
����������
�������

Citation: Zaman, K.; Sun, Z.; Shah,

S.M.; Shoaib, M.; Pei, L.; Hussain, A.

Driver Emotions Recognition Based

on Improved Faster R-CNN and

Neural Architectural Search Network.

Symmetry 2022, 14, 687. https://

doi.org/10.3390/sym14040687

Academic Editors: Gianluca Vinti

and Sergei D. Odintsov

Received: 7 February 2022

Accepted: 22 March 2022

Published: 26 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Driver Emotions Recognition Based on Improved Faster R-CNN
and Neural Architectural Search Network
Khalid Zaman 1, Zhaoyun Sun 1,*, Sayyed Mudassar Shah 1, Muhammad Shoaib 2, Lili Pei 1 and Altaf Hussain 3

1 Information Engineering School, Chang’an University, Xi’an 710061, China; khalidzaman@chd.edu.cn (K.Z.);
mudassarshah@chd.edu.cn (S.M.S.); peilili@chd.edu.cn (L.P.)

2 Department of Computer Science and IT, CECOS University, Peshawar 25000, Pakistan;
mshoaib@cecos.edu.pk

3 Institute of Computer Science and IT, The University of Agriculture, Peshawar 25000, Pakistan;
altafscholar@aup.edu.pk

* Correspondence: chysun@chd.edu.cn; Tel.: +86-13572190029

Abstract: It is critical for intelligent vehicles to be capable of monitoring the health and well-being of
the drivers they transport on a continuous basis. This is especially true in the case of autonomous
vehicles. To address the issue, an automatic system is developed for driver’s real emotion recognizer
(DRER) using deep learning. The emotional values of drivers in indoor vehicles are symmetrically
mapped to image design in order to investigate the characteristics of abstract expressions, expression
design principles, and an experimental evaluation is conducted based on existing research on the
design of driver facial expressions for intelligent products. By substituting a custom-created CNN
features learning block with the base 11 layers CNN model in this paper for the development of
an improved faster R-CNN face detector that detects the driver’s face at a high frame per second
(FPS). Transfer learning is performed in the NasNet large CNN model in order to recognize the
driver’s various emotions. Additionally, a custom driver emotion recognition image dataset is being
developed as part of this research task. The proposed model, which is a combination of an improved
faster R-CNN and transfer learning in NasNet-Large CNN architecture for DER based on facial
images, enables greater accuracy than previously possible for DER based on facial images. The
proposed model outperforms some recently updated state-of-the-art techniques in terms of accuracy.
The proposed model achieved the following accuracy on various benchmark datasets: JAFFE 98.48%,
CK+ 99.73%, FER-2013 99.95%, AffectNet 95.28%, and 99.15% on a custom-developed dataset.

Keywords: driver emotions recognition; computer vision; facial expression recognition; facial image
symmetry; improved faster R-CNN; neural architecture search network

1. Introduction

Drivers’ emotional states can impact their driving ability while driving a vehicle [1,2].
Due to the increasing sophistication of vehicles, recognizing the emotions of their drivers
becomes more and more important. To ensure a more secure and pleasant ride, good
infotainment can precisely detect the driver’s emotional state before making adjustments
to the vehicle’s dynamics. In intelligent cars, it is critical to recognize the emotions of
the driver because the vehicle can make decisions about what to do in certain situations
based on the driver’s psychological state (for example driving modes, mood-altering songs,
and autonomous driving). Facial expressions (FEs) are considered necessary in human-
machine interfaces because they aid in expressing human emotions and feelings, which is
essential in developing artificial intelligence. A new research area called facial expression
recognition (FER) has been established. Recent years have seen significant advancements
in deep learning-based image recognition techniques [3–8], and deep learning is becoming
increasingly popular for FER. Although a person’s facial expressions often accurately reflect
their genuine emotions, various factors can influence how accurately they do so.
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Drivers, in particular, demonstrate a more pronounced manifestation of this trait.
Pretend you are in the following situation: The presence of a worried expression on a
driver’s face while driving may lead a reasonable observer to conclude that if only the
driver’s facial expressions are taken into account while making assumptions, the car driver
is presently in an unhappy state. The opposite is true if the only muscles in a driver’s
face react to sunlight stimuli, which does not indicate that the driver is experiencing
any discomfort. As a result, the driver’s emotions do not always show up in their facial
expressions when they are driving. Therefore, our goal is to identify the genuine emotions
of a driving partner, even when these emotions cannot be fully expressed through facial
expressions while driving.

Similarly, microfacial expressions, which investigates subtle changes in facial ex-
pressions over a brief period, are closely related to those described above. When real
emotions are suppressed, whether intentionally or unintentionally, it is common for such
minor changes to occur due to the suppression. Researchers have developed promising
methods for detecting hidden emotions based on several studies focusing on facial micro-
expressions [9–12]. Using micro-expressions in conjunction with deep learning-based
algorithms, drivers’ genuine emotions can be determined. However, the shortage of sam-
ples and an unbalanced division of samples are the key barriers to widespread use. In the
end, we are looking for drivers who are experiencing genuine emotions rather than drivers
who have suppressed or hidden their emotions from view [13].

Furthermore, most studies [14–23] use physiological signals to identify human emo-
tions, which is a significant advance. In clinical practice, the electroencephalogram (EEG),
the electrocardiogram (ECG), the photoplethysmography (PPG), and the electrical skin
activity (ESA) are the physiological signals that are most often used (EDA). A few studies
have found that a combination of both facial expressions and physiological signals may
be used to accurately identify [24,25] a wide range of emotions [26,27]. This research is
based on deep learning algorithms, which are gaining popularity at an alarming rate. A
deep learning-based DRER that uses sensor fusion of driver FER and physiological data to
recognize the actual emotional state of the driver while driving is proposed in this paper
based on these trends. The DRER is intended to detect the actual emotional state of the
driver while the vehicle is in motion.

The rest of the paper is structured as follows: Section two discusses the previous
sentiment recognition research and its application today. The third section discusses the
DRER, a technique for detecting the driver’s genuine emotions while driving. It is proposed
that the proposed DRER make use of the facial expressions of driver and EDA data collected
while driving. Section 3 contains a more detailed description of the proposed model. The
fifth page contains a detailed experimental design and a simulation with a human in the
loop. Section 4 compares and analyses the findings from experimental results. Section 5
concludes the proposed work with future work recommendations.

