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Abstract: With the rapid growth in the penetration rate of mobile devices and the surge in demand
for mobile data services, small cells and mobile backhaul networks have become the critical focus
of next-generation mobile network development. Backhaul requirements within current wireless
networks are almost asymmetrical, with most traffic flowing from the core to the handset, but 5G
networks will require more symmetrical backhaul capability. The deployment of small cells and
the placement of transceivers for cellular phones are crucial in trading off the symmetric backhaul
capability and cost-effectiveness. The deployment of small cells is related to the placement of
transceivers for cellular phones. Chang, Kloks, and Lee transformed the placement problem into
the maximum-clique transversal problem on graphs. From the theoretical point of view, our paper
considers the parameterized complexity of variations of the maximum-clique transversal problem for
split graphs, doubly chordal graphs, planar graphs, and graphs of bounded treewidth.

Keywords: parameterized complexity; asymmetric networks; signed maximum-clique transversal
function; minus maximum-clique transversal function; symmetrical backhaul capability

1. Introduction

Fixed/mobile network convergence enhances the competitive advantage of telecom-
munications operators/companies. With the rapid growth in the penetration rate of mobile
devices and the surge in demand for mobile data services, telecommunications operators
are stepping up their pace to actively improve their wireless network infrastructure to cope
with the advent of the mobile broadband networks era. They have to extend broadband
networks to any place through the seamless connection between fixed and mobile networks,
which helps accelerate the deployment time, reduces maintenance costs, and further en-
hances market competitiveness. Under the circumstances, small cells and mobile backhaul
networks have become the critical focus of next-generation mobile network development.

The so-called mobile backhaul network transmits the mobile signal traffic between
the base station and the mobile terminal device to the wireless node, and then aggregates
and transmits it to the telecommunications core network. Backhaul requirements within
current wireless networks are almost asymmetrical, with most traffic flowing from the
core to the handset, but 5G networks will require more symmetrical backhaul capability.
Furthermore, we must backhaul massive broadband traffic from small cells to the control
center when small cells grow very large. Hence, the deployment of small cells and the
placement of transceivers for cellular phones are crucial in trading off the symmetric
backhaul capability and cost-effectiveness. The deployment of small cells is related to the
placement of transceivers for cellular phones. Chang, Kloks, and Lee transformed the
placement problem into the maximum-clique transversal problem on graphs [1]. One of
their main objectives is as follows. Modern cellular telecommunications systems divide
the entire service area into a set of small regions, which are called cells. Cells are generally
thought of as hexagonal grids. One standard method used to place transceivers for cellular
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telephones is to place them at the corner points of each hexagonal grid. Since the need for
communication proliferates, one transceiver cannot handle all communication requirements
in its reach. The most widely used solution is to place another transceiver close to it. The
system needs to assign a different frequency to this new transceiver to avoid interference.
However, the number of available frequencies is limited. The rapidly increasing demand
for communications makes the number of transceivers, placed close to each other, grow
very large. It is desirable to replace them with a more efficient big transceiver tower. These
towers are pretty large and rise hundreds of feet into the air. They contain very costly
hardware to switch between different frequencies between transceivers in some optimal
way to allocate and handle them with great care. Nevertheless, since transceiver towers
are very costly, their number is expected to be as small as possible. The placement of
transceivers for cellular telephones motivated Chang et al. to introduce the maximum-
clique transversal problem on graphs [1]. Later, several studies have proposed and worked
on variations of the maximum-clique transversal set problem from the theoretical point
of view [2–9]. Most of them either develop algorithms to solve the problems and evaluate
algorithms’ performance by asymptotic analysis (based on big O notation) to see if the
algorithms can solve the problems in polynomial time or prove the NP-completeness of the
problems for some graph classes. Their approaches are concerned with two classical
computational complexity classes: P and NP.

This paper considers the parameterized complexity of the clique transversal problem
(CTP) and variations of the maximum-clique transversal problem (MCTP) on graphs, such
as the k-fold maximum-clique transversal problem (k-FMCTP), the {k}-maximum-clique
transversal problem ({k}-MCTP), the signed maximum-clique trasversal problem (SMCTP),
and the minus maximum-clique transversal problem (MMCTP).

Parameterized complexity is a new branch of computational complexity theory. Con-
sider an algorithm for a parameterized problem (I, k), where I is the problem instance
and k the parameter. The algorithm is uniformly polynomial if it runs in O( f (k)|I|c) time,
where |I| is the size of I, f (k) an arbitrary function, and c a constant independent of k. A pa-
rameterized problem is fixed-parameter tractable (FPT) if it admits a uniformly polynomial
algorithm [10]. An fpt-reduction is a reduction transforming an instance of some parame-
terized problem into an equivalent instance of another parameterized problem and can be
computed in uniformly polynomial time. A parameterized problem is para-NP-complete if
it is NP-complete for fixed values of the parameter(s).

The W-hierarchy is another way to classify parameterized problems into computation
complexity classes [10]. A parameterized problem is in the class W[i] if it is fpt-reducible
to the circuit-satisfiability problem that has weft at most i [10]. If a problem Q ∈W[i] and
every problem in W[i] can be fpt-reduced to Q, problem Q is W[i]-complete. Note that
FPT = W[0] and W[i] ⊆W[j] for all i < j.

There are very few algorithmic results for the parameterized complexity of the CTP and
variations of the MCTP. Table 1 lists previous results and our fixed parameter intractable
results for the considered problems, and uses “W[2]-c” and “para-NP-c” to represent “W[2]-
complete” and “para-NP-complete”, respectively. Table 2 lists previous results and our
fixed parameter tractable results for the considered problems and uses n and ω to represent
the number of vertices and the maximum size of a clique in a graph. Both tables use starred
entries to denote our results. In Table 2, c is a moderate constant. As far as we know,
c = 46

√
34 by the paper [11]. The rest of the paper is organized as follows.

1. Section 2 reviews the definitions of the considered problems and the most well-known
notions from graph theory.

2. We prove in Section 3 that the clique transversal problem parameterized by the solution
size is W[2]-complete for split graphs, and the following problems are para-NP-complete:
the minus maximum-clique transversal problem parameterized by the solution weight
for planar graphs, and the signed maximum-clique transversal problem parameter-
ized by the solution weight for doubly chordal graph and planar graphs with clique
number three.
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3. We show the FPT results for graphs of bounded treewidth in Section 4.

Section 4.1 shows that the k-fold maximum-clique transversal problem can be solved in
O(2tw(G) · tw(G) · |V(G)|) time for any graph G with bounded treewidth tw(G).
Section 4.2 reduces the {k}-maximum-clique transversal problem to the k-fold maximum-
clique transversal problem and solves the problem in O(2k(tw(G)+1) · k2 · (tw(G) + 1) ·
|V(G)|) time. We develop a dynamic programming algorithm to improve the complexity
of the problem to O((k + 1)tw(G)+1 · tw(G) · |V(G)|) time.
Section 4.3 deals with the signed and minus maximum-clique transversal problems.
We reduce the signed and minus maximum-clique transversal problems to the k-fold
maximum-clique transversal problem and solve these problems in O(2tw(G) · tw(G) ·
|V(G)|) and O(4tw(G) · tw(G) · |V(G)|) time, respectively. The complexity of the minus
maximum-clique transversal problem for graphs of bounded treewidth can be improved
to O(3tw(G) · tw(G) · |V(G)|) by our dynamic programming technique used for the {k}-
maximum-clique transversal problem.

4. Finally, we conclude the paper and present some future works in Section 5.

Table 1. Previous results and our fixed parameter intractable results.

