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Abstract: We studied the asymptotic behavior of fourth-order advanced differential equations of the

form
(

a(υ)(w′′′(υ))β
)′

+ q(υ)g(w(δ(υ))) = 0. New results are presented for the oscillatory behavior
of these equations in the form of Philos-type and Hille–Nehari oscillation criteria. Some illustrative
examples are presented.
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1. Introduction

As is well known, differential equations have many real-world applications [1]. Ad-
vanced differential equations, in particular, find applications in dynamical systems, math-
ematics of networks, optimization, and in the mathematical modeling of engineering
processes, such as those found in electrical power systems, materials, and energy [2]. In the
last decade, one important area of active research is the study of the qualitative oscillation
behavior of differential equations [3–18]. In this paper, we investigate the oscillation of
fourth-order nonlinear advanced differential equations of the following form:(

a(υ)
(
w′′′(υ)

)β
)′

+ q(υ)g(w(δ(υ))) = 0, (1)

where υ ≥ υ0. Our main aim is to complement and improve the results in [19–21]. To
motivate that, we briefly review and put into context those and related results.

In [17,18], Zhang et al. obtain, under mild assumptions and with the help of the
comparison method with first-order equations, an oscillation criterion ensuring that every
solution w of equation ((

w(κ−1)(υ)
)β
)′

+ q(υ)wα(δ(υ)) = 0 (2)

with δ(υ) ≤ υ, α ≤ β, κ even, and α, β ratios of odd positive integers, is either oscillatory
or satisfies lim

υ→∞
w(υ) = 0. For the special case when β = α, Zhang et al. [22] obtain—

under similar assumptions of those in [17,18], but now using the comparison method with
second-order equations—some results on the asymptotic behavior of (2) in the case of κ = 4.

Symmetry 2022, 14, 686. https://doi.org/10.3390/sym14040686 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14040686
https://doi.org/10.3390/sym14040686
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7251-9608
https://orcid.org/0000-0003-2959-4212
https://orcid.org/0000-0002-2116-7382
https://orcid.org/0000-0002-2154-9049
https://doi.org/10.3390/sym14040686
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14040686?type=check_update&version=3


Symmetry 2022, 14, 686 2 of 11

Agarwal and Grace [19] and Agarwal et al. [20] study canonical even-order nonlinear
advanced differential equations, as follows:((

w(κ−1)(υ)
)β
)′

+ q(υ)wβ(δ(υ)) = 0 (3)

by means of the Riccati transformation technique, establishing some oscillation criteria
for (3) when δ(υ) ≥ υ, κ is even, and β is a ratio of odd positive integers. As a special case,
when β = 1, Equation (3) becomes

w(κ)(υ) + q(υ)w(δ(υ)) = 0. (4)

Grace and Lalli [21] study the oscillation of (4), in the case when κ is even, under the
following condition: ∫ ∞

υ0

1
a1/β(s)

ds = ∞. (5)

To prove their results, they apply previous mentioned results to the following equation:

w(κ)(υ) +
q0

υκ
w(λυ) = 0, υ ≥ 1. (6)

If we set κ = 4 and λ = 2, then, by applying the conditions in [19–21] to Equation (6),
we find the results in [20], which improve those of [21]. Moreover, the results in [19]
improve the ones of [20,21]. Thus, our motivation here is to complement and improve the
results of [19–21]. From them, we obtain new criteria for the oscillation of Equation (1).

The paper is organized as follows. We begin with Section 2 of preliminaries, fixing
our assumptions and notations and recalling necessary definitions and results from the
literature. Our results are then given in Section 3: we prove conditions assuring that every
solution w of (1) is either oscillatory or satisfies lim

υ→∞
w(υ) = 0 (see Theorems 1 and 2 and

Corollary 1). In Section 4, we give two simple examples for which previous results of
the literature do not apply, while our Hille–Nehari-type oscillation criterion holds. We
end with Section 5—conclusions and future works—posing an interesting and challenging
open question.