2. Literature Review

This section summarizes research in the field of recognition of emotion. This chapter
discusses FER, emotion recognition via biophysiological signals, and synchronous emotion
recognition (SFER). Additionally, we implement a dataset and a simulation with a human
in the loop to ensure the security of emotion recognition data.

2.1. Facial Expression Recognition (FER)

The majority of prior research has generated statistically significant results by utilizing
CNNs and other networks such as support vector machines (SVMs) and recurrent neural
networks (RNNs) and preprocessing the data. The Emotional Recognition in Wild Chal-
lenges compared their results by using a variety of techniques of deep learning, including
convolutional neural networks, deep belief networks, relational autoencoders, and shallow
neural networks. Additionally, they asserted that the optimal model could extract senti-
ment class probabilities and train SVM hyperparameters using CNNs, rather than one that
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relied solely on machine learning [1]. By contrast, FER is unique because it is founded on
the definition of emotions rather than on any other concept. Emotions are classified into
discrete states of mind and continuous states of mind. Categorizing discrete emotions such
as rage, disgust, happiness, and neutrality is accomplished at the category level. A face
detector and similarity transform were used to preprocess in the Wild (AFEW) dataset of
Acted Facial Expressions, and a CNN filter was used to remove faceless frames in this case.
The data were preprocessed before being fed into a CNN (VGG16) and a 3D convolutional
model. While the CNN extracts features and maps the input to fixed-length vectors via
an RNN/LSTM encoder, the 3D convolutional model encodes motion using video shape
and motion [2]. The authors of [3] developed a model specifically for drivers to determine
whether or not they are in a stressful state. Stressful situations were defined as those that
elicited feelings of rage or disgust. After landmark extraction, they used SIFT descriptors
to train the SVM on PCA results. They then applied the features to additional publicly
accessible data. They divided the indoor condition (driver’s frontal expressions) and the
vehicle condition into two groups to collect experimental data for evaluation (expressions
from the dashboard). The same is true for driver studies, which typically train models using
publicly available data, evaluate those using experimental data, and then define emotions
based on the study’s objectives. Another way to define emotions is to use a continuous
definition. Russel’s V-A (valence-arousal) model has been used extensively in previous
research on continuous emotion. The term “valence” refers to the strength of an emotional
attraction, either negative or positive. Arousal is a term that refers to the physiological
activity of various nerves in response to stimulation; it increases in direct proportion to
the intensity of the emotion. Given that VA can take on values ranging from −1 to 1, VA
regression uses a continuous definition. The FATAUVA-net model was proposed in a study
on VA regression and is composed of four layers: core, attribute, action unit (AU), and VA.
It is based on the MCNN and includes the core, the attribute, the action unit (AU), and the
VA layers. MTCNN detects the face in the core and attribute layers of the CelebA dataset
and trains the CNN on the detected regions (for example, the face and eyes). The AU layer
utilizes the affect-in-the-wild (AFF-wild) dataset to extract facial parts from the attribute
layer, and the V-A layer utilizes the V-A dataset to estimate the V-A [4]. Numerous studies
have forecasted the future use of V-A regression and emotion classification. The authors
of [5] created the dataset by annotating AU and labeling it with the seven most similar
basic emotions. They used GAN to provide semi-supervised guidance to the robot after
preprocessing with the FFLD2 face detector. A CNN (AFF-WildNet) was used to extract
features, which was then fed into an RNN to generate nine outputs. They are based on V-A
estimation in two cases and SoftMax’s prediction of seven fundamental emotions in the
other four. Because V-A is not intuitive in terms of meaning, some studies have used it
as a transitional extract for categorizing categorical emotions. The authors of [6] created
an automated system that analyses car drivers’ facial expressions based on visual acuity
(V-A). A pre-trained YOLO V2 was used to locate diver facial videos in datasets such as
AFEW-VA and motor trend magazines and extract features from the videos using CNN
(ResNet). SVM was used to extract features and then fed into an RNN (LSTM) as input
vectors. The resulting V-A was used to predict six different emotions. In previous research
on FER, two parallel CNNs were used, with that of the extracted features being combined
prior to recognition. Authors in [7] analyzed various types of preprocessed data using both
3D and 2D convolutional models. SoftMax combined and predicted the properties of each
generated model. Authors in [8] developed an algorithm that utilizes pooling to separate
two network routes regardless of their presence or absence. The intermediate feature
extraction stage combines the results of each route before proceeding to the next layer.