Parameter: The Solution Size or Weight

Graphs CTP k-FMCTP {k}-MCTP SMCTP MMCTP

Chordal W[2]-c ∗ W[2]-c [1] W[2]-c [1] para-NP-c ∗ −(k = 1) (k = 1)

Doubly Chordal − − − para-NP-c ∗ −

Split W[2]-c ∗ − − − −

Planar − − − para-NP-c ∗ para-NP-c ∗

Table 2. Previous results and our fixed parameter tractable results.

Problem Bounded Treewdith Graph Planar Graph
Parameter: Treewidth t Parameter: The Solution Size `

CTP O(4t · t · n) [6] *−
MCTP O(2t · t · n)∗ min{O(ω` · `2 + n), O(c

√
` · `2 + n)} [1]

k-FMCTP O(2t · t · n)∗ −
{k}-MCTP O((k + 1)t+1 · t · n)∗ −
SMCTP O(2t · t · n)∗ −
MMCTP O(3t · t · n)∗ −

2. Definitions and Notations

All graphs in this paper are undirected graphs without self-loops and multiple edges.
Let G = (V, E) be a graph with |V| = n and |E| = m. The vertex set of G is also referred
to as V(G) and its edge set as E(G). We use uv to denote the edge between the vertices
u and v in a graph. If any two distinct vertices in a graph are adjacent, then the graph
is a complete graph. We use G[W] to denote the subgraph of G induced by a subset W
of V. The neighborhood of a vertex v in a graph G, denoted by NG(v), is the set of all
v’s neighbors in G. The closed neighborhood of a vertex v in G, denoted by NG[v], is
NG(v) ∪ {v}. The degree of a vertex v in G, denoted by degG(v), is the number of v’s
neighbors in G. A dominating set of G is a set D ⊆ V such that |D ∩ NG[v]| ≥ 1 for every
v ∈ V. The domination number of G, denoted by γ(G), is the minimum cardinality of a
dominating set of G. The domination problem is to find a minimum dominating set of G.

A set S ⊆ V is a clique if xy ∈ E for any two distinct vertices x, y ∈ S. If |S| = k, then
S is a k-clique. If a clique C is not a proper subset of any other clique, then C is a maximal
clique. A set D ⊆ V is a clique transversal set of G if |C ∩ D| ≥ 1 for every maximal clique C
of G. The clique transversal number of G, denoted by τC(G), is the minimum cardinality of



Symmetry 2022, 14, 676 4 of 18

a clique transversal set of G. The clique transversal problem is to find a clique transversal
set of G of minimum cardinality.

A maximal clique S is a maximum clique if |S| ≥ |S′| for any maximal clique S′ of G.
The clique number of G, denoted by ω(G), is the cardinality of a maximum clique of G.
We use Q(G) to denote the set of all maximum cliques of G. A set D ⊆ V is a maximum-
clique transversal set of G if |D ∩ Q| ≥ 1 for every Q ∈ Q(G). The maximum-clique
transversal number of G, denoted by τM(G), is the minimum cardinality of a maximum-
clique transversal set of G. The maximum-clique transversal problem is to find a maximum-
clique transversal set of G of minimum cardinality.

Assume that Y ⊂ R and f : S → Y is a function. Let f (S′) = ∑s∈S′ f (s) for S′ ⊆ S,
and let f (S) be the weight of f . A maximum-clique transversal set of G can be expressed
as a function f whose domain is V(G) and range is {0, 1}, and f (Q) ≥ 1 for Q ∈ Q(G).
The function f is a maximum-clique transversal function of G and τM(G) is the mini-
mum weight of a maximum-clique transversal function of G. The k-fold maximum-clique,
{k}-maximum-clique, minus maximum-clique, and signed maximum-clique transversal
problems are variations of the maximum-clique transversal set problem. They are defined
as follows.

Definition 1 ([3]). Suppose that k ∈ Z+ is fixed and G is a graph. A set D ⊆ V(G) is a k-fold
maximum-clique transversal set of G if |Q ∩ D| ≥ k for Q ∈ Q(G). The number τ×k(G) =
min{|S| | S is a k-fold maximum-clique transversal set of G} is the k-fold maximum-clique
transversal number of G. The k-fold maximum-clique transversal problem is to find a k-fold
maximum-clique transversal set of G of minimum cardinality.

Definition 2 ([3]). Suppose that k ∈ Z+ is fixed and G is a graph. A function f is a {k}-maximum-
clique transversal function of G if the domain and range of f are V(G) and {0, 1, 2, . . . , k}, re-
spectively, and f (Q) ≥ k for Q ∈ Q(G). The number τ{k}(G) = min{ f (V(G)) | f is a
{k}-maximum-clique transversal function of G} is the {k}-maximum-clique transversal number
of G. The {k}-maximum-clique transversal problem is to find a {k}-maximum-clique transversal
function of G of minimum weight.

Definition 3 ([3]). Suppose that G is a graph. A function f is a signed maximum-clique transversal
function of G if the domain and range of f are V(G) and {−1, 1}, respectively, and f (Q) ≥ 1 for
Q ∈ Q(G). If the domain and range of f are V(G) and {−1, 0, 1}, respectively, and f (Q) ≥ 1
for Q ∈ Q(G), then f is a minus maximum-clique transversal function of G. The number
τs

M(G) = min{ f (V(G)) | f is a signed maximum-clique transversal function of G} is the signed
maximum-clique transversal number of G. The minus maximum-clique transversal number of
G is τ−M(G) = min{ f (V(G)) | f is a minus maximum-clique transversal function of G}. The
minus (signed) maximum-clique transversal problem is to find a minus (signed) maximum-clique
transversal function of G of minimum weight.

3. The Fixed-Parameter Intractable Results

A chord of a cycle is an edge joining two non-consecutive vertices of the cycle. A graph
is chordal if it does not contain a chordless cycle of length greater than three [12]. A graph
is split if its vertices can be partitioned into two sets C and S, such that C is a clique and S
is an independent set.

Theorem 1. The clique transversal problem parameterized by the solution size is W[2]-complete
for split graphs.

Proof. Assume that G = (V, E) is a graph with V = {vi | 1 ≤ i ≤ n}. Let X = {xi |
1 ≤ i ≤ n} and let H be a split graph obtained from G by V(H) = V ∪ X and E(H) =
{vivj | 1 ≤ i < j ≤ n} ∪ {xiv|v ∈ NG[vi], 1 ≤ i ≤ n}. In H, the maximal cliques are
the sets V and NG[vi] ∪ {xi} for 1 ≤ i ≤ n. A minimum dominating set of G is a clique
transversal set of H. Clearly, there exists a minimum clique transversal set D of H such that
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D ∩ X = ∅. Then, a minimum clique transversal set of H is a dominating set of G. We have
γ(G) = τC(H) following the discussion above. Hence, τC(H) ≤ k if, and only if, γ(G) ≤ k.
The domination problem for a graph G can be reduced to the clique transversal problem
for a split graph H. Since the domination problem parameterized by the solution size k is
W[2]-complete [10], the clique transversal problem parameterized by the solution size is
W[2]-complete for split graphs.

Remark 1. The maximum-clique transversal is a particular case of the k-fold maximum-clique
transversal problem with k = 1. The k-fold maximum-clique, {k}-maximum-clique, minus
maximum-clique, and signed maximum-clique transversal problems are linear-time solvable for split
graphs [3].

Consider the following two decision problems.

1. The nonpositive minus maximum-clique transversal problem.
Instance: A graph G
Question: Does G have a minus maximum-clique transversal function of weight at
most 0?

2. The nonpositive signed maximum-clique transversal problem.
Instance: A graph G
Question: Does G have a signed maximum-clique transversal function of weight at
most 0?

Definition 4. Let k be a nonnegative integer and let F be a set of k vertices. The fk-transformation
of a graph G = (V, E), denoted by fk(G), is the graph H = (V ∪ F, E).

