0.75 experimentally. We compare the accuracy of detected
topics for classification at the small-hep data set by varying α from 0 to 1, and the accuracy
on the test is shown in Figure 2. Computer configurations for the experiments are a
CPU-Intel i7, with 16GB of internal storage and 1T of Hard Disk, etc.

Figure 2. Classification accuracy on the small-hep data set for the steoLC model (0 ≤ α ≤ 1).
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4.2. Document Classification

To test whether our algorithm has learned accurate semantics for documents, a classi-
fication task is used. The document set is randomly divided into 80% as the training set
and 20% as the test set [19]. The document representation learned by all the algorithms
by Equation (11) is the input of the classifier. We use the l − 1 regularized linear SVM
one-vs-all classifier. We compare the steoLC model with the LDA model and the STE
model. All the models represent a document by the topic distribution of the document.
The performance is measured by accuracy, recall, and the F1-Score.

Each model is run ten times, and the mean and standard deviation of the results are
computed and shown in Table 3. Our steoLC model performs the best among the three
models. Compared with the distributed representation of the steoLC model, the LDA
model discovers topics and learns word embeddings using only the contents represented
by the one hot word vector, which suffers from sparsity and semantic gaps. Different
from our steoLC model combining contents and links, the STE model only considers
content information, although it represents words as dense embeddings. This method may
captain vague topics. The CeTe model utilizes community detection on links to degrade
the fuzziness of topic discovery, but the community detection is not integrated with topic
discovery in a unified framework. Our steoLC model constructs a joint model for contents
and links in a generative process, which discovers more accurate semantic topics. In
addition, it combines topic modeling with word embedding modeling, such that the two
tasks are improve each other. We also find that the results on the large-hep dataset are
worse than the ones on the small-hep dataset. This is because each category in the large-hep
dataset has more documents and is more noisy than each category in the small-hep dataset,
which increases the difficulty of distinguishing the pattern of each category on the former
dataset compared with the latter one.

Table 3. Document classification effect of different methods.

Dataset Model Accuracy Recall F1

small-hep

LDA 0.287 ± 0.002 0.287 ± 0.001 0.281 ± 0.001

STE 0.668 ± 0.021 0.647 ± 0.019 0.649 ± 0.008

CeTe 0.671 ± 0.007 0.650 ± 0.006 0.654 ± 0.002

steoLC 0.698 ± 0.002 0.675 ± 0.002 0.682 ± 0.001

large-hep

LDA 0.414 ± 0.002 0.411 ± 0.029 0.401 ± 0.003

STE 0.432 ± 0.013 0.432 ± 0.008 0.415 ± 0.005

CeTe 0.437 ± 0.005 0.433 ± 0.001 0.417 ± 0.002

steoLC 0.469 ± 0.003 0.462 ± 0.003 0.446 ± 0.001

DBLP

LDA 0.700 ± 0.011 0.457 ± 0.005 0.404 ± 0.003

STE 0.756 ± 0.033 0.729 ± 0.02 0.725 ± 0.009

CeTe 0.790 ± 0.008 0.736 ± 0.005 0.731 ± 0.003

steoLC 0.812 ± 0.002 0.756 ± 0.019 0.748 ± 0.005

4.3. Qalitative Analysis

To illustrate the performance of integrating word embedding with topic discovery
in our model, we use the t-SNE algorithm [21] to visualize the vectors of the 500 most
frequent words that are learned from the steoLC and STE models in the small-hep dataset
in Figure 3. Similar to the STE model [12], the number of topics K is set as 10. The number
of outer iterations and inner iterations are both set to 15. The dimension of the embedding
vectors is set as 400. For each skip-gram, we set the window size to 10 and sample eight
negative instances.
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Figure 3. Visualization of the word embeddings learned by the ste and steoLC models. The polyse-
mous word “review” and the monosemous word “comment” are highlighted for comparison.

Each node in Figure 3 denotes a topic-specific word vector. The algorithm of the
steoLC model divides the whole space into 10 subspaces, and each subspace represents a
topic. To illustrate the advantages of the steoLC model in dealing with polysemous words,
we show labels for the word “review”, as an example of a polysemous word and the word
“comment” as an example of a monosemous word. The labels show both the word and topic
index, separated by “#”. In Figure 3b, we find that the steoLC model divides the whole
space into six disjoint subspaces, and each subspace corresponds to a topic. We set the topic
number as 10, and our model detects just six topics clearly. This illustrates that several
topics are difficult to divide, such as Topic 7,5,9, Topics 6,8, and Topics 2,4. This guides us to
select a small topic number. Additionally, “review” and “comment” are close to each other
in some subspaces, but far apart in others. For example, under Topic 1, the word “review”
is far away from the word “comment”, which indicates that the word “review” does not
mean “comment” under Topic 1. Under Topic 0, the word “review” is closer to the word
“comment”, which indicates that the word “review” means “comment”. On the other hand,
Figure 3a illustrates that some word embeddings of different topics from the STE model are
mixed together, which means that different topics are difficult to discriminate. However,
the steoLC model can discover topics more accurately by combining the contents and links,
such that the word embeddings in the same topic are similar and word embeddings in
different topics are able to be distinguished.