2. Hypotheses and Preliminaries

Throughout the work, we assume the following assumptions to (1):

A1: β is a quotient of odd positive integers;
A2: a ∈ C1([υ0, ∞),R), a(υ) > 0, and a′(υ) ≥ 0 with∫ ∞

υ0

1
a1/β(s)

ds < ∞; (7)

A3: q ∈ C([υ0, ∞),R) with q(υ) ≥ 0;
A4: δ ∈ C([υ0, ∞),R) with δ(υ) ≥ υ and lim

υ→∞
δ(υ) = ∞;

A5: g ∈ C(R,R) such that g(x)/xβ ≥ k > 0 for x 6= 0.

By a solution of (1), we mean the function w ∈ C3[υw, ∞), υw ≥ υ0, which has the
property a(υ)(w′′′(υ))β ∈ C1[υw, ∞) and satisfies (1) on [υw, ∞). We consider only those
solutions w of (1) that satisfy sup{|w(υ)| : υ ≥ υw} > 0. To prove our results, we make use
of the following methods: (i) an integral averaging technique; (ii) Riccati transformation
techniques; (iii) a comparison method with second-order differential equations.

Definition 1 (See [23]). We say that the differential equation[
a(υ)

(
w′(υ)

)β
]′
+ q(υ)wβ(g(υ)) = 0‚ υ ≥ υ0, (8)
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where β > 0 is a ratio of odd positive integers and a, q ∈ C([υ0, ∞),R+), is nonoscillatory, if there
exists a number υ ≥ υ0 and a function ς ∈ C1([υ0, ∞),R) satisfying the inequality

ς′(υ) + γa−1/β(υ)(ς(υ))(1+β)/β + q(υ) ≤ 0

on [υ0, ∞).

Definition 2 (See [24]). Let D = {(υ, s) ∈ R2 : υ ≥ s ≥ υ0} and D0 = {(υ, s) ∈ R2 : υ >
s ≥ υ0}. A kernel function Hi ∈ C(D,R), (i = 1, 2, . . . , n) is said to belong to the set =, written
by H ∈ =, if, for i = 1, 2, one has:

(i) Hi(υ, s) = 0 for υ ≥ υ0 and Hi(υ, s) > 0 for (υ, s) ∈ D0;
(ii) Hi(υ, s) has a continuous and non-positive partial derivative ∂Hi/∂s on D0, and there exist

functions η, ϑ ∈ C1([υ0, ∞), (0, ∞)) and hi ∈ C(D0,R), such that

∂

∂s
H1(υ, s) +

η′(s)
η(s)

H1(υ, s) = h1(υ, s)Hβ/(β+1)
1 (υ, s) (9)

and
∂

∂s
H2(υ, s) +

ϑ′(s)
ϑ(s)

H2(υ, s) = h2(υ, s)
√

H2(υ, s). (10)

Notation 1. For convenience, we denote

ζ(s) :=
∫ ∞

υ0

1
a1/β(s)

ds,

π(s, υ) :=
hβ+1

1 (υ, s)Hβ
1 (υ, s)

(β + 1)β+1
2βη(s)a(s)

(θs2)
β

,

π̃(s, υ) :=
ββ+1H3(υ, s)

(β + 1)β+1
1

a1/β(s)ζ(s)

where θ ∈ (0, 1), and

v(υ) :=
∫ ∞

υ

(
k

a(ς)

∫ ∞

ς
q(s)ds

)1/β

dς.

We shall employ the following four lemmas:

Lemma 1 (See [18]). Suppose that w ∈ Cκ([υ0, ∞), (0, ∞)), w(κ) is of a fixed sign on [υ0, ∞),
w(κ) is not identically zero, and there exists a υ1 ≥ υ0, such that

w(κ−1)(υ)w(κ)(υ) ≤ 0

for all υ ≥ υ1. If we have limυ→∞ w(υ) 6= 0, then there exists υθ ≥ υ1, such that

w(υ) ≥ θ

(κ − 1)!
υκ−1

∣∣∣w(κ−1)(υ)
∣∣∣

for every θ ∈ (0, 1) and υ ≥ υθ .