2.2. Bio-Physiological Signals

The authors of [9] demonstrated that performance improves as the data type grows
larger, regardless of the recognition method used. Numerous studies on the use of biophys-
iological signals for emotion recognition have been conducted using the sensors mentioned
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previously. The authors of [10] used EDA to process driver emotions in three distinct ways
in a virtual driving simulation (neutral, stress, and anger). Support vector machines were
used to classify the data, resulting in a class II classification. They accurately predicted
emotions in 85% of neutral stress and anger cases and about 70% of stress and anger cases.
This means that while large emotional segments can be classified, it is more challenging
to classify similar segments collectively. The authors of [11] published a comprehensive
sensor’s review and methods for recognition of human emotion in their journal. According
to the authors’ paper, EEG analysis, which is typically performed over a range of five fre-
quencies to determine the valence and arousal’s average level or detection efficiency of the
subject’s brain activity, is a fundamental technique. Research into developing new methods
for extracting information from EEG data has recently centered on deep learning techniques.
Apart from that, scientists have concentrated their efforts on quantifying and evaluating the
QRS wave amplitudes and durations. Emotions can be assessed by identifying P or R peaks
in the QRS and examining other parameters. Because EDA contains valuable information
about the amplitude and frequency of the EDA signal and the decision process, it can be
used for emotion recognition and automatic decision detection. By incorporating machine
learning algorithms into the system, it is possible to improve emotion recognition accuracy
and identify specific emotions associated with various arousal levels. Before defining
the peak and generating heart rate variability, PPG signals are filtered with a high-pass
filter to remove noise (HRV). Sensors are frequently used in conjunction to compensate for
one another’s shortcomings. The authors of [12] attempted to recognize emotions while
viewing tactilely enhanced multimedia. On a nine-point SAM scale, subjects were asked
to rate four different video clips to determine their overall impression of the video. While
watching the video clips, subjects recorded their physiological signals and the researchers
extracted various features from these signals. After the extracted features were applied to
the extracted features, a K-nearest neighbor classifier was used to classify the emotions. The
study discovered that PPG-based features had the highest classification accuracy (78.77%)
and that combining EEG, EDA, and PPG features increased classification accuracy (79.76%).
The use of EEG in research relating to emotion recognition and the brain’s response to
various stimuli has grown in popularity in recent years, owing to advancements in EEG
sensor measurement technology and deep learning. Biophysiological signals are often used
as data input in studies involving emotion recognition. Sensors can be used in various
ways to collect biophysiological signals, and each signal produced by a sensor has its own
unique set of characteristics. The authors of [13] proposed a subject-independent emotion
recognition algorithm based on dynamic empirical convolutional neural networks using
EEG signals to assess the average level of potency and arousal (DECNN). The transient
characteristics of the Shanghai Jiao Tong University Emotional EEG dataset (SEED) were
determined to be preserved by using the empirical mode decomposition (EMD) algorithm
to filter out the EEG signals in the EEG signal’s frequency bands. The dynamic differential
entropy (DDE) algorithm was used to extract the properties of EEG signals. Thus, they
are able to reflect the temporal and frequency characteristics of an emotional state. A
CNN model was created to distinguish between good and negative emotions, and the
researchers published their findings. They also revealed that time-frequency features could
be represented as two-dimensional matrices, whereas local correlation features could be
represented as images. They achieved a 97.56% accuracy rate with these methods. The
authors of [14] suggested a deep confidence conditional random field framework with
neuroglial chain (DBN-GC) and conditional random field to capture long-term dependen-
cies, contextual information, and correlation information between distinct EEG channels
(CRF). The multichannel EEG signals from the DEAP, AMIGOS, and SEED datasets are
segmented according to specific time windows, and raw feature vectors are extracted from
these segments. Each raw feature vector is fed into a parallel DBN-GC that extracts the
high-level representation of the feature vector from the data. The next step is to feed CRF
with high-level feature sequences that contain information about the correlation between
EEG channels. A sentiment label generator (CRF) generates predicted sentiment label
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sequences, and sentiment states can be determined using an automated sentiment state
determination layer based on the K-nearest neighbor algorithm. They achieved an average
accuracy of 76.58% when using the leave-one-out cross-validation method. As a result,
despite the benefits of EEG, some studies have investigated the use of more miniature
demanding sensors. This is because acquiring an EEG signal requires the use of specialized
equipment. The authors of [15] developed a simple and convenient method for daily
emotion monitoring based on a multimodal wearable biosensor network. The purpose of
measurement nodes is to collect and transmit signals from multimodal wearable biosensors
to sink nodes. It was discovered that the fuzzy rough nearest neighbor (FRNN) algorithm
could classify various emotions using a fuzzy threshold that took EEG concentration into
account. This method achieves 65.6% accuracy, which is excellent for wearable technology
because it minimizes sample classification ranges and interference from noisy samples. The
authors of [16] attempted to use EDA as an input feature in another paper that used EDA to
identify human emotions unrelated to the topic at hand. An algorithmic CNN model was
devised by the researchers, and it predicted four distinct emotional states: high-valence,
high-arousal (HVHA), low-valence, low-arousal (HVLA), low-valence, and high-arousal
(LVHA) (LVHA). They validated their model against the MANHOB and DEAP datasets
and found 81% accuracy. Additionally, several researchers have demonstrated the efficacy
of combining ECG and EDA [17]. For valence and arousal state classification, they advo-
cated the use of CNN and LSTM-based models accuracy values for validity (75%) and
arousal (76%) were reached. A second study is currently underway in which wearable
sensors are being used to make emotion recognition more practical and adaptable across
various domains.

2.3. Sensor Fusion Emotion Recognition

Using data from facial expressions and biophysiological markers, the authors of [18]
made a promising attempt to predict continuous emotions (potency and arousal). Twenty-
seven participants were shown twenty video clips and asked to annotate their emotional
states using ten emotional keywords selected from a list of twenty (sadness, happiness, joy,
disgust, neutrality, etc.). They collected data on facial expressions while simultaneously
recording 4 signals of bio-physiology using six cameras. For obtaining biophysiological
signals, expensive equipment and a tightly controlled environment are required. Numerous
studies have attempted to circumvent these limitations by identifying emotions using ex-
pression data of facial and biophysiological signals, which enables multimodal approaches
and non-contact performance measurements, among other things. It has also been able
to produce reasonably repeatable results due to recent advancements in the systems of
computer vision, big data analytics, and the techniques of deep learning. However, there is
still considerable room for improvement in arousal levels. As a result of this development,
several researchers have considered combining facial expressions with biophysiological
signals [19]. The authors of [20] used electroencephalography and FE as input features to
predict potency and arousal. According to the results, their validity accuracy was 75%, and
their arousal accuracy was 74%. The authors of [21] predicted potency, arousal, liking, and
the four emotional states, as well as the four emotional states themselves, using EEG and
facial expressions. They were 54% accurate in their forecasts. Varkalvo and colleagues [22]
proposed self-designed methods for estimating the user’s emotional state in real-time.
They used the EDA, blood volume pressure (BVP), and electroencephalography (EEG) to
examine the statistical correlation b/w the emotions experienced and the attributes set
of features. Deep convolutional integration is used to classify emotions based on facial
expressions, and the classification results are obtained using the FER-2013 dataset: It was
determined that they may be classified into seven distinct emotional states by using eight
standard classifiers set, with an accuracy of close to 80%. The authors of [23] also used
the EDA, facial expressions, electrocardiograms for predicting potency, arousal, liking,
and seven different emotional states as input features. To train the model, we used the
AMIGOS and datasets of Medical Therapy. The model was then used to predict patients’
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emotions receiving anxiety treatment. They achieved a 64% accuracy rate. It was sug-
gested that they combine facial expression data and biophysiological signals in FER using
a temporal information retention framework and the AFFDEX SDK, which significantly
improved emotion recognition performance. Numerous proposals for multimodal emo-
tion recognition have been made because the use of biophysiological signals and facial
expressions enables multimodal approaches [24–28]. Using heart rate variability (HRV)
variables, the respiratory rate, and the facial expression. The authors of [29] presented
multimodal automatic emotion identification. Each of the 24 participants was shown an
image from the international affective picture system (IAPS) for a total of 20 s in order to
gauge their emotional response. Participants verbally reported their feelings about the
photographs using a self-assessment model and a V-A rating scale. Additionally, they
used PSD to analyze the RR interval and SVM and the Cohn-Kanade dataset to categorize
facial expressions in the dataset. Using multimodal ER, k predicted validity and arousal by
38.0% and 54.5%, respectively. The authors of [30] also proposed using multimodal ER to
predict validity and arousal using FE and EEG signals from a single modality, respectively.
This study used external channels with nine facial expressions probability distribution
as external channels. For supplementing and completing facial expressions, EEG was
employed as an internal channel. These two channels were combined at the feature and
decision levels to achieve multimodal ER. The authors of [31] used a migration learning
approach to construct a multitask CNN architecture to account for the lack of EEG-facial
expression fusion. In EEG detection, two distinct learning targets are identified separately
and then combined using diverse support vector machine (SVM) classifiers. Two fusion
methods of decision-level based on enumeration weight rules or adaptive enhancement
techniques combined facial expressions and electroencephalography. After fusing the
DEAP and MAHNOB-Human–Computer interface (abbrv. MAHNOB-HCI) datasets, they
achieved 69.74 and 70% validity and arousal accuracy, respectively, and a 6% increase in
arousal accuracy. The authors of [32] focused on arousal’s recognition and potency. After
extracting power spectrum features from EEG signals, they used facial datums in each
frame, as features for sequentially detecting valence levels. Compared to biophysiological
signals, the use of facial expressions is more versatile and applicable to a broader range of
situations. Due to the flexibility and practicability of this approach, active research is being
conducted in required real-time emotion recognition areas in a variety of situations.