Theorem 2. Let G and H be graph classes such that H = { fk(G) | G ∈ G}. The following
statements are true.

(1) If the signed (minus) maximum-clique transversal problem is NP-complete for G, the nonposi-
tive signed (minus) maximum-clique transversal problem is NP-complete forH.

(2) If the nonpositve signed (minus) maximum-clique transversal problem is NP-complete for
graph classH, the signed (minus) maximum-clique transversal problem parameterized by the
solution weight is para-NP-complete forH.

Proof. (1) Let k be a nonnegative integer and let F be a set of k vertices. Let G = (V, E) ∈ G
and H = (V ∪ F, E) ∈ H. In H, every vertex x ∈ F is isolated and not in any maximum
clique of H. Then, f (x) = −1 for any signed (minus) maximum-clique transversal function
f of H of “minimum weight”. Clearly, τs

M(H) = τs
M(G)− |F| = τs

M(G)− k. It follows that
τs

M(H) ≤ 0 if and only if τs
M(G) ≤ k. Similarly, τ−M(H) = τ−M(G)− |F| = τ−M(G)− k. Then,

τ−M(H) ≤ 0 if and only if τ−M(G) ≤ k. The statement (1) is therefore true.
(2) The nonpositive signed (minus) maximum-clique transversal problem forH is a partic-
ular case of the signed (minus) maximum-clique transversal problem parameterized by
solution weight forH. Hence, the statement (2) is true.

Corollary 1. Let G1 be the graph class of planar graphs and let G2 be the graph class of doubly
chordal graphs and planar graphs with the clique number 3. The following statements are true.

(1) The nonpositive minus maximum-clique transversal problem is NP-complete for G1.
(2) The nonpositive signed maximum-clique transversal problem is NP-complete for G2.

Proof. (1) Let G ∈ G1 and H = fk(G). Clearly, H ∈ G1. It is known that the minus
maximum-clique transversal problem is NP-complete for G1 [3]. By Theorem 2, the nonpos-
itive minus maximum-clique transversal problem is NP-complete for G1.
(2) Let G ∈ G2 and H = fk(G). Clearly, H ∈ G2. It is known that the signed maximum-
clique transversal problem is NP-complete for G2 [3]. By Theorem 2, the nonpositive signed
maximum-clique transversal problem is NP-complete for G2.
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Corollary 2. Let G1 be the graph class of planar graphs and let G2 be the graph class of doubly
chordal graphs and planar graphs with the clique number 3. The following statements are true.

(1) The minus maximum-clique transversal problem parameterized by the solution weight is
para-NP-complete for G1.

(2) The signed maximum-clique transversal problem parameterized by the solution weight is
para-NP-complete for G2.

Proof. The corollary holds by Theorem 2 and Corollary 1.

4. Fixed-Parameter Tractable Results for Graphs of Bounded Treewidth

Assume that G is a graph with V(G) = {v1, v2, . . . , vn}. Let Ni[v] denote the closed
neighborhood of v in G[{vi, vi+1, . . . , vn}]. The ordering (v1, v2, . . . , vn) of V is a perfect
elimination ordering of G if for all i ∈ {1, . . . , n}, Ni[vi] is a clique. A graph G is chordal if
and only if G has a perfect elimination ordering [13].

A chordal graph H with n vertices is a t-tree if and only if either H is a complete graph
of t vertices or H has more than t vertices and there exists a perfect elimination ordering
(v1, v2, . . . , vn) such that Ni[vi] is a (t + 1)-clique for 1 ≤ i ≤ n− t. For convenience, we
define a t-tree to have at least t + 1 vertices. With this definition, a complete graph of t
vertices is a (t− 1)-tree.

A triangulation of a graph G is a graph H with the same set of vertices such that H
is chordal and G is a subgraph of H. We say that G is triangulated into H. Subgraphs of
t-trees are called partial t-trees. The treewidth of a graph G is the minimum value t such
that G is a partial t-tree. It is clear that a graph of treewidth t is also a partial `-tree for
every ` ≥ t. The class of partial t-trees is exactly the class of graphs of treewidth at most t.
Therefore, ω(G) = t + 1 for any graph G of treewidth t. The treewidth of a graph can be
defined by the concept of tree decomposition of a graph.

Definition 5. A tree decomposition of a graph G is a pair D = (T, B), where T is a tree with
V(T) = {1, 2, . . . , `} and B = {Bi | i ∈ V(T)} is a collection of subsets of vertices of G such that
the following three conditions are satisfied.

1. Every vertex x ∈ V(G) appears in at least one set Bi ∈ B.
2. For every edge e ∈ E(G), there is at least one set Bi ∈ B containing both vertices of e.
3. For each vertex x ∈ V(G), the set {i | x ∈ Bi} forms a subtree of T.

For simplicity, we use T to represent the vertex set of T if T is understood as a tree
and we call its vertices nodes. We also refer to all elements of B as bags. Lemma 1 shows an
alternative way to formulate the third condition of Definition 5.

Lemma 1. Let D = (T, {Bi | i ∈ T}) be a tree decomposition of a graph G. If a vertex x appears
in two bags Bi, Bj ∈ B, then it appears in every bag Bk for the node k on the tree path from node i to
node j in T.

Definition 6. The width of a tree decomposition D = (T, {Bi | i ∈ T}) of a graph G is
maxi∈T{|Bi|} − 1. The treewidth of a graph G, denoted by tw(G), is the minimum width over all
tree decompositions of G.

Theorem 3 (See also Lemma 2.1.13 in [14]). If G is a chordal graph with at least t + 1 vertices
and ω(G) ≤ t + 1, then G can be triangulated into a t-tree.

Theorem 4 ([15]). Any partial t-tree with at least t + 1 vertices can be triangulated into a t-tree
with the same number of vertices.
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Definition 7. A tree decomposition is rooted if the tree is equipped with a root node. A nice
tree decomposition D = (T, {Bi | i ∈ T}) is a rooted tree decomposition satisfying the following
conditions.

1. Every node of T has at most two child nodes.
2. If a node i has two child nodes—j and k—then Bi = Bj = Bk. The node is called a join node.
3. If a node i has only one child node j, then either (1) Bj ⊂ Bi and |Bi| = |Bj| + 1, or (2)

Bi ⊂ Bj and |Bi| = |Bj| − 1. In the case (1), the node is called an introduce node, whereas in
the case (2), the node is called a forget node.

Remark 2. Figure 1 shows a nice tree decomposition D = (T, {Bi | i ∈ T}) of a graph G, where
T has 17 nodes. Node 3 is a join node since it has two child nodes, 4 and 9, and B3 = B4 =
B9 = {b, c, d}. Node 6 is an introduce node since it has only one child node 7, and B7 ⊂ B6 and
|B6| = |B7|+ 1. Node 10 is a forget node since it has only one child node 11, and B10 ⊂ B11 and
|B10| = |B11| − 1.

Figure 1. (a) A graph G. (b) A nice tree decomposition of G.

Lemma 2 ([14]). For any constant t, given a tree decomposition of a graph G of width t and
O(|V(G)|) nodes, one can find a nice tree decomposition of G of width t and with at most 4 · |V(G)|
nodes in O(|V(G)|) time.

This paper assumes that a nice tree decomposition of a graph G of width tw(G) and
with O(|V(G)|) nodes is part of the input by Lemma 2.
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4.1. The k-Fold Maximum-Clique Transversal Problem

This section studies the k-fold maximum-clique transversal problem on graphs of
bounded treewidth.

Definition 8. Let D = (T, {Bi | i ∈ T}) be a rooted tree decomposition of G. For each node i ∈ T,
let Ti be the subtree of T rooted at i and and let Gi be the induced subgraph G[∪s∈Ti Bs]. Clearly,
T = Tr and G = Gr.