Lemma 2 (See [5]). If w(i)(υ) > 0, i = 0, 1, . . . , κ, and w(κ+1)(υ) < 0, then

w(υ)

υκ/κ!
≥ w′(υ)

υκ−1/(κ − 1)!
.
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Lemma 3 (See [4]). Let β be a ratio of two odd numbers and V > 0 and U be two constants. Then,

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
.

Lemma 4 (See [25]). If w is a positive solution of (1), then there exist three possible situations for
υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large:

(S1) w(υ) > 0, w′(υ) > 0, w′′(υ) > 0, w′′′(υ) > 0, w(4)(υ) < 0,

(S2) w(υ) > 0, w′(υ) > 0, w′′(υ) < 0, w′′′(υ) > 0, w(4)(υ) < 0,

(S3) w(υ) > 0, w′′(υ) > 0, w′′′(υ) < 0.

We are now in a position to formulate and prove our original results.

3. Main Results

In our first theorem, we employ an integral averaging technique to establish a Philos-
type oscillation criterion.

Theorem 1 (Philos-type oscillation criterion for (1)). Under assumptions A1–A5, if there exist
positive functions η, ϑ ∈ C1([υ0, ∞),R), such that

lim sup
υ→∞

1
H1(υ, υ1)

∫ υ

υ1

(H1(υ, s)kη(s)q(s)− π(s, υ))ds = ∞ (11)

for all θ ∈ (0, 1), if

lim sup
υ→∞

1
H2(υ, υ1)

∫ υ

υ1

(
H2(υ, s)ϑ(s)v(s)−

ϑ(s)h2
2(υ, s)
4

)
ds = ∞ (12)

and, for every θ1 ∈ (0, 1),

lim sup
υ→∞

1
H3(υ, υ1)

∫ υ

υ1

(
H3(υ, s)kq(s)

(
θ1δ2(s)

2

)β

ζβ(δ(s))− π̃(s, υ)

)
ds = ∞,

then every solution of (1) is either oscillatory or satisfies lim
υ→∞

w(υ) = 0.

Proof. Assume the contrary, that w is a positive solution of (1). Then, we can suppose that
w(υ) and w(δ(υ)) are positive for all υ ≥ υ1 and are sufficiently large. From Lemma 4, we
have three possible situations (S1), (S2) or (S3). Assume that (S1) holds. Using Lemma 1,
we find that

w′(υ) ≥ θ

2
υ2w′′′(υ) (13)

for every θ ∈ (0, 1) and for all large υ. Define

ϕ(υ) := η(υ)

(
a(υ)(w′′′(υ))β

wβ(υ)

)
. (14)

We see that ϕ(υ) > 0 for υ ≥ υ1, where η ∈ C1([υ0, ∞), (0, ∞)) and

ϕ′(υ) = η′(υ)
a(υ)(w′′′(υ))β

wβ(υ)
+ η(υ)

(
a(w′′′)β

)′
(υ)

wβ(υ)
− βη(υ)

wβ−1(υ)w′(υ)a(υ)(w′′′(υ))β

w2β(υ)
.
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Using (13) and (14), we obtain that

ϕ′(υ) ≤ η′(υ)

η(υ)
ϕ(υ) + η(υ)

(
a(υ)(w′′′(υ))β

)′
wβ(υ)

− βη(υ)
θ

2!
υ2 a(υ)(w′′′(υ))β+1

wβ+1(υ)

≤ η′(υ)

η(υ)
ϕ(υ) + η(υ)

(
a(υ)(w′′′(υ))β

)′
wβ(υ)

− βθυ2

2(η(υ)a(υ))
1
β

ϕ(υ)
β+1

β .

(15)

From (1) and (15), it follows that

ϕ′(υ) ≤ η′(υ)

η(υ)
ϕ(υ)− kη(υ)

q(υ)wβ(δ(υ))

wβ(υ)
− βθυ2

2(η(υ)a(υ))
1
β

ϕ(υ)
β+1

β .

