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Abstract: For a vertex v in a graph G, the open support of v under addition is the sum of degrees
of all its neighbors. The open support of G under addition is the sum of open supports of all its
vertices. The results for open support of graphs are deeply dependent on the structure property of the
graph considered, such as its symmetry. In this paper, we generalize the concept of open support to
hypergraphs. We give some examples and prove a general formula for open support of hypergraphs
by using the adjacency and incidence matrices method.
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1. Introduction

A hypergraph , H, is an ordered pair (V(H), E(H)), where V(H) is the vertex set of H
and E(H) is the edge set of H. Each edge in E(H) is a subset of V(H). A hypergraph is said
to be k-uniform (also called a k-graph for short) if each edge contains exactly k vertices of H.
Two vertices, vi, vj, are called adjacent if there exists some edge e ∈ E, such that vi ∈ e and
vj ∈ e. We say vi is a neighbor of vj if vi and vj are adjacent. The neighborhood of vi, denoted
by NH(vi), consists of all neighbors of vi. A vertex, v, is said to be incident with an edge e if
v ∈ e. The degree of a vertex vi, denoted by d(vi), is the number of edges that are incident
with v. In this paper, we consider k-uniform, finite, simple hypergraphs.

The study of open support of graphs has important applications in many fields, such
as chemical structure, urban planning, computer science, etc. The concept of open support
of a graph under addition was introduced by Balamurugan et al. [1], where they showed
the open support of paths, cycles, and some other graphs. Results for the open support of
graphs are deeply dependent on the structure property of the graph to be considered, such
as its symmetry. In [2], the authors obtained a general formula for the open support of a
graph. In addition, Balamurugan et al. [3,4] also defined the closed support of graphs under
addition. For more information concerning the open support of graphs under addition,
see [5–7].

The open support of a graph is closed related to the Graph Labeling Problems, which
usually focus on some particular types of graphs (like a wheel graph, middle graph, and
so on) and try to find some useful indices of them [8–12]. In addition, the concept of open
support can be extended to fuzzy/interval-valued fuzzy graphs too [13,14]. Note that a
graph may look at a k-uniform hypergraph with k = 2, but the open support’s result can
be applied to more areas if similar conclusions in general hypergraphs are studied. In this
paper, we give the open support of some hypergraphs and show a general formula for it. In
Section 2, we give some definitions and notations. Section 3 provides the open support of
some special hypergraphs. In Section 4, we give a definition of open support of an edge and
show a formula for the open support of hypergraphs by using the graph matrix method.

2. Definitions

In this section, we introduce the definition of an open support of a hypergraph. In
graphs such as a lily graph, twig graph, etc., open support is defined in [15–20]. Here, we
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give the concept of these graphs in the hypergraph. Furthermore, by studying the open
support of these special graph classes, we can draw generalized results about hypergraphs.

Definition 1. The open support of a vertex , v, under addition is defined by ∑u∈NH(v) d(u) and it
is denoted by supp(v).

Definition 2. The open support of a hypergraph, H, under addition is defined by ∑v∈V(H) supp(v)
and it is denoted by supp(H).

Definition 3. For two edges, ei, ej∈ E, the set T : ei
⋂

ej is called the joint of ei and ej. We say ei,
ej is disjoint if its joint is empty.

Definition 4. A path is a hypergraph Pm = e1T1e2T2 . . . em−1Tm−1em, where E = (e1, e2, . . . , em)
is the edge set of Pm and for i ∈ {1, 2, . . . , m− 1}, Ti = ei

⋂
ei+1 are the joints of Pm.

In order to find new hypergraphs, we define an adding edge operation, adding an edge
at some joint T means adding a vertex set disjoint with V, which, together with T, forms a
new edge. Now we can define some hypergraphs that are obtained by adding an edge at
some joint of a path.

Definition 5. The twig graph is obtained from a path Pm by adding two edges to the i-th joint for
each 1 ≤ i ≤ m− 1. It is denoted by TWm.

Definition 6. The lily graph is obtained from a path P2m by adding two K1,m (m ≥ 2) to the m-th
joint. It is denoted by Lm.