2.4. Existing Datasets

AffectNet [33] is a dataset containing over a million images of faces gathered from
the Internet and 1250 keywords related to emotions in almost six languages. Seven dis-
crete data points of facial expression and information about potency and arousal intensity
were annotated onto the collected images. According to the dataset’s authors, CK+ [34]
contains 593 sequences with seven emotion labels. The EMOTIC [35] classification system
includes 26 discrete categories, including continuous dimensional, dominance, and im-
ages. EMOTIC includes 23,571 images, some of which were sourced from Google’s image
search engine. While subjects watch film clips, the ASCERTAIN dataset [36] records their
facial images and biophysiological signals. Within 30 s of viewing each clip, subjects are
asked to self-report their emotional state via a good ranking. The validity (V) and arousal
(A) ratings for each image reflected the user’s perceptions’ validity. Additionally, their
biophysiological data were gathered. This dataset can be used to learn about people’s
emotions. Numerous datasets, such as the MAHNOB-HCI dataset [37], maintain emotional
responses. Eye gaze data and physiological signals are available (EDA, ECG, breathing
patterns, and skin temperature). Two experiments revealed several self-reported keywords
for arousal, potency, dominance, predictability, and emotion. The Dreamer dataset [38]
contains an electroencephalogram (EEG), an electrocardiogram (ECG) signal obtained
during the elicitation of audiovisual stimuli [39]. Following each stimulus, 23 participants
self-rated their affective state based on potency, arousal, and dominance, with the highest
scores indicating the most positive state. Through the use of SVM, this dataset enables
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the identification of emotions. Eight physiological signals were collected from 30 different
participants for the CASE dataset [40]. The authors of [41] used a dataset to classify the
emotional states of drivers into four categories (happiness, irritation, focused attention, and
confusion) and collected the data while driving approximately 24 km each. The data set is
primarily made up of face videos that have been annotated emotionally by external annota-
tors. The participants were shown a variety of videos to elicit four distinct emotional states:
amusing, boring, relaxed, and frightening. They collected data from portable UTDrive DB
using smartphones, obviating the need for any specialized equipment. The CIAIR dataset
contains driving data of real-world from more than 500 drivers who collectively logged
over 60 min of real-world driving [42]. The videos elicited four distinct emotional states.
They were instructed to annotate their changing emotions as they progressed through the
game using a joystick. Certain datasets include both facial images and biophysiological
signals that can classify emotions. The use of driving-related facial image data [43] or
biophysiological signals [44] as datasets for emotion recognition is gaining popularity. The
data for this study were collected while 77 participants drove the UTDrive DB Classic in
real-world urban area highway conditions. Audio, video, the distance between you and
the vehicle in front of you, and driver behavior were all recorded and incorporated into
the data collection process. This document contains no sentiment annotations. The data
is comprised of three-channel videos from three cameras, three-channel audio from three
cameras, GPS and control signals. Numerous biophysiological signals (ECG, EDA, EMG,
and RESP) are collected and analyzed in the Drive dataset under various stress conditions.
Signals are collected for 50–90 min at a time while driving.

3. Methodology

According to the literature review, significant research has been conducted on real-time
and offline emotion recognition based on facial expressions using benchmark datasets,
both in real-time and without the use of a network. We can see the overall structure of
our research framework in the given Figure 1. As a result of this slew of other challenges
and limitations, the first and most significant contribution task in this research is the
development of a driver’s emotion recognition (DER) dataset. Individual high-resolution
RGB images of each subject’s seven basic expressions will be captured, and each subject
will contribute to developing a facial expression image dataset containing these images.
The second phase will be devoted to developing a face detection system. The proposed
detector will be tailored specifically for car indoor face detection to be effective and precise
in its operation and efficient in its operation.

Additionally, the developed face detection system will be highly robust and perform
well under adverse conditions such as low lighting and facial obstructions. Transfer
learning is a cutting-edge technique for developing a custom dataset model from scratch
in FER. The purpose of this research is to develop the most advanced and highly accurate
convolutional neural network model capable of recognizing driver emotions in a vehicle
interior scene. We will use holdout cross-validation, also known as %age splitting, to
partition the benchmark and our developed dataset. The dataset will be divided into two
parts: a trainset (which will be randomly split 70% of the time) and a test set (which will be
randomly split 30% of the time). The accuracy and F-measure metrics used for evaluation in
the proposed model’s performance in this manuscript in the final section, will be discussed
in greater detail later.

3.1. Datasets

The datasets used in this study are defined in elements in this section. Visual data
from the FER image dataset is the primary basis for the computer execution of FER. Most
researchers working in the FER domain rely on existing facial expression datasets due
to funding constraints, time, effort, and algorithm performance evaluation requirements.
CK+, JAFFE, FER-2013, RAF-dB, and AffectNet facial expression datasets are the most
widely used. The CK+38 and JAFFE datasets, which were chosen for evaluation in this
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study, are currently the two most widely used standard datasets from the very beginning
of expression research to evaluation. The FER-2013 dataset, the most widely used dataset
for FER available for public use, was also used in this study. Figure 2 and Table 1 show the
three most widely used DFE datasets used in this work, and the distribution of every class
in the datasets is discussed.
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Table 1. The distributions of every class in each dataset.