Theorem 5 ([16]). Assume that D = (T, B) is a tree decomposition of a graph G. For every clique
C of G, there exists a bag Bp ∈ B such that C ⊆ Bp.

Lemma 3. Let D = (T, B) be a tree decomposition of a graph G of width tw(G). For each
maximum clique Q of G, there exists a bag Bp ∈ B such that Q = Bp.

Proof. Following Theorem 5, there exists a bag Bp ∈ B such that Q ⊆ Bp for a maximum
clique Q of G. Then, |Q| ≤ |Bp|. Clearly, |Bp| ≤ tw(G) + 1 ≤ ω(G) = |Q|. Hence,
Q = Bp.

Definition 9. Let G be a graph of bounded treewidth with a nice tree decomposition (T, {Bi | i ∈
T}) rooted at node r. Let k be a fixed positive integer such that k ≤ ω(G). For each node i ∈ T, let
Fk,i(X) be a minimum subset S of V(Gi) satisfying all the following conditions.

(1) S ∩ Bi = X.
(2) |S ∩Q| ≥ k for every maximum clique Q ∈ Q(Gi) ∩Q(G).

If Fk,i(X) does not exist, let Fk,i(X) = Φ with |Φ| = ∞.

Remark 3. By Definition 9, T = Tr, G = Gr, and τ×k(G) = min{|Fk,r(X)| | X ⊆ Br}.

Lemma 4. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width
tw(G). Suppose that node i is a leaf node of T. Then, all sets Fk,i(X) of Gi can be computed in
O(2tw(G) · tw(G)) time.

Proof. Since node i is a leaf node, Gi = G[Bi] and Q(Gi) ∩ Q(G) = Q(G[Bi]). By the
definition of tree decomposition, |Bi| ≤ tw(G) + 1 and ω(G) = tw(G) + 1. If Bi is not a
maximum clique of G, then Fk,i(X) = Φ for X ⊆ Bi. It takes O(tw(G)2) time to check if
Bi is a maximum clique. We therefore assume that Bi is a maximum clique of G. Note
that Fk,i(X) = X ⊆ Bi in this case. There are O(2tw(G)) subsets of Bi. For each Fk,i(X) of
Bi, we verify if Fk,i(X) has at least k vertices in Bi. The verification process can be done in
O(tw(G)) time. Following the discussion above, all sets Fk,i(X) of Gi can be computed in
O(2tw(G) · tw(G)) time.

Lemma 5. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width tw(G).
Suppose that node i is a forget node of T. Let j be the child node of i and let x ∈ Bj be the vertex
such that Bi = Bj \ {x}. Let X ⊆ Bj such that s1 = |Fk,j(X)| and s2 = |Fk,j(X ∪ {x})|. Then,

Fk,i(X) =

{
Fk,j(X) if s1 ≤ s2,
Fk,j(X ∪ {x}) if s2 < s1.

Proof. Since Bi = Bj \ {x}, Gi = Gj. Then, X = Fk,i(X) ∩ Bi = Fk,i(X) ∩ (Bj \ {x}).
Therefore, either Fk,i(X) ∩ Bj = X or Fk,i(X) ∩ Bj = X ∪ {x}. We have |Fk,i(X)| =
min{|Fk,j(X)|, |Fk,j(X ∪ {x}|}. Hence, the lemma holds.
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Lemma 6. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width tw(G).
Suppose that node i is an introduce node of T. Let j be the child node of i and let x be the vertex such
that Bi = Bj ∪ {x}. For X ⊆ Bi,

Fk,i(X) =


Fk,j(X) if Bi 6∈ Q(G) and x 6∈ X,
Fk,j(X \ {x}) ∪ {x} if Bi 6∈ Q(G) and x ∈ X,
Fk,j(X) if Bi ∈ Q(G), x 6∈ X, and |X| ≥ k,
Fk,j(X \ {x}) ∪ {x} if Bi ∈ Q(G), x ∈ X, and |X| ≥ k,
Φ otherwise.

Proof. Let d be a proper descendant of the subtree Tj. Since x 6∈ Bj, x 6∈ V(Gj), by the third
condition of Definition 5. Then, x 6∈ Bd. We consider the following two cases.

Case 1: Bi 6∈ Q(G). Assume that there exists a set S ⊆ Bd such that S ∪ {x} is a
maximum clique of G. By Lemmma 3, there exists a bag Bp such that S ∪ {x} = Bp. Since
Bp contains the vertex x, the corresponding node p is not in Tj. Then, every tree path
from node d to node p contains the nodes i and j. By Lemma 1, S = Bj = Bi \ {x}. Then,
Bi = S ∪ {x} is a maximum clique of G, but it contradicts that Bi 6∈ Q(G). Therefore, there
is no set S ⊆ Bd such that S ∪ {x} ∈ Q(G). We have Q(Gi) ∩ Q(G) = (Q(Gj) ∩ Q(G)).
Then, Fk,i(X) = Fk,j(X) if x 6∈ X. Otherwise, Fk,i(X) = Fk,j(X \ {x}) ∪ {x}.

Case 2: Bi ∈ Q(G). Assume that there exists a set S ⊆ Bd such that S ∪ {x} ∈
Q(G). By the arguments similar to those for proving Case 1, Bi = S ∪ {x}. Therefore,
Q(Gi) ∩ Q(G) = (Q(Gj) ∩ Q(G)) ∪ {Bi}. Conversely, we assume that there is no set
S ⊆ Bd such that S ∪ {x} ∈ Q(G). Clearly, Q(Gi) ∩Q(G) = (Q(Gj) ∩Q(G)) ∪ {Bi}. Since
X ⊆ Bi, |X| ≥ k. If |X| < k, then Fk,i(X) does not exist. Therefore, Fk,i(X) = Fk,j(X) if
x 6∈ X and |X| ≥ k. If x ∈ X and |X| ≥ k, then Fk,i(X) = Fk,j(X \ {x}) ∪ {x}.

Remark 4. The method used for proving Lemma 6 is similar to the one adopted in estimating
Roman domination [17].

Lemma 7. Let G be a graph of bounded treewidth with a nice tree decomposition (T, {Bi | i ∈ T}).
Suppose that node i is a join node of T. Let j and ` be the child nodes of i. For X ⊆ Bi,

Fk,i(X) = Fk,j(X) ∪ Fk,`(X).

Proof. Since node i is a join node, Bi = Bj = B`. Then, Q(Gi) = Q(Gj) ∪ Q(G`). Let
S = Fk,j(X) ∪ Fk,`(X). Clearly, S ∩ Bi = X and |S ∩Q| ≥ k for Q ∈ Q(Gi) ∩Q(G). We have
|Fk,i(X)| ≤ |S| = |Fk,j(X) ∪ Fk,`(X)|.

Let S1 = Fk,i(X) ∩ V(Gj) and S2 = Fk,i ∩ V(G`). Since X is a subset of S1 ∪ S2,
|Fk,i(X)| = |(S1 ∪ X) ∪ (S2 ∪ X)|. Let Sj = S1 ∪ X and S` = S2 ∪ X. Clearly, Sj ∩ Bj = X
and S` ∩ B` = X. Futhermore, |Sj ∩ Q| ≥ k for Q ∈ Q(Gj) ∩ Q(G) and |S` ∩ Q| ≥
k for Q ∈ Q(G`) ∩ Q(G). Therefore, |Fk,j(X)| ≤ |Sj| and |Fk,`(X)| ≤ |S`|. We have
|Fk,j(X) ∪ Fk,`(X)| ≤ |Sj ∪ S`| = |Fk,i(X)|. Following the discussion above, |Fk,i(X)| =
|Fk,j(X) ∪ Fk,`(X)| and the lemma holds.