Note that w′(υ) > 0 and δ(υ) ≥ υ. Thus, we find that

ϕ′(υ) ≤ η′(υ)

η(υ)
ϕ(υ)− kη(υ)q(υ)− βθυ2

2(η(υ)a(υ))
1
β

ϕ(υ)
β+1

β . (16)

Multiplying (16) by H1(υ, s) and integrating the resulting inequality from υ1 to υ, we
find that∫ υ

υ1

H1(υ, s)kη(s)q(s)ds ≤ ϕ(υ1)H1(υ, υ1) +
∫ υ

υ1

(
∂

∂s
H1(υ, s) +

η′(s)
η(s)

H1(υ, s)
)

ϕ(s)ds

−
∫ υ

υ1

βθs2

2!(η(s)a(s))
1
β

H1(υ, s)ϕ
β+1

β (s)ds.

From (9), we obtain∫ υ

υ1

H1(υ, s)kη(s)q(s)ds ≤ ϕ(υ1)H1(υ, υ1) +
∫ υ

υ1

h1(υ, s)Hβ/(β+1)
1 (υ, s)ϕ(s)ds

−
∫ υ

υ1

βθs2

2(η(s)a(s))
1
β

H1(υ, s)ϕ
β+1

β (s)ds. (17)

Lemma 3 with V = βθs2/
(

2(η(s)a(s))
1
β

)
H1(υ, s), U = h1(υ, s)Hβ/(β+1)

1 (υ, s), and

x = ϕ(s), tell us that

h1(υ, s)Hβ/(β+1)
1 (υ, s)ϕ(s)− βθs2

2(η(s)a(s))
1
β

H1(υ, s)ϕ
β+1

β (s) ≤
hβ+1

1 (υ, s)Hβ
1 (υ, s)

(β + 1)β+1
2βη(s)a(s)

(θs2)
β

,

which, with (17), gives

1
H1(υ, υ1)

∫ υ

υ1

(H1(υ, s)kη(s)q(s)− π(s, υ))ds ≤ ϕ(υ1),

contradicting (11). Now, let us assume that (S2) holds. Define

ψ(υ) := ϑ(υ)
w′(υ)
w(υ)

.

We see that ψ(υ) > 0 for υ ≥ υ1, where ϑ ∈ C1([υ0, ∞), (0, ∞)). Differentiating ψ(υ),
we find

ψ′(υ) =
ϑ′(υ)

ϑ(υ)
ψ(υ) + ϑ(υ)

w′′(υ)
w(υ)

− 1
ϑ(υ)

ψ(υ)2. (18)
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Integrating (1) from υ to m and using the fact that w′(υ) > 0, we find that

a(m)
(
w′′′(m)

)β − a(υ)
(
w′′′(υ)

)β
= −

∫ m

υ
q(s)g(w(δ(s)))ds.

By virtue of w′(υ) > 0 and δ(υ) ≥ υ, we obtain

a(m)
(
w′′′(m)

)β − a(υ)
(
w′′′(υ)

)β ≤ −kwβ(υ)
∫ u

υ
q(s)ds.

Letting m→ ∞ , we see that

a(υ)
(
w′′′(υ)

)β ≥ kwβ(υ)
∫ ∞

υ
q(s)ds

and so

w′′′(υ) ≥ w(υ)

(
k

a(υ)

∫ ∞

υ
q(s)ds

)1/β

.