Definition 7. The hypergraph Pm−1(1, 2, . . . , m) is obtained from a path Pm−1, where l vertices
are fixed as joints on the starting and ending edges of the path, respectively, and an i edge is added
to the i-th for each 1 ≤ i ≤ m joint.

Let C be a k-uniform hypergraph, where C is a cycle of order n if there exists a cyclic
ordering (v1, v2, . . . , vn) of the vertex set such that each continuous pair vivi+1 is located in
some edge of C. It is denoted by Cn. Each edge of C is composed of k consecutive vertices.
The following definition is obtained by adding edges on a cycle.

Definition 8. The jellyfish graph is obtained from a 4-cycle, where in the 4-cycle, there are two
pairs of nonadjacent joints and we add an edge between the fist pair of joints, and then add m and n
edges on another pair of nonadjacent joints, respectively. It is denoted by Jm,n.

All hypergraphs considered in this paper are those with joints of size one.

3. Examples

In this section, we show open support results of hypergraphs, including paths, twig
graphs, jellyfish graphs, lily graphs, and pm−1(1, 2, . . . , m). We give an example behind
each conclusion to make it easier to understand.

Theorem 1. Let H = Pm be a path. Then, supp(H) = (k− 1)[m(k + 2)− 2].

Proof. Let the vertex set of H be V(H) = {ti; 1 ≤ i ≤ m− 1}⋃{vj
i ; i = 1 or i = m, 1 ≤ j ≤

k− 1}⋃{vj
i ; 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2}, the edge set of H be E(H) = {ei; 1 ≤ i ≤ m}, in

which ei means the i-th edge in the path; ti means the i-th joint in the path; and vj
i means

the j-th vertex (except the joint vertices) in the i-th edge. See Figure 1 for the case m = 5,
k = 3.
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Obviously, for 1 ≤ i ≤ m− 1, d(ti) = 2, for i = 1, m, 1 ≤ j ≤ k− 1, d(vj
i) = 1, and for

2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2, d(vj
i) = 1.

First, the open supports for the vertices in the joint are calculated. It is easy to see, supp(t1) =

∑u∈N(t1)
d(u) = 2k− 1, in the same way, we have supp(tm−1) = ∑u∈N(tm−1)

d(u) = 2k− 1,
and for 2 ≤ i ≤ m− 2,

supp(ti) = ∑
u∈N(ti)

d(u) = 2k.

Second, by classifying the remaining vertices in the path, we can get the following
results.

• For i = 1, m, 1 ≤ j ≤ k− 1, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k.

• For 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 1.

To sum it up, we conclude that

supp(H) =supp(t1) +
m−2

∑
i=2

supp(ti) + supp(tm−1) +
k−1

∑
j=1

supp(vj
1)

+
k−1

∑
j=1

supp(vj
m) +

m−1

∑
i=2

k−2

∑
j=1

supp(vj
i)

=(k− 1)[m(k + 2)− 2].

Figure 1. The 3-graph P5.

Example 1. By Theorem 1, we have supp(P5) = (3− 1)[5(3 + 2)− 2] = 46.

Now we are ready to calculate the open support of a twig graph, and the twig graph
is obtained by adding edges on to the path.

Theorem 2. Let H = TWm be a twig graph. Then, supp(H) = (k− 1)[3m(k + 4)− 2(k + 6)].

Proof. Let the vertex set of H be V(H) = {ti; 1 ≤ i ≤ m− 1}⋃{vj
1; 1 ≤ j ≤ k− 1}⋃{vj

i ; 2 ≤
i ≤ m− 1, 1 ≤ j ≤ k − 2}⋃{vj

i ; m ≤ i ≤ 3m− 2, 1 ≤ j ≤ k − 1}, and edge set of H be
E(H) = {ei; 1 ≤ i ≤ 3m − 2}, when we are regarding TWm as a path adding 2(m − 1)
edges, ei(1 ≤ i ≤ m) represents the i-th edge in the path; ei(m + 1 ≤ i ≤ 3m− 2) is the
edge adding to the path; ti(1 ≤ i ≤ m− 1) means the i-th joint in the path; and vj

i means
the j-th vertex (except the joint vertices) in the i-th edge. See Figure 2 for the case m = 4,
k = 4.