Theorem 6. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width
tw(G) and O(|V(G)|) nodes. The k-fold maximum-clique transversal problem can be solved in
O(2tw(G) · tw(G) · |V(G)|) time.

Proof. Assume that T is rooted at r. Then, T = Tr, G = Gr, and τ×k(G) = min{|Fk,r(X)| |
X ⊆ Br}. Our algorithm works from the leaves in T up to the root, computing the solutions
Fi(X) for each visited node i on the way through the dynamic programming technique.
For all X ∈ Bi, the solutions can be computed in O(2tw(G) · tw(G)) time by Lemmas 4–7.
Since T contains O(|V(G)|) nodes, the k-fold maximum-clique transversal problem can be
solved in O(2tw(G) · tw(G) · |V(G)|) time.
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4.2. The {k}-Maximum-Clique Transversal Problem

This section studies the {k}-maximum-clique transversal problem on graphs of bounded
treewidth and solves the problem with reduction and the dynamic programming technique.

4.2.1. Problem Solving by Reduction

The section shows a reduction from the {k}-maximum-clique transversal problem
to the k-fold maximum-clique transversal problem by the concept of the strong product of
two graphs.

Definition 10. The strong product G � H is defined on the vertex set V(G)×V(H), where two
vertices (u1, v1) and (u2, v2) are adjacent if and only if u1 = u2 and v1v2 ∈ E(H), or v1 = v2
and u1u2 ∈ E(G), or v1v2 ∈ E(H) and u1u2 ∈ E(G).

Figure 2 shows the strong product of a graph G and a complete graph H. The graph
G � H, as shown in Figure 2c, consists of twelve vertices. From left to right, the vertices in
row i are (ui, v1), (ui, v2), and (ui, v3) for i ∈ {1, 2, 3, 4}.

Figure 2. (a) A graph G with two maximal cliques. (b) A complete graph H. (c) The strong product
of G and H.

Lemma 8. Let G and H be graphs. Then, Q(G � H) = {V(G[Q1] � H[Q2]) | Q1 ∈
Q(G), Q2 ∈ Q(H)}.

Proof. Let Q1 ∈ Q(G) and Q2 ∈ Q(H). The vertex set, V(G[Q1]� H[Q2]), is a clique of
G � H. We have ω(G) ·ω(H) ≤ ω(G � H).

Let V(G) = {u1, . . . , un} and V(H) = {v1, . . . , vk}. Let Q ∈ Q(G � H). For any two
distinct vertices (up, vx), (uq, vy) ∈ Q, (1) up = uq and vxvy ∈ E(H), or (2) upuq ∈ E(G)
and vx = vy, or (3) upuq ∈ E(G) and vxvy ∈ E(H). Therefore, upuq ∈ E(G) if up 6= uq
for any two distinct vertices (up, vx), (uq, vy) ∈ Q. Similarly, vxvy ∈ E(H) if vx 6= vy
for any two distinct vertices (up, vx), (uq, vy) ∈ Q, Then, C1 = {ui | (ui, vj) ∈ Q, 1 ≤
i ≤ n, 1 ≤ j ≤ k} is a clique of G and C2 = {vj | (ui, vj) ∈ Q, 1 ≤ i ≤ n, 1 ≤ j ≤ k}
is a clique of H. Let Q1 ∈ Q(G) and Q2 ∈ Q(H) such that C1 ⊆ Q1 and C2 ⊆ Q2.
Hence, Q ⊆ V(G[C1]� H[C2]) ⊆ V(G[Q1]� H[Q2]). We have ω(G � H) ≤ ω(G) ·ω(H).
Therefore, ω(G � H) = ω(G) ·ω(H) by the discussion above, and the lemma holds.

Theorem 7. Let k be a fixed positive integer and let H be a complete graph with k vertices. For
any graph G and k ≥ 1, τ{k}(G) = τ×k(G � H).

Proof. Let V(G) = {u1, . . . , un} and V(H) = {v1, . . . , vk}. By Lemma 8, Q(G � H) =
{V(G[Q]� H) | Q ∈ Q(G)}. Clearly, |Q(G � H)| = |Q(G)| and ω(G � H) = k ·ω(G).
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Let f a {k}-maximum-clique transversal function of G of minimum weight. Let D be
a subset of V(G � H) defined by

D =
n⋃

i=1

{(ui, vj) | j = 1, 2, . . . , f (ui)}.

Since f is a {k}-maximum-clique transversal function, 0 ≤ f (ui) ≤ k for 1 ≤ i ≤ n.
Indeed, the set D exists, and |D| = ∑n

i=1 f (ui) = τ{k}(G). Let C = {ubi
| 1 ≤ i ≤ ω(G)} be

a maximum clique of G such that V(G[C]� H) = {(ubi
, vj) | 1 ≤ i ≤ ω(G), 1 ≤ j ≤ k} is a

maximum clique of G � H. Since f (C) = ∑
ω(G)
i=1 f (ubi

) ≥ k,

|D ∩V(G[C]� H)| = |{(ubi
, vj) | 1 ≤ i ≤ ω(G), 1 ≤ j ≤ f (ubi

)}| =
ω(G)

∑
i=1

f (ubi
) ≥ k.

The set D is a k-fold maximum-clique transversal set of G� H. We have τ×k(G� H) ≤
τ{k}(G).

In the following, we show that τ{k}(G) ≤ τ×k(G � H). Let S be a k-fold maximum-
clique transversal set of G � H such that |S| = τ×k(G � H).

Let f : V(G) → {0, 1, . . . , k} be a function of G such that f (ui) = |S ∩ {(ui, vj) | j =
1, . . . , k}| for 1 ≤ i ≤ n. Clearly, f (V(G)) = τ×k(G � H) and 0 ≤ f (ui) ≤ k for 1 ≤ i ≤ n.
Recall that Q(G � H) = {V(G[C]� H) | C ∈ Q(G)}. Let C = {ubi

| 1 ≤ i ≤ ω(G)} be a
maximum clique of G such that Q = V(G[C]� H) is a maximum clique of G � H. Then,
Q = {(ubi

, vj) | 1 ≤ i ≤ ω(G), 1 ≤ j ≤ k}.
Since S is a k-fold maximum-clique transversal set of G � H, |S ∩Q| = |S ∩ {(ubi

, vj) |
1 ≤ i ≤ ω(G), 1 ≤ j ≤ k}| ≥ k. Therefore,

f (C) =
ω(G)

∑
i=1

f (ubi
) =

ω(G)

∑
i=1
|S ∩ {(ubi

, vj) | 1 ≤ j ≤ k}| = |S ∩Q| ≥ k.

The function f is a {k}-maximum-clique transversal function of G. We have τ{k}(G) ≤
f (V(G)) = τ×k(G � H). Hence, τ{k}(G) = τ×k(G � H) by the discussion above.

Lemma 9. Let k be a fixed positive integer and let H be a complete graph with k vertices. Given a
nice tree decomposition D = (T, B = {Bi | i ∈ T}) of a graph G of width tw(G) and O(|V(G)|)
nodes, one can find a nice tree decomposition of G � H of width k(tw(G) + 1)− 1 and with at
most 4 · |V(G � H)| nodes in O(|V(G � H)|) time.

Proof. Let V(G) = {ui | 1 ≤ i ≤ n} and V(H) = {vi | 1 ≤ i ≤ k}. Let B′i = {(u`, vj)|u` ∈
Bi, 1 ≤ j ≤ k} and D′ = (T, B′ = {B′i | i ∈ T}). We show as follows that D′ is a tree
decomposition of G � H.

(1) Every vertex u` ∈ V(G) appears in at least one bag of B. Suppose that u` ∈ Bi. The
vertices (u`, v1), (u`, v2), . . . , (u`, vk) all appear in B′i ∈ B′. Therefore, every vertex
(u`, vj) ∈ V(G � H) appears in at least one bag B′i ∈ B′.