Integrating again from υ to ∞, we obtain

w′′(υ) + w(υ)
∫ ∞

υ

(
k

a(ς)

∫ ∞

ς
q(s)ds

)1/β

dς ≤ 0. (19)

From (18) and (19), we obtain that

ψ′(υ) ≤ ϑ′(υ)

ϑ(υ)
ψ(υ)− ϑ(υ)v(s)− 1

ϑ(υ)
ψ(υ)2. (20)

Multiplying (20) by H2(υ, s) and integrating the resulting inequality from υ1 to υ, it
follows that∫ υ

υ1

H2(υ, s)ϑ(s)v(s)ds ≤ ψ(υ1)H2(υ, υ1) +
∫ υ

υ1

(
∂

∂s
H2(υ, s) +

ϑ′(s)
ϑ(s)

H2(υ, s)
)

ψ(s)ds

−
∫ υ

υ1

1
ϑ(s)

H2(υ, s)ψ2(s)ds.

Thus, from (10), we obtain

∫ υ

υ1

H2(υ, s)ϑ(s)v(s)ds ≤ ψ(υ1)H2(υ, υ1) +
∫ υ

υ1

h2(υ, s)
√

H2(υ, s)ψ(s)ds

−
∫ υ

υ1

1
ϑ(s)

H2(υ, s)ψ2(s)ds ≤ ψ(υ1)H2(υ, υ1) +
∫ υ

υ1

ϑ(s)h2
2(υ, s)
4

ds

and so
1

H2(υ, υ1)

∫ υ

υ1

(
H2(υ, s)ϑ(s)v(s)−

ϑ(s)h2
2(υ, s)
4

)
ds ≤ ψ(υ1),

which contradicts (12). Finally, assume that (S3) holds and lim
υ→∞

w(υ) 6= 0. Recalling that

a(υ)(w′′′(υ))β is non-increasing, we obtain that

a1/β(s)w′′′(s) ≤ a1/β(υ)w′′′(υ), s ≥ υ ≥ υ1.

Dividing the latter inequality by a1/β(s) and integrating the resulting inequality from
υ to u, we find

w′′(u) ≤ w′′(υ) + a1/β(υ)w′′′(υ)
∫ u

υ
a−1/β(s)ds.
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Letting u→ ∞, we obtain

0 ≤ w′′(υ) + a1/β(υ)w′′′(υ)ζ(υ).

Thus,
−a1/β(υ)w′′′(υ)ζ(υ)

w′′(υ)
≤ 1. (21)

Furthermore, due to (21), we obtain that(
w′′(υ)
ζ(υ)

)′
≥ 0. (22)

Now define

φ(υ) :=
a(υ)(w′′′(υ))β

(w′′(υ))β
. (23)

We see that φ(υ) < 0 for υ ≥ υ1 and

φ′(υ) =

(
a(υ)(w′′′(υ))β

)′
(w′′(υ))β

− βa(υ)(w′′′(υ))β+1

(w′′(υ))β+1 .

It follows from (1) and (21) that

φ′(υ) =
−kq(υ)wβ(δ(υ))

(w′′(υ))β
− βφβ/β+1(υ)

a1/β(υ)
.

From Lemma 1, we find

w(υ) ≥ θ1

2
υ2w′′(υ). (24)

Thus, we have

φ′(υ) =
−kq(υ)wβ(δ(υ))

(w′′(δ(υ)))β

(w′′(δ(υ)))β

(w′′(υ))β
− βφβ/β+1(υ)

a1/β(υ)
.

From (24), we obtain

φ′(υ) ≤ −kq(υ)
(

θ1δ2(υ)

2

)β(
ζ(δ(υ))

ζ(υ)

)β

− βφβ/β+1(υ)

a1/β(υ)
. (25)

Using (21) and (23), we see, due to (26), that

− φ(υ)ζβ(υ) ≤ 1. (26)

Multiplying (26) by ζβ(υ) and integrating the resulting inequality from υ1 to υ,
we obtain

ζβ(υ)φ(υ)− ζβ(υ1)φ(υ1) + β
∫ υ

υ1

a−1/β(s)ζβ−1(s)φ(s)ds

≤ −
∫ υ

υ1

kq(s)
(

θ1δ2(s)
2

)β

ζβ(δ(s))ds− β
∫ υ

υ1

φβ/β+1(s)
a1/β(s)

ζβ(s)ds. (27)

Multiplying (27) by H3(υ, s), we find that
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∫ υ

υ1

H3(υ, s)kq(s)
(

θ1δ2(s)
2

)β

ζβ(δ(s))ds ≤ ζβ(υ1)φ(υ1)H3(υ, υ1)− ζβ(υ)φ(υ)H3(υ, υ1)

+
∫ υ

υ1

βa−1/β(s)ζβ−1(s)φ(s)H3(υ, s)ds

−
∫ υ

υ1

βφβ/β+1(s)
a1/β(s)

ζβ(s)H3(υ, s)ds.