FER-2013 CK+ (Last Frame) JAFFE AffectNet Custom

Angry 4593 45 30 25,382 460,164
Disgust 547 59 30 4303 444,819

Fear 5121 25 31 6878 274,475
Happy 8989 69 31 134,415 38,885

Sad 6077 28 31 25,959 36,330
Surprise 4002 83 30 14,590 29,995
Neutral 6198 327 30 75,376 Nil

Contempt 0 18 0 4250 279,246
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3.1.1. The Japanese Female Facial Expression (JAFFE) Dataset

Basic facial expressions (FE) for each of the three datasets. With the addition of a
contempt class in CK+, each dataset contains seven fundamental expressions which are
commonly used such as: happy, angry, disgusted, fear, sad, contempt, and surprised. The
FER-2013 dataset consists of wild-type facial expressions, whereas the CK+ and JAFFE
datasets contain posed and collected FE in a laboratory setting.

3.1.2. The Extended Cohn-Kanade Dataset (CK+)

In 2010, the CK dataset was expanded [16], resulting in a 22% and 27% increase in
sequences and subjects, respectively. The dataset consists of 327 images in sequences
of postural and non-postural (spontaneous) expressions ranging from neutral to highest
emotions, digitized to 640 × 480 and labeled with FACS-encoded emotion labels for the
highest edges. The dataset’s 123 subjects age approximately from 18 to 50 years old (81%
European-American, 13% African-American, and 6% other races), with females accounting
for 69% of the total. The dataset includes a category of “contempt” in adding to the basic
seven FE, for a total of eight facial expressions. There are also some baseline evaluation
results and methods for tracking contents and presence features and emotion and AU
labeling in this dataset.

3.1.3. FER-2013 Dataset

The ICML 2013 Representation Learning Challenge [14] was the first to introduce the
database for the recognition of facial expressions 2013 (FER2013). The collection contains
35,887 pictures with a resolution of 48 by 48 pixels, the majority of which were taken in
the field. There were 28,709 photographs in the training set, 3589 images in the test set,
and 3589 in the test set. Initially, faces in the Google Image Search API database were
automatically captured. One of six fundamental expressions or a neutral expression was
then applied to the faces. The FER is more common in partial faces, low-contrast pics,
shows, and facial occlusion than in the other datasets.

3.1.4. AffectNet Dataset

AffectNet is a new dataset of real-life FE created by gathering and annotating facial
images. AffectNet is an FE dataset of over 1 million facial images collected from the Internet
by querying with the major three search engines with 1250 emotions from six different
languages people related keywords. The presence of different seven FE (categorial model)
and the amount of valence and stimulations were manually explained in about half-of-the
retrieved images (440,000) (dimensional model). AffectNet is the most publicly available
dataset of FEs, valence, and stimulation, allowing researchers to investigate automated
FER in two different emotion models. In the categorical model, the two baselines are
used to predict the intensity of valance and simulation to classify images by deep neural
networks. Our deep neural network baselines outperform the conventional machine
learning approach and off-the-shelf FER method on various evaluation metrics.

3.1.5. Custom Dataset

A benchmark dataset is created as part of a static camera was mounted next to the
car’s front screen to record videos of drivers making various facial expressions to capture
their emotions on film. The photographs were taken from a range of vehicles, including a
Toyota Prius, a Honda Civic, and a Toyota Landcruiser. Each subject was recorded for ten
minutes in each vehicle, followed by manual separation and labeling of the recordings. A
high-resolution camera is used to create the benchmark dataset for emotion recognition.
Thirty subjects will be recruited to participate in the dataset development phase to collect
image data. Each subject (driver) in the study is a male between the ages of 25 and 40,
wearing glasses or not wearing glasses, wearing a cap or not wearing a cap, and with or
without a beard. The videos are recorded and analyzed in a moving car interior scene,
where obstacles and significant lighting changes interfere with the face detection and
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emotional recognition systems. To demonstrate the benchmark driver emotions dataset’s
effectiveness, the proposed deep learning model is trained on some benchmarks and a
custom-developed dataset.

3.2. Face Detection System

Object detection is the face as a process of classifying and identifying the contents in an
image. The in-depth learning method, R-CNN, combines the rectangular region schemes
with CNN features. R-CNN is a two-step detection procedure. The first step recognizes a
subset of regions in an image that might contain an object. The second step organizes the
object in each region.

Our proposed face detector is called improved faster R-CNN, which is composed of
two schemes. The first scheme is a deep, fully convolutional network that recommends
regions, and the second module is the improved fast R-CNN detector that uses the proposed
areas. Figure 3 shows examples of face detection using improved faster R-CNN, the object
detection in an image in the system is a single, unified network. The PRN approach
expresses the improved faster R-CNN module, using the most recently advanced language
for the neural networks with attention appliances.
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3.3. Regional Convolutional Neural Network (R-CNN)

The R-CNN detector first generates an area in the image schemes using an algorithm
such as Edge Boxes. The proposed scheme crops the images and resizes them. Then, the
CNN organizes the gathered and resized regions in the image. The CNN features were
trained by a support vector machine (SVM) that the area of the image in the proposed
scheme is bounded to be fixed are identified shown in Figure 4.
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3.4. Data Augmentation

Data augmentation was used in different perspectives in computer vision. Data
augmentation increases the images (Figure 5) in the dataset by replicating it using multiple
image processing techniques. There are many common data augmentation techniques were
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used for images such as scaling, cropping, flipping, sharpening, blueness, noise removal,
noise addition, contrast adjustment, rotation, translation, affine transformation, RGB color
shifting, etc.
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3.5. Transfer Learning Based Driver Emotion Recognition (DER)

Transfer learning is an in-depth model that is trained for one-to-many tasks in a
learning approach. A fine-tuning transfer learning is faster and easier than training in a
network from scratch. The transfer learning approach, as distributed over a considerable
extent technique, enables the researcher to train the models using related small, labeled
data by leveraging mostly used models that have been trained on a large dataset. The
transfer learning approach is mostly used in computer vision for object detection in images,
image recognition, speech recognition, and other applications. For full training a cycle on
the whole dataset, a new model would be required because in transfer learning the model
did not need to be trained for several epochs. It can histrionically decrease training time
and compute possessions.