(2) For any two adjacent vertices (ux, vp), (uy, vq) ∈ V(G� H), ux = uy and vpvq ∈ E(H),
or uxuy ∈ E(G) and vp = vq, or uxuy ∈ E(G) and vpvq ∈ E(H). Consider ux and
uy. Either ux = uy or uxuy ∈ E(G). If ux = uy, then ux and uy are in the same
bags. Suppose that ux 6= uy and uxuy ∈ E(G). Since there is at least one bag of B
containing both vertices of e for every edge e ∈ E(G), at least one bag contains the
vertices ux and uy. Let ux, uy ∈ Bi. The vertices (ux, v1), (ux, v2), . . . , (ux, vk) and
(uy, v1), (uy, v2), . . . , (uy, vk) are in B′i ∈ B′. The bag B′i contains (ux, vp) and (uy, vq).
Therefore, there is at least one bag of B′ containing every pair of adjacent vertices
of G � H.

(3) Suppose that (u`, vj) is a vertex of G � H and it appears in two bags B′i , B′p ∈ B′. Let
j be a node on the tree path from node i to node p in T. Since (u`, vj) appears in B′i
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and B′p, we know that u` ∈ Bi and u` ∈ Bp. Then, u` ∈ Bj by Lemma 1. The vertices
(u`, v1), (u`, v2), . . . , (u`, vk) are in B′j. Clearly, (u`, vj) ∈ B′j. Hence, a vertex (u`, vj)

appears in every bag B′j for the node j on the tree path from node i to node p in T if it
appears in B′i , B′j ∈ B′.

Following the discussion above, D′ = (T, B′) is a tree decomposition of G � H of
width k(tw(G) + 1)− 1 and with O(|V(G)|) nodes. By Lemma 2, we can obtain a nice tree
decomposition of G � H of width k(tw(G) + 1)− 1 with at most 4 · |V(G � H)| nodes in
O(|V(G � H)) time.

Theorem 8. Let G be a graph of bounded treewidth. Given a nice tree decomposition D = (T, B =
{Bi | i ∈ T}) of G of width tw(G) and O(|V(G)|) nodes, the {k}-maximum-clique transversal
problem can be solved in O(2k(tw(G)+1) · k2 · (tw(G) + 1)|V(G)|) time.

Proof. Let H be a complete graph of k vertices. By Lemma 9, we can obtain a nice tree
decomposition of G � H of width k(tw(G) + 1) − 1 with at most 4 · |V(G � H) nodes
in O(|V(G � H)|) time. Since k is fixed and G is a graph of bounded treewidth, G � H
is a graph of bounded treewidth k(tw(G) + 1) − 1. Note that |V(G � H)| = k · |V(G)|.
By Theorems 6 and 7, the {k}-maximum-clique transversal problem can be solved in
O(2k(tw(G)+1) · k2 · (tw(G) + 1)|V(G)|) time.

4.2.2. Problem Solving by Dynamic Programming

This section studies the {k}-maximum-clique transversal problem by the dynamic
programming technique for graphs of bounded treewidth.

Definition 11. Assume that G is a graph and k is a positive integer. Let X = (X0, X1, . . . , Xk)
be a (k + 1)-tuple of subsets of V(G). The weight of the (k + 1)-tuple X, denoted by w(X), is
∑k

i=0(|Xi| · i). Let ` ∈ {0, 1, . . . , k} and let V′ ⊆ V(G). Let Y = (Y0, Y1, . . . , Yk) be another
(k + 1)-tuple of subsets of V(G). We give the following notations and definitions.

1. X⊕Y denotes the (k + 1)-tuple (X0 ∪Y0, . . . , Xk ∪Yk).
2. X⊕V′ denotes the (k + 1)-tuple (X0 ∪V′, . . . , Xk ∪V′).
3. X ⊕` V′ denotes the (k + 1)-tuple (S0, . . . , Sk) such that S` = X` ∪ V′ and Si = Xi for

i ∈ {0, 1, . . . , k} \ {`}.
4. X⊗V′ denotes the (k + 1)-tuple (X0 ∩V′, . . . , Xk ∩V′).
5. X 	` V′ denotes the (k + 1)-tuple (S0, . . . , Sk) such that S` = X` \ V′ and Si = Xi for

i ∈ {0, 1, . . . , k} \ {`}.
6. A (k + 1)-tuple S = (S0, . . . , Sk) is a (k + 1)-partition of V(G) satisfying the following

conditions.

(a)
⋃k

i=0 Si = V(G).
(b) Si ∩ Sj = ∅ for 0 ≤ i < j ≤ k.

7. A (k + 1)-assignment of V(G) is a (k + 1)-partition F = (F0, . . . , Fk) of V(G) such that
w(F⊗Q) ≥ k for every Q ∈ Q(G).

Remark 5. For a fixed positive integer k, a {k}-maximum clique transversal function of a graph G
can be regarded as a (k + 1)-assignment of V(G), and vice versa. Then, τ{k}(G) = min{w(S) | S
is a (k + 1)-assignment of V(G)}.

Definition 12. Let k be a fixed positive integer and let G be a graph of bounded treewidth with a nice
tree decomposition (T, {Bi | i ∈ T}) rooted at node r. For each node i ∈ T, let X = (X0, . . . , Xk)
be a (k + 1)-partition of Bi and let Fi(X) be a (k + 1)-assignment S = (S0, . . . , Sk) of V(Gi) of
minimum weight satisfying all the following conditions.

(1) S⊗ Bi = X.
(2) w(S⊗Q) ≥ k for every Q ∈ Q(Gi) ∩Q(G).

If Fi(X) does not exist, let Fi(X) = Φ with w(Φ) = ∞.
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Remark 6. By Definition 12, T = Tr, G = Gr, and τ{k}(G) = min{w(Fr(X)) | X is a (k + 1)-
partition of Br}.

Lemma 10. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width tw(G).
Suppose that node i is a leaf node of T. For all (k + 1)-partitions X of Bi, Fi(X) of Gi can be
computed in O((k + 1)tw(G)+1 · tw(G)) time.

Proof. Since node i is a leaf node, Gi = G[Bi] and Q(Gi) ∩ Q(G) = Q(G[Bi]). By the
definition of tree decomposition, |Bi| ≤ tw(G) + 1 and ω(G) = tw(G) + 1. If Bi is not
a maximum clique of G, then Fi(X) = Φ for every (k + 1)-partition X of Bi. It takes
O(tw(G)2) time to check if Bi is a maximum clique. We therefore assume that Bi is a
maximum clique of G. The number of (k + 1)-assignments of Bi is (k + 1)tw(G)+1. For each
(k + 1)-assignment Fi(X) of Bi, we verify if w(Fi(X)) ≥ k. The verification process can be
done in O(tw(G)) time. Following the discussion above, all (k + 1)-assignments Fi(X) of
Gi can be computed in O((k + 1)tw(G)+1 · tw(G)) time.

Lemma 11. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width tw(G).
Suppose that node i is a forget node of T. Let j be the child node of i and let x ∈ Bj such that
Bi = Bj \ {x}. Let X be a (k + 1)-partition of Bi and Y = {(X⊕` {x}) | 0 ≤ ` ≤ k}. Let Z ∈ Y
such that w(Fj(Z)) = min{w(Fj(X′)) | X′ ∈ Y}. Then, Fi(X) = Fj(Z).