Using Lemma 3 with V = ζβ(s)H3(υ, s)/a1/β(s), U = a−1/β(s)ζβ−1(s)H3(υ, s), and
x = φ(s), we obtain

βa−1/β(s)ζβ−1(s)φ(s)H3(υ, s)− βφβ/β+1(s)
a1/β(s)

ζβ(s)H3(υ, s) ≤ ββ+1H3(υ, s)

(β + 1)β+1
1

a1/β(s)ζ(s)

and easily find, due to (26), that

1
H3(υ, υ1)

∫ υ

υ1

(
H3(υ, s)kq(s)

(
θ1δ2(s)

2

)β

ζβ(δ(s))− π̃(s, υ)

)
ds ≤ ζβ(υ1)φ(υ1) + 1,

which contradicts (11). This completes the proof.

With the help of our Theorem 1, we now prove a generalized Hille–Nehari-type
oscillation criterion (cf. Corollary 1).

Theorem 2 (Generalized Hille–Nehari-type oscillation criterion for (1)). Under assumptions
A1–A5, if the differential equations2a

1
β (υ)

(θυ2)
β

(
w′(υ)

)β

′ + kq(υ)wβ(υ) = 0, (28)

for every θ ∈ (0, 1),

w′′(υ) + w(υ)
∫ ∞

υ

(
1

a(ς)

∫ ∞

ς
q(s)ds

)1/β

dς = 0 (29)

and (
a(υ)

(
w′(υ)

)β
)′

+ wβ(υ)kq(υ)
(

ζ(δ(υ))

ζ(υ)

)β( θ1

2
δ2(υ)

)β

= 0, (30)

for every θ1 ∈ (0, 1), are oscillatory, then every solution of (1) is either oscillatory or satisfies
lim

υ→∞
w(υ) = 0.

Proof. Assume the contrary, that w is a positive solution of (1). Then, we can suppose
that w(υ) and w(δ(υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 4, we
have three possible cases (S1), (S2), or (S3). Let situation (S1) hold. From Theorem 1, we
obtain that (16) holds. If we set η(υ) = k = 1 in (16), then we find

ϕ′(υ) +
βθυ2

2a
1
β (υ)

ϕ(υ)
β+1

β + q(υ) ≤ 0.

Thus, we can see that Equation (28) is nonoscillatory, which is a contradiction. Let
case (S2) holds. From Theorem 1, we obtain that (20) holds. If we now set ϑ(υ) = k = 1
in (20), then we obtain

ψ′(υ) + ψ2(υ) + v(s)ς ≤ 0.
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Hence, we see that Equation (29) is nonoscillatory, which is a contradiction. Let case
(S3) hold and lim

υ→∞
w(υ) 6= 0. From Theorem 1, we obtain that (25) holds. Thus, we see that

φ′(υ) +
βφβ/β+1(υ)

a1/β(υ)
+ kq(υ)

(
θ1δ2(υ)

2

)β(
ζ(δ(υ))

ζ(υ)

)β

≤ 0

and it follows that Equation (30) is nonoscillatory, which is a contradiction. Theorem 2
is proved.

Let us now restrict ourselves to the case when β = 1. Note that, if∫ ∞

υ0

1
a(υ)

dυ < ∞

and

lim inf
υ→∞

(∫ υ

υ0

1
a(s)

ds
)−1 ∫ ∞

υ

(∫ υ

υ0

1
a(s)

ds
)2

q(s)ds >
1
4

,

then Equation (8) with β = 1 is oscillatory [14]. For β = 1 our Theorem 2 gives a Hille–
Nehari-type oscillation criterion.