3.6. Transfer Learning

The transfer learning approach commonly uses the following process steps, the work-
flow of the transfer learning workflow, as shown in Figure 6.
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Load a pre-trained network for the new task and select the most relevant pre-trained
network for the most similar task.

The classification layers will be changed for the new task, because you may also select
a fine tune, the weight depends upon the data availability of the new task. Moreover, for
many data, you have to use more layers to select a fine tune, but for a smaller number of
data, the fine tuning may lead to an over-fitted model.

For a new task, the network must be trained on the data.
After training the network, check the accuracy of the newly trained network.

3.7. Transfer Learning in Pre-Train Convolutional Neural Networks
3.7.1. NasNet Large

To find the best convolutional architectures for a given dataset, we use search algo-
rithms. Neural architecture search (NAS) is the major search method that we want to
deploy. Child networks with varied architectures are sampled by a controller RNN in NAS.
Child networks are taught to achieve some accuracy on a validation set that is held out for
convergence. The resulting accuracy values are used for updating the controller, which
in turn generates more accurate architectures over time. The policy gradient is used for
updating the controller weights.

A new search space is designed that allows the best architecture discovered on the
CIFAR-10 dataset to be scaled up to larger, higher-resolution image datasets in a range of
computing environments. Based on a realization that architecture engineering with CNNs
usually uncovers recurring patterns that include combinations of convolutional filter banks
and nonlinearities as well as a careful selection of connections, the NasNet search space was
created (for example, the repeated modules in the inception and ResNet models). These
findings suggest that the controller RNN may be able to predict a generic convolutional cell
that is displayed in these patterns. To accommodate inputs of any spatial dimension and
depth of filtering, this cell can be stacked in a sequence. In our method, the convolutional
nets’ overall designs are predetermined manually. They are made up of convolutional
cells that have the same shape as the originals but are weighted differently. Two types of
convolutional cells are used to quickly develop scalable architectures for images of any
size: (1) convolutional cells that produce a feature map with that of the same dimension,
and (2) convolutional cells that return a feature map with a two-fold reduction in height
and width.

The first and second types of convolutional cells are referred to as Normal Cell and
Reduction Cell, respectively. The initial operation applied to the cell’s inputs is given a
two-step stride to minimize the cell’s height and width. Our convolutional cells support
striding since they take all operations into account when constructing them. The Normal
and Reduction Cell structures that the controller RNN seeks are different in convolutional
nets. The following search area can be used to look for cell shapes. There are two hidden
states, h I and h (i-1), available for each cell in our search space. To begin, these initial
hidden states are the results of two cells in the preceding two lower layers or the input
image, respectively. The controller RNN makes recursive predictions about the rest of
the convolutional cell structure based on these two initial hidden states (Figure 7). The
controller predictions for each cell are organized into B blocks, with each block consisting
of five prediction steps performed by five distinct SoftMax classifiers representing discrete
choices of block elements.

Step 1. Select a hidden state from h i, h (i-1), or the set of previously created hid-
den states.

Step 2. From the same options as in Step 1, select a second hidden state.
Step 3. In Step 1, choose the hidden state you want to apply an operation upon.
Step 4. After selecting a hidden state in Step 2, select an operation to apply to it.
Step 5. Determine how the outputs from Steps 3 and 4 will be combined for creating a

new hidden state.
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It is possible to use the newly created hidden state as an input in the following
blocks. For each of the B blocks in the convolutional cell shown in Figure 7, the controller
RNN propagates over the five previous predictions B times. However, due to computing
limitations, we were unable to fully explore this region in our studies and concluded that
B = 5 provides satisfactory results.

The controller RNN selects an operation to apply to the hidden states in steps 3 and
4. We compiled the following list of operations (Table 2) based on their frequency of
occurrence in the CNN literature:

Table 2. NasNet layer architecture.

Identity 1×3 Then 1×3 Convolution

1 × 7 then 1 × 7 convolution 3 × 3 dilated convolution
3 × 3 average pooling 3 × 3 max pooling

5 × 5 max pooling 7 × 7 max pooling
1 × 1 convolution 3 × 3 convolution

3 × 3 depthwise-separable conv 5 × 5 depthwise-separable conv
7 × 7 depthwise-separable conv Last fully connected

3.7.2. Features Weights Optimization

Detailed information about how to train using our clinical dataset to fine-tune pre-
trained CNNs, we examined each one separately. As a result, we used NasNet’s large
pre-trained CNNs. Our study makes use of image augmentation. Additionally, to the initial
dataset, another dataset of training is generated using the data augmentation technique.
During training, data augmentation can be used to mitigate the overfitting problem asso-
ciated with deep CNNs. We applied a random horizontal and vertical shift to an extent
of 10% of the original dimensions in this study. Additionally, random rotation (20◦) was
applied to the training images, along with a small random zoom. Additionally, we flip the
images horizontally to increase the dataset’s size. To fine-tune all networks, we removed all
fully connected layers and used only the convolutional portion of each model’s architecture.
We added a global average pooling layer on top of the final convolutional layer, followed
by a final classification layer that makes use of SoftMax non-linearity. With a learning
rate of 0.0001 and a momentum of 0.9, we employed stochastic gradient descent (SGD)
optimization for 50 iterations to fine-tune the networks. The loss function was categorical
cross-entropy in all situations. It is used to adjust the hyperparameters in the validation
set. To be clear, each network’s input is unique in terms of its size. The initial stage in data
preparation was to resize and store all photos in various files based on the varied sizes of
model inputs that were used. Table 2 shows the comparison of pre-trained CNN models.
Both models were trained with identical initialization and learning rate rules.

4. Experiments

Facial expression recognition methods such as the one proposed here have been tested
and proven to be effective on various standard datasets, which were used in the develop-
ment of this section. A thorough comparison of the proposed technique with current FER
techniques and quantitative and qualitative evaluations of the results performed on the
data collected are also included in the study. A more specific example is that the proposed
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system uses two reference datasets. Each dataset in the proposed system is divided into
training and testing sets at random, with the training set being significantly larger than the
testing set and the training set being also larger than the testing set. As previously stated,
to conduct experiments, it is necessary to change the number of training and testing images.
All simulations are performed using the MATLAB R2021a simulation platform included in
the proposal. All of this is accomplished on a workstation PC equipped with dual Xeon
processors, 48 GB DDR4 RAM, which are running the Windows 10 operating system. The
following sections provide a more detailed (Table 3) explanation of each of the two datasets
(RAF and AffectNet) used in the experiment.