Proof. Since Bi = Bj \ {x}, Gi = Gj. The (k + 1)-assignment Fi(X) is also a (k + 1)-
assignment of V(Gj). Let X′ = Fi(X)⊗ Bj. Then, X′ is a (k + 1)-partition of Bj. There exists
exactly one integer ` ∈ {0, 1, . . . , k} such that X′ = (X⊗` {x}). Let Y = {(X⊕` {x}) | 0 ≤
` ≤ k}. Hence, Fi(X) = Fj(Z), where Z ∈ Y and w(Fj(Z)) = min{w(Fj(X′)) | X′ ∈ Y}.

Lemma 12. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width tw(G).
Suppose that node i is an introduce node of T. Let j be the child node of i and let x be the vertex such
that Bi = Bj ∪ {x}. Let ` ∈ {0, 1, . . . , k} and let X = (X0, . . . Xk) be a (k + 1)-partition of Bi
such that x ∈ X`. Then,

Fi(X) =

{
Fj(X	` {x})⊕` {x} if either Bi 6∈ Q(G), or Bi ∈ Q(G) and w(X) ≥ k,
Φ otherwise.

Proof. Let d be a proper descendant of the subtree Tj. Since x 6∈ Bj, x 6∈ V(Gj), by the third
condition of Definition 5. Then, x 6∈ Bd. We consider the following two cases.

Case 1: Bi 6∈ Q(G). By the arguments for the discussion of Case 1 in the proof of
Lemma 6, Q(Gi) ∩Q(G) = Q(Gj) ∩Q(G). For any (k + 1)-partition X′ of Bj, w(Fj(X′)⊗
Q)) ≥ k for every Q ∈ Q(Gi) ∩Q(G).

Let ` ∈ {0, 1, . . . , k} and let X be a (k + 1)-partition of Bi such that X = X′ ⊕` {x}.
Then, Fj(X′)⊕` {x} is a (k + 1)-assignment S of V(Gi) such that S⊗ Bi = X. Therefore,
w(Fi(X)) ≤ w(Fj(X′)⊕` {x}).

Conversely, let X = (X0, X1, . . . , Xk) be a (k + 1)-partition of Bi such that x ∈ X`.
Then, Fi(X)	` {x} is a (k + 1)-assignment S′ of V(Gj) such that S′ ⊗ Bj = X 	` {x}. Let
X′ = X	` {x}. Therefore, w(Fi(X)) ≥ w(Fj(X′)⊕` {x}).

Following the discussion above, we know that Fi(X) = Fj(X	` {x})⊕` {x}.
Case 2: Bi ∈ Q(G). By the arguments for the discussion of Case 2 in the proof of

Lemma 6, Q(Gi) ∩Q(G) = (Q(Gj) ∩Q(G)) ∪ {Bi}. Since Bi ∈ Q(G) and Fi(X)⊗ Bi = X,
we have w(X) ≥ k. If w(X) < k, then Fi(X) does not exist. Following the arguments
similar to those for proving Case 1, we know that w(Fi(X)) = w(Fj(X′)⊕` {x}). Therefore,
Fi(X) = Fj(X	` {x})⊕` {x}.
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Lemma 13. Let G be a graph of bounded treewidth with a nice tree decomposition (T, {Bi | i ∈ T}).
Suppose that node i is a join node of T. Let j and ` be the child nodes of i. For each (k + 1)-partition
X = (X0, X1, . . . , Xk) of Bi,

Fi(X) = Fj(X)⊕ F`(X).

Proof. Since node i is a join node, Bi = Bj = B`. Then, Q(Gi) = Q(Gj) ∪ Q(G`). Let
S = Fj(X)⊕ F`(X). Clearly, S⊗ Bi = X and w(S⊗Q) ≥ k for Q ∈ Q(Gi)∩Q(G). We have
w(Fi(X)) ≤ w(S) = w(Fj(X)⊕ F`(X)).

Let S1 = Fi(X) ⊗ V(Gj) and S2 = Fi(X) ⊗ V(G`). Then, S1 and S2 are (k + 1)-
assignments of V(Gj) and V(Gj), respectively. Furthermore, S1 ⊗ Bj = S2 ⊗ B` = X.
Therefore, w(Fj(X)⊕ F`(X)) ≤ w(S1 ⊕ S2) = w(Fi(X)).

Following the discussion above, w(Fi(X)) = w(Fj(X)⊕ F`(X)) and the lemma holds.

Theorem 9. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width
tw(G) and O(|V(G)|) nodes. The {k}-maximum-clique transversal problem can be solved in
O((k + 1)tw(G)+1 · tw(G) · |V(G)|) time.

Proof. Assume that T is rooted at r. Then, T = Tr, G = Gr, and τ×k(G) = min{w(Fr(X)) |
X is a (k + 1)-partition of Br}. Our algorithm works from the leaves in T up to the root,
computing the solutions Fi(X) for each visited node i on the way through the dynamic
programming technique. For all (k + 1)-partitions X of Bi, the solutions can be computed
in O((k + 1)tw(G)+1 · tw(G)) time by Lemmas 10–13. Since T contains O(|V(G)|) nodes,
the {k}-maximum-clique transversal problem can be solved in O((k + 1)tw(G)+1 · tw(G) ·
|V(G)|) time.

4.3. The Signed and Minus Maximum-Clique Transversal Problems

The section deals with the signed and minus maximum-clique transversal problems
on graphs of bounded treewidth.

Theorem 10. Assume that G = (V, E) is a graph and ω(G) is fixed. Let k = bω(G)/2c+ 1.
Then, τs

M(G) = 2τ×k(G)− n.

Proof. The theorem holds by Theorem 7 in Lee’s article [3].

Theorem 11. Let D = (T, {Bi | i ∈ T}) be a nice tree decomposition of a graph G of width
tw(G) and O(|V(G)|) nodes. The signed maximum-clique transversal problem can be solved in
O(2tw(G) · tw(G) · |V(G)|) time.

Proof. It follows from Theorems 6 and 10.

We introduce the 2-clique graph extension and positive maximum-clique transversal
functions as follows.

Definition 13. The 2-clique graph extension H of a graph G is defined as follows.

1. V(H) = {v1, v2 | v ∈ V(G)}.
2. E(H) = {v1v2 | v ∈ V(G)} ∪ {u1v1, u1v2, u2v1, u2v2 | uv ∈ E(G)}.

Figure 3 shows an example of the 2-clique graph extension H of a graph G.
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Figure 3. (a) A graph G with two maximal cliques. (b) The 2-clique graph extension H of G.

Definition 14. Assume that G is a graph. A function f : V(G)→ {0, 1, 2} is a positive maximum-
clique transversal function of G if f (Q) ≥ ω(G) + 1 for Q ∈ Q(G). The positive maximum-clique
transversal number of G, denoted by τ+

M(G), is the minimum weight of a positive maximum-clique
transversal function of G. The positive maximum-clique transversal problem is to find a positive
maximum-clique transversal function of G of minimum weight.

Lemma 14. For any graph G, τ+
M(G) = τ−M(G) + |V(G)|.

Proof. Let f be a minus maximum-clique transversal function of G of minimum weight.
We define a function h of G by h(v) = f (v) + 1 for every v ∈ V(G). Since f (v) ∈ {−1, 0, 1},
h(v) ∈ {0, 1, 2} for v ∈ V(G). Let Q be a maximum clique of G. Then h(Q) = ∑v∈Q( f (v) +
1) = f (Q) + |Q| ≥ 1 + ω(G). The function h is a positive maximum-clique function of G.
We have τ+

M(G) ≤ τ−M(G) + |V(G)|.
Conversely, let h be a positive maximum-clique transversal function of G of minimum

weight. We define a function f of G by f (v) = h(v) − 1 for every v ∈ V(G). Since
h(v) ∈ {0, 1, 2}, f (v) ∈ {−1, 0, 1} for every v ∈ V(G). Let Q be a maximum clique of G.
Then f (Q) = ∑v∈Q(h(v)− 1) = h(Q)− |Q| ≥ 1. The function f is a minus maximum-
clique function of G. We have τ−M(G) ≤ τ+

M(G) − |V(G)|. Following what we have
discussed above, we know that τ+

M(G) = τ−M(G) + |V(G)|.