Corollary 1 (Hille–Nehari-type oscillation criterion). Let β = 1. Under assumptions A1–A5
with k = 1, if ∫ ∞

υ0

θυ2

2a(υ)
dυ < ∞

and

lim inf
υ→∞

(∫ υ

υ0

θs2

2a(s)
ds
)−1 ∫ ∞

υ

(∫ υ

υ0

θs2

2a(s)
ds
)2

q(s)ds >
1
4

(31)

for every constant θ ∈ (0, 1),

lim inf
υ→∞

υ
∫ υ

υ0

∫ υ

v

(
1

a(ς)

∫ υ

ς
q(s)ds

)
dςdv >

1
4

, (32)

and

lim inf
υ→∞

(∫ υ

υ0

1
a(s)

ds
)−1 ∫ ∞

υ

(∫ υ

υ0

1
a(s)

ds
)2 θ1ζ(δ(s))δ2(s)q(s)

2ζ(s)
ds >

1
4

(33)

for every constant θ1 ∈ (0, 1), then every solution of (1) is either oscillatory or satisfies lim
υ→∞

w(υ) = 0.

The next section shows that our results are new even in the very special situation
covered by Corollary 1.

4. Illustrative Examples

We give two examples for which all results of [17,18] cannot be applied, since δ(υ) =
υ + 1 > υ, while our Hille–Nehari-type oscillation criterion holds.

Example 1. Let us consider the following equation:

(
eυw′′′(υ)

)′
+

1
16

eυ+ 1
2 w(υ + 1) = 0, υ ≥ 1, (34)

where α > 0 is a constant. Note that β = 1, a(υ) = eυ, q(υ) = eυ+ 1
2 /16 and δ(υ) = υ + 1. It is

easy to see that all conditions of our Corollary 1 are satisfied. Hence, all solutions of (34) are either
oscillatory or satisfy lim

υ→∞
w(υ) = 0.
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Following is a second example, where previous results in the literature cannot be
applied, while our Corollary 1 is conclusive.

Example 2. Consider the following equation:(
υ4w′′′(υ)

)′
+ αw(υ + 1) = 0, υ ≥ 1, (35)

where α > 0 is a constant. Note that β = 1, a(υ) = υ4, q(υ) = α, and δ(υ) = υ + 1. If we set
k = 1, then condition (31) becomes

lim inf
υ→∞

(∫ υ

υ0

θs2

2a(s)
ds
)−1 ∫ ∞

υ

(∫ υ

υ0

θs2

2a(s)
ds
)2

q(s)ds

= lim inf
υ→∞

(2υ)
∫ ∞

υ

α

4s2 ds = lim inf
υ→∞

(2υ)
( α

4υ

)
=

α

2
>

1
4

,

condition (32) becomes

lim inf
υ→∞

υ
∫ υ

υ0

∫ υ

v

(
1

a(ς)

∫ υ

ς
q(s)ds

)
dςdv = lim inf

υ→∞
υ
( α

2υ

)
=

α

2
>

1
4

,

and (33) is satisfied. Therefore, from Corollary 1, any solution of Equation (35) is either oscillatory,
if α > 0.5, or satisfies lim

υ→∞
w(υ) = 0.

5. Conclusions and Future Work

In this work, we obtained new Philos-type and Hille–Nehari-type oscillation criteria
for equations of form (1). Our results are easy to generalize for the following equations:

(
a(υ)

(
w′′′(υ)

)β
)′

+
j

∑
i=1

qi(υ)wα(δi(υ)) = 0, j ≥ 1, (36)

where υ ≥ υ0, δi(υ) ≤ υ, α ≤ β, and α and β are ratios of odd positive integers. However, it
is not easy to find analogous results for Equation (36) in the case α > β. We leave this as an
interesting open question.
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