Table 3. Specification of GPU using for model training.

Manufacturer Nvidia

Model RTX 2080Ti
Memory 11 GB GDDR-6

Cores 4352
TMUS 272
ROPS 88

Bus Width 352 bit

4.1. Experiments on the JAFFE Dataset

A randomized hold-out splitting procedure is used to conduct experiments on the
JAFFE dataset, which allows for the most accurate results. In the first phase, 189 images
(70% of the total) are used as a training set, and 24 images (30% of the total) are used as
testing images. In the second phase, 189 images (70% of the total) are used as training
images. After that, an additional 6237 training images are added to the JAFFE augmented
dataset then used to validate the model. A total of 792 validation images are also used in
the process of model validation. The accuracy achieved using the original JAFFE dataset
is 88.82% in Figure 8a while Figure 8b shows the NasNet-Large CNN model training and
validation loss plot for the JAFFE dataset. The given Figure 8a,b illustrates the contrast
accuracy and loss for the proposed NasNet-Large model in terms of direct proportion with
the epochs.
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The accuracy is achieved using the augmented JAFFE dataset which is 98.48% in
Figure 9a whereas Figure 9b shows the NasNet-Large CNN model training and validation
loss plot for the JAFFE augmented dataset. The given Figure 9a,b illustrates the contrast
accuracy and loss for the proposed Nasnet-Large model for the augmented dataset in terms
of direct proportion with the epochs.
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4.2. Experiments on the CK+ Dataset

Experiments on the CK+ dataset are conducted using randomized hold-out splitting.
The first phase uses 444 images (70% of the total) as a training set and 192 images (30% of the
total) as testing images. The second phase adds 14,652 training images and 6336 validation
images to the CK+ augmented dataset, bringing the total number of training images to
14,652. The accuracy obtained using the original CK+ dataset is 95.97% in Figure 10a,b
shows the model training and validation loss plot for CK+ Dataset.
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The accuracy is obtained using the augmented CK+ dataset which is 99.73% in Figure 11a,b
shows the model training and validation loss plot for the CK+ augmented dataset.
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4.3. Experiments on the FER-2013 Dataset

Experiments on the FER-2013 dataset are performed using randomized hold-out split-
ting. In the first phase, 23,569 (70%) images are used as a training set and 10,658 (30%)
images are used for testing purposes. In the second phase, the FER-2013 dataset is aug-
mented where the number of training images is 777,777 and 321,691 images that are used
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for model validation. The accuracy of the original FER-2013 dataset is achieved by the
NasNet-Large model which is 98.34% shown in Figure 12a,b for the model training and
validation loss plot.
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The accuracy of the augmented FER-2013 dataset is achieved by the NasNet-Large
model which is 99.95% in Figure 13a while Figure 13b shows the model training and
validation loss plot.
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4.4. Experiments on the AffectNet Dataset

Experiments on the AffectNet dataset are performed using randomized hold-out split-
ting. In the first phase, 187,807 (70%) images are used as a training set and 87,346 (30%)
images are used for testing purposes. In the second phase, the AffectNet dataset is aug-
mented where the number of training images is 2,817,105 and 1,310,190 images that are
used for model validation. The accuracy is achieved by the original AffectNet dataset is
80.99% in Figure 14a whereas Figure 14b shows the training and validation loss plot.
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The accuracy is achieved by the augmented AffectNet dataset which is 95.28% as
shown in Figure 15a,b—the training and validation loss plot.
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4.5. Experiments on the Custom Dataset

Experiments on the custom dataset are performed using randomized hold-out splitting.
In the first phase, 763,880 (70%) images are used as a training set and 329,926 (30%) images
are used for testing purposes. In the second phase, the custom dataset is augmented where
the number of training images is 5,347,160 and 2,309,482 images that are used for model
validation. The accuracy of the original custom dataset is achieved by the NasNet-Large
CNN model which is 97.65% as shown in Figure 16a,b—the training and validation loss plot.
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The accuracy of the augmented custom dataset is achieved by the Nasnet-Large CNN
model which is 99.15% as shown in Figure 17a,b—the training and validation loss plot.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 25 
 

 

 
Figure 15. (a) NasNet-Large CNN model training and validation accuracy plot for AffectNet aug-
mented dataset, (b) NasNet-Large CNN model training and validation lossplot for AffectNet 
augmented dataset. 

4.5. Experiments on the Custom Dataset 
Experiments on the custom dataset are performed using randomized hold-out 

splitting. In the first phase, 763,880 (70%) images are used as a training set and 329,926 
(30%) images are used for testing purposes. In the second phase, the custom dataset is 
augmented where the number of training images is 5,347,160 and 2,309,482 images that 
are used for model validation. The accuracy of the original custom dataset is achieved by 
the NasNet-Large CNN model which is 97.65% as shown in Figure 16a,b—the training 
and validation loss plot.  

 
Figure 16. (a) NasNet-Large CNN model training and validation accuracy plot for Cusotm dataset, 
(b) NasNet-Large CNN model training and validation lossplot for Custom dataset. 

The accuracy of the augmented custom dataset is achieved by the Nasnet-Large 
CNN model which is 99.15% as shown in Figure 17a,b—the training and validation loss 
plot. 

 
Figure 17. (a) NasNet-Large CNN model training and validation accuracy plot for Custom aug-
mented dataset, (b) NasNet-Large CNN model training and validation lossplot for Custom aug-
mented dataset. 

5. Performance Comparison with State-of-the-Art 
We show the performance of the model proposed on the above data sets. The model 

is also accomplished, verified in a validation set, and the accuracy of the test set pre-

Figure 17. (a) NasNet-Large CNN model training and validation accuracy plot for Custom aug-
mented dataset, (b) NasNet-Large CNN model training and validation lossplot for Custom aug-
mented dataset.