Lemma 15. Assume that G is a graph with fixed clique number ω(G). Let H be the 2-clique graph
extension of G and k = ω(G) + 1. Then, τ+

M(G) = τ×k(H).

Proof. Let Q(G) = {C1, . . . , C`} and let Qi = {v1, v2 | v ∈ Ci} for 1 ≤ i ≤ `. By the
construction of H, it can be easily verified that Q(H) = {Q1, . . . , Q`}.

Let f be a positive maximum-clique transversal function of G of minimum weight. We
define a subset D of V(H) as follows.

1. For any vertex v ∈ V(G) with f (v) = 2, D includes both of the vertices v1 and v2.
2. For any vertex v ∈ V(G) with f (v) = 1, D contains precisely one of the vertices v1

and v2.
3. For any vertex v ∈ V(G) with f (v) = 0, D comprises none of the vertices v1 and v2.

Let i ∈ {1, . . . , `}. Then,

|D ∩Qi| = ∑
v∈Ci

|D ∩ {v1, v2}| = ∑
v∈Ci

f (v) = f (Ci) ≥ ω(G) + 1 ≥ k.

The set D is a k-fold maximum-clique transversal set of H. Hence, τ×k(H) ≤ τ+
M(G).

Conversely, let S be a k-fold maximum-clique transversal set of H with τ×k(H) vertices.
We define a function h of G as follows.

1. For any two vertices v1, v2 ∈ V(H), h(v) = 2 if S includes both of them.
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2. For any two vertices v1, v2 ∈ V(H), h(v) = 1 if S contains precisely one of them.
3. For any two vertices v1, v2 ∈ V(H), h(v) = 0 if S comprises none of them.

Let i ∈ {1, . . . , `}. Then,

h(Ci) = ∑
v∈Ci

h(v) = ∑
v∈Ci

|S ∩ {v1, v2}| = |S ∩Qi| ≥ k ≥ ω(G) + 1.

The function h is a positive maximum-clique transversal function of G. Hence,
τ+

M(G) ≤ τ×k(H). Following the discussion above, we have τ+
M(G) = τ×k(H).

Theorem 12. Assume that G is a graph with fixed clique number ω(G). Let H be the 2-clique
graph extension of G and k = ω(G) + 1. Then, τ−M(G) = τ×k(H)− |V(G)|.

Proof. The theorem follows from Lemmas 14 and 15.

Lemma 16. Let G be a graph of bounded treewidth nd let H be a 2-clique graph extension of G.
Given a nice tree decomposition D = (T, B = {Bi | i ∈ T}) of G of width tw(G) and O(|V(G)|)
nodes, one can find a nice tree decomposition of H of width 2(tw(G) + 1) and with at most 4|V(H)|
nodes in O(|V(H)|) time.

Proof. Let B′i = {v1, v2|v ∈ Bi} for Bi ∈ B and D′ = (T, B′ = {B′i | i ∈ T}). We show as
follows that D′ is a tree decomposition of H.

(1) Every vertex v ∈ V(G) appears in at least one bag of B. Suppose that v ∈ Bi. Since
V(H) = {v1, v2 | v ∈ V(G)}, v1, v2 ∈ B′i . Therefore, every vertex of H appears in at
least one bag B′i ∈ B′.

(2) For each edge e = uv ∈ E(G), there is at least one bag of B containing the vertices u and
v. Suppose that u, v ∈ Bi. Since E(H) = {v1v2 | v ∈ V(G)} ∪ {u1v1, u1v2, u2v1, u2v2 |
uv ∈ E(G)}, u1, u2, v1, and v2, are in the bag B′i . Therefore, there is at least one bag of
B′ containing both x and y for all edges xy ∈ E(H).

(3) Let v ∈ V(G). Then, v1, v2 ∈ V(H). Clearly, v1, v2 ∈ B′i if and only if v ∈ Bi. By
Lemma 1, if v appears in two bag Bp, Bq ∈ B, then it appears in every bag Bj for the
node j on the tree path from node p to node q in T. Since V(H) = {v1, v2 | v ∈ V(G)},
v1 and v2 are both in B′p and B′q and they appear in every bag B′j for the node j on the
tree path from node p to node q in T.

Following the discussion above, D′ = (T, B′) is a tree decomposition of H of width
2(tw(G) + 1) and with O(|V(G)|) nodes. By Lemma 2, we can obtain a nice tree decompo-
sition of H of width 2(tw(G) + 1) with at most 4|V(H)| nodes in O(|V(H)) time.

Theorem 13. Let G be a graph of bounded treewidth. Given a nice tree decomposition D = (T, B =
{Bi | i ∈ T}) of G of width tw(G) and O(|V(G)|) nodes, the minus maximum-clique transversal
problem can be solved in O(4tw(G) · tw(G) · |V(G)|) time.

Proof. Let H be the 2-clique graph extension of G. By Lemma 16, we can obtain a nice tree
decomposition of H of width 2(tw(G) + 1)− 1 with at most 4|V(H)| nodes in O(|V(H)|)
time. Since G is a graph of bounded treewidth, H is a graph of bounded treewidth
2(tw(G) + 1) − 1. Note that |V(H)| = 2 · |V(G)|. By Theorems 6 and 7, the minus
maximum-clique transversal function problem can be solved in O(4tw(G) · tw(G) · |V(G)|)
time.

Remark 7. The complexity of the minus maximum-clique transversal problem for graphs of bounded
treewidth can be improved to O(3tw(G) · tw(G) · |V(G)|) by our dynamic programming technique
used for the {k}-maximum-clique transversal problem. We leave it to interested readers.
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5. Conclusions

In this paper, we have shown that the k-fold maximum-clique transversal problem can
be solved in O(2tw(G) · tw(G) · |V(G)|) time for any graph G with bounded treewidth tw(G).
The maximum-clique transversal problem is a particular case of the k-fold maximum-clique
transversal problem and the {k}-maximum-clique transversal problem with k = 1. There-
fore, the problem can be solved in the same running time. Lokshtanov et al. [18] obtained a
number of lower bounds on the running time of algorithm solving problems on graphs
of bounded treewidth under the strong exponential time hypothesis (SETH) of Impagli-
azzo and Paturi [19]. Based on SETH, we conjecture that the maximum-clique transversal
problem cannot be solved in (2− ε)tw(G)|V(G)|O(1) time for any ε > 0. Although SETH is
still somewhat controversial and not entirely accepted by the computational complexity
community, the lower bound still delivers valuable messages. If the lower bound can
be obtained under SETH, then the {k}-maximum-clique transversal problem cannot be
solved in in (k + 1− ε)tw(G)|V(G)|O(1) time for any ε > 0. Our algorithms on graphs of
bounded treewidth are probably optimal. Finally, we suggest the following open questions
for future work:

1. Tables 1 and 2 show that the respective parameterized complexities of the clique
transversal, k-fold maximum-clique transversal, and {k}-maximum-clique transversal
problems remain unknown for planar graphs. Can we find fixed-parameter tractable
algorithms to solve them for planar graphs if the considered problem is parameterized
by the solution size or weight? Or is it possible to find improved algorithms for planar
graphs of bounded treewidth?

2. In Table 2, all the considered problems parameterized by treewidth are fixed-parameter
tractable. Can we prove that all the considered problems remain fixed-parameter
tractable if given other parameters?

3. This paper considers only maximum cliques for simple graphs. In reality, dicliques
also appear in more general directed graphs [20]. It is interesting to consider the
problems for directed ones.
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