Table 4 shows the nearest neighbors of some polysemous words according to the
skip-gram model, the STE model, and the steoLC model. Cosine similarity is used to
compute the similarity between polysemous words and other words. We observe that
these similar words, according to word embeddings learned by skip-gram, mix different
senses of the given words. For example, the nearest neighbors of “present” are “show”
and “recently”, which indicates that the skip-gram model cannot distinguish different
meanings of words. In contrast, the STE and steoLC models can distinguish polysemy due
to the consideration of topic modeling. Under Topic 1, the most similar words of “present”
are “show”, “description”, and “action”, which clearly corresponds to the meaning of
appearance. Under Topic 2, they are “recent” and “recently”, clearly referring to ’lately’.
In addition, Table 4 shows that similar words from the steoLC model are better than the
ones from the STE model. For example, the most similar word to “argue” obtained by the
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steoLC model under Topic 1, namely “argue# 1”, has more meaning than the ones obtained
by the STE model. The reason is that the steoLC model makes use of links to obtain more
accurate topic distributions, which further aids in learning accurate word embeddings.

Table 4. The nearest neighbors of some polysemous words.

Model Words Similar Words

Word2vec argue demonstrate review consider

STE argue#1
argue#2

prove gauge evidence
introduce consider present

steoLC argue#1
argue#2

demonstrate prove conclude
conjectured consider suggest

Word2vec present show action recently

STE present#1
present#2

show description presence
recently recent reviewed

steoLC present#1
present#2

show reveals exhibit
recently resent conventional

4.4. Topic Coherence Evaluation

Table 5 compares the top words produced by the STE and steoLC models on three
topics detected from the small-hep dataset. In Table 5, Topic 1 is about mathematics, Topic
2 is about cosmology, and Topic 3 is about physics. Both the STE and steoLC models
produce words with similar themes. However, the STE model discovers fewer meaningful
words related to these three topics. Some words from the STE model are not coherent. For
example, for Topic 2, STE produces “conference” and “transition”, which are less related
to cosmology, while the hot words produced by steoLC are all related to cosmology. This
shows that the steoLC model is able to discover more coherent topics than the STE model.

Table 5. The top words on three topics for the STE and steoLC models.

Topic Method Word

Topic1 STE
steoLC

model formulae surface negative boundary
model formulae surface matrix relation

Topic2 STE
steoLC

time cosmological polyhedra
conference transition

time cosmological polyhedra infrared domain

Topic3 STE
steoLC

quantization supergravity entropy electric create
quantization supergravity entropy

geometry calculation

In addition, a topic coherence measure is used to evaluate the models objectively.
Coherence of a set of words measures the hanging and fitting together of single words
or subsets of them. The method presented in [22] can cover all existing measures and
construct new measures, which demonstrates that the coherence measure (Cv) has the best
performance among PMI, NPMI, UMass, etc. The higher the value, the better the coherence.
Cv combines the indirect cosine measure with the NPMI and the boolean sliding window.
For each top word wi of a topic word set, its vector vi is calculated based on context words,
and the l-element vil is the NMPI value with the l-context word wl is as follows:

vil = NPMI(wi, wl) =
log p(wi ,wl)+ε

p(wi)p(wl)

− log(P(wi, wl) + ε)
.
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Probability, P(wi, wl), is estimated based on word co-occurrence counts derived from
virtual documents by a sliding window over Wikipedia. Each window position defines
such a document.

Next, topic coherence Cv is averaged on the cosine similarity summation of any two
top words wi and wj as Cv = avg(∑1≤i≤j≤N cos(vi, vj)), where N is the number of top
words of a topic, and avg() and cos() are the average function and the cosine similarity
function, respectively. Cv is realized by tool gensim.

Table 6 shows the coherence values of Cv for the STE and steoLC models on the small-
hep datasets. We can see that our steoLC model generally improves the coherence of the
learned topics. Compared with the STE model, our model incorporates link information to
improve the quality of the detected topics.

Table 6. Topic coherence evaluation with different numbers of top words.

Model T = 5 T = 10 T = 15

STE 0.510 0.456 0.463

steoLC 0.521 0496 0.496

5. Discussion and Conclusions

A novel joint probabilistic model, the steoLC model, is first provided for topic discov-
ery and polysemy word embedding based on document link networks. An algorithm is
then designed to learn the model parameters by the EM algorithm with a negative sampling
algorithm. The algorithm of the steoLC model learns the topic distribution on documents,
and the embedding distribution on topics for words as central words and context words,
as well as the link distribution on topics. This method not only mines topics and word
embeddings by integrating contents with links, but also solves the polysemous problem,
reducing the fuzzy semantic of topics. Compared with the state-of-the-art methods on
several tasks, the experimental results demonstrate the superiority of our model. However,
the proposed algorithm is difficult to apply on large-scale data due to the complexity of
our probabilistic model. It may be helpful to use a python library for probabilistic models,
such as ZhuSuan. In addition, the steoLC model does not model multi-granularity texts
in the same representation space, which will affect the performance and explainability
of topic discovery and text representations. In the future, we will further use the graph
convolutional neural network or the depth generation model to address these problems.
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