Symmetry 2022, 14, 687 18 of 23

5. Performance Comparison with State-of-the-Art

We show the performance of the model proposed on the above data sets. The model is
also accomplished, verified in a validation set, and the accuracy of the test set presented in
each case, in part of the data set. Before looking at the performance of the model in multiple
data sets, we discuss our training approach briefly. For every collection of data, we trained
a model in our experiments but tried to preserve its architecture and hyperparameters.
We employed the Adam optimizer at a base learning rate of 0.005. (a different optimizer
was used, including stochastic gradient descent, and Adam appeared to be slightly more
successful). With the weight decay of 0.001 value, L2 regularization was also added. On
the FER datasets, training our model took about 2 h while the JAFFE dataset consists of
fewer images, so the model training time was less than 10 min. We used oversampling
for classes with fewer images in the dataset for model training, which also resolved the
imbalanced data problem, leading to model generalization. Classes could have the same
order for training the model on colossal no. For images and training models against small
invariant transformation, data augmentation is used in training sets. To improve the data,
we use flips, small rotations, and minor distortions.

Other data sets for the recognition of FE are more accessible in use than the FER-
2013 dataset. Aside from the variation of intra-class in FER, the unbalanced nature of
the different emotion classes is another major challenge in this dataset. Happiness and
neutrality have many more examples than other expressions. The model was trained using
28,709 images from the training sets, verified with 3500 validation images, and tested with
3589 images from the test set to determine model quality. On the test set, we were able
to achieve 79.1% accuracy on the actual size dataset and for the augmented dataset the
model accuracy is 99.95%. The year 2013 is determined by comparing our model results
with some previous work on FER Table 4 and the accuracy graph (Figure 18).

Table 4. FER 2013 dataset’s classification accuracy.

Methods Accuracy Rate

Unsupervised classification [38] 66.1%
Bag of visual words [39] 63.7%

VGG features +SVM classifier [24] 67.43%
Transfer learning in GoogleNet [40] 64.1%

Facial expression recognition on SoC [41] 65.9%
Mollahosseini et al. [10] 65.9%

Transfer learning in VGG (Aff-Wild) [42] 76.01%
Proposed model (Original dataset) 98.34%

Proposed model (augmented dataset) 99.95%
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For training, we have used the total amount of the dataset of one hundred and twenty
(120) images. From this viewpoint, we have used twenty-three (23) images for validation,
and seventy images (70) for JAFFE dataset testing. The total accuracy of this dataset is
92.8%. The proposed model results have been achieved and have been compared with the
results from some state-of-the-art work which are given in Table 5 and the accuracy graph
(Figure 19).

Table 5. JAFFE dataset’s classification accuracy.

Method Accuracy Rate

Mixing image components LBP + ORB [43] 87.82%
Fisherface [44] 90.1%

CNN + HOG features [45] 89.71%
Saliency face map patch [46] 92.2%

Learnable features + multi-class SVM [47] 96.41%
Proposed model (original dataset) 88.82%

Proposed model (augmented dataset) 98.48%
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This illustration signifies the proposed dataset which also consists of the same dataset
with the range of 120 in the total amount of images to be trained and tested under the
simulation environment in comparison with the state-of-the-art solution.

From this viewpoint, we have used twenty-three (23) images for validation, and
seventy images (70) for CK+ dataset testing. The total accuracy of this dataset is 92.8%. The
proposed model results are achieved and have been compared with the results from some
state-of-the-art work which are given in Table 6 and the accuracy graph (Figure 20).

Table 6. CK+ dataset’s classification accuracy.

Method Accuracy Rate

DNN [29] 68.26%
Aam-SVM [44] 68.26%
DRL-CNN [45] 82.86%

PGC [46] 62%
FPD-NN [47] 66.36%

Proposed model (original dataset) 95.97%
Proposed model (augmented dataset) 99.73%
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For validation and AffectNet training and testing, the same dataset was used in the
range of 120 images to be contrasted with the existing works.

From this scenario, we have used twenty-three (23) images for validation, and seventy
images (70) for AffectNet dataset testing. The total accuracy of this dataset is 92.8%. The
proposed model results have been achieved and are compared with the outcomes from
some state-of-the-art work which are given in Table 7 and the accuracy graph (Figure 21).

Table 7. AffectNet dataset’s classification accuracy.

Method Accuracy Rate

RAN [31] 59.50%
VGG-16 [4] 51.11%

GAN-Inpainting [34] 52.97%
DLP-CNN [16] 54.47%
PG-CNN [18] 55.33%

ResNet-PL [26] 56.42%
OAD-CNN [final] 61.89%

Proposed model (original dataset) 80.99%
Proposed model (augmented dataset) 95.28%
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Applications of DFERS

A new approach in which the facial expressions of the drivers can be identified
and witnessed through advanced artificial deep learning models was established. This
approach has the ability to detect the expression of the driver while driving in which there
are multiple expressions such as anger; sad, happy, surprised, disgusted, natural, etc. types
of moods can be detected by using advanced image processing modules to train and test the
object. It works in such a way in which there will be multiple cameras installed inside the
vehicle which will be monitoring the condition of the driver and from that viewpoint, these
AI-enabled cameras will have the ability to capture the moment of the real-time scenario
and will report immediately to the base station or to other emergency stations connected
with the vehicles’ network. The major applications of the DRER systems are increasing
with rapid speed and demand is also increasing as sometimes the drivers become lazy
and this AI scheme gives them a signal when it detects some suspicious activity from the
driver, such as the driver is about to nod off or something terrible is about to happen to him
regarding fainting. Then, this scheme generates an alarm and gives a signal to the driver as
well as to other connected base station focal individuals.

6. Conclusions

This paper proposed an algorithm for recognizing the emotional state of a driver. The
deep learning algorithm model uses driver face images to identify the driver’s emotional
(DE) state. According to the proposed FER model, it is possible to identify a DFE state
without requiring the driver to perform any additional efforts. The faster RCNN model is
improved which is used for the detection of the driver face region, the features learning
block of the faster RCNN is replaced with a custom CNN block which improves the face
detection accuracy and efficiency. Transfer learning in the NasNet Large CNN model is
performed by replacing the ImageNet data with the custom-created dataset of driver emo-
tions; the CNN model used for the recognition of facial expression consists of 1243 layers.
The custom-created dataset has seven basic driver emotions. The proposed face detection
and facial expression recognition models have been evaluated using a custom dataset; the
effectiveness of the proposed model can be analyzed with achieving the high accuracy. The
proposed model is also evaluated using some benchmark facial expression recognition
datasets, i.e., JAFEE, CK+, FER-2014, and AffectNet. Using the benchmark datasets, the
proposed model outperformed some state-of-the-art facial expression recognition models.
The proposed model is efficient and accurate and can be deployed by various hardware
to recognize the driver’s emotions and enhance the performance of an automatic driver
assistance system.
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