Clearly, for 1 ≤ i ≤ m − 1, d(ti) = 4, for 1 ≤ j ≤ k − 1, d(vj
1) = 1, for 2 ≤ i ≤

m− 1, 1 ≤ j ≤ k− 2, d(vj
i) = 1, and for m ≤ i ≤ 3m− 2, 1 ≤ j ≤ k− 1, d(vj

i) = 1.
First of all, the open support of vertices in the joint is calculated, it follows that,

supp(t1) = ∑u∈N(t1)
d(u) = 4k− 1, and for 2 ≤ i ≤ m− 2,

supp(ti) = ∑
u∈N(ti)

d(u) = 4k + 2,

and supp(tm−1) = ∑u∈N(tm−1)
d(u) = 4k− 1.

Then, we discuss the open support of the remaining vertices in the graph.
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• For 1 ≤ j ≤ k− 1, supp(vj
1) = ∑u∈N(vj

1)
d(u) = k + 2;

• For 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 5;

• For 1 ≤ j ≤ k− 1, supp(vj
m) = ∑u∈N(vj

m)
d(u) = k + 2;

• For m + 1 ≤ i ≤ 3m− 2, 1 ≤ j ≤ k− 1, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 2.

Therefore, we conclude that

supp(H) =supp(t1) +
m−2

∑
i=2

supp(ti) + supp(tm−1) +
k−1

∑
j=1

supp(vj
1)

+
m−1

∑
i=2

k−2

∑
j=1

supp(vj
i) +

k−1

∑
j=1

supp(vj
m) +

3m−2

∑
i=m+1

k−1

∑
j=1

supp(vj
i)

=(k− 1)[3m(k + 4)− 2(k + 6)].

Figure 2. The 4-graph TW4.

Example 2. By Theorem (2), we have supp(TW4) = (4− 1)[3× 4(4 + 4)− 2(4 + 6)] = 228.

Next, we continue to prove the next theorem, and the jellyfish graph in the next
theorem can be regarded as adding some edges to the 4-cycle.

Theorem 3. Let H = J(m, n) be a jellyfish graph. Then, supp(H) = (k− 1)[m2 + n2 + (m +
n)(k + 3) + 5k + 16].

Proof. Let the vertex set of H be V(H) = {ti; 1 ≤ i ≤ 4}⋃{vj
i ; 1 ≤ i ≤ m + n, 1 ≤

j ≤ k − 1}⋃{vj
i ; m + n + 1 ≤ i ≤ m + n + 5, 1 ≤ j ≤ k − 2}, and the edge set of H be

E(H) = {ei; 1 ≤ i ≤ m + n + 5}, when we are regarding J(m, n) as a 4-cycle adding
m + n + 1 edges, ei(m + n + 1 ≤ i ≤ m + n + 4) means the (i−m− n)-th edge in 4-cycle;
ti(1 ≤ i ≤ 4) represents the i-th joint in the cycle; ei(1 ≤ i ≤ m) is the edge adding to the
cycle associate with the 4-th joint; ei(m + 1 ≤ i ≤ m + n) is the edge adding to the cycle
associate with the 2-th joint; em+n+5 means associate with the 1-th joint and 3-th joint; and
vj

i means the j-th vertex (except the joint vertices) in the i-th edge. See Figure 3 for the case
m = 2, n = 3, k = 4.

Clearly, d(t1) = d(t3) = 3, d(t2) = n + 2, d(t4) = m + 2, for 1 ≤ i ≤ m + n, 1 ≤ j ≤
k− 1, d(vj

i) = 1, and for m + n + 1 ≤ i ≤ m + n + 5, 1 ≤ j ≤ k− 2, d(vj
i) = 1.

We start with the open supports for the vertices in the joint, where supp(t1) =

∑u∈N(t1)
d(u) = 3k+ n+m+ 1, supp(t2) = ∑u∈N(t2)

d(u) = (n+ 2)(k− 1)+ 4, supp(t3) =

∑u∈N(t3)
d(u) = 3k + n + m + 1, and supp(t4) = ∑u∈N(t4)

d(u) = (m + 2)(k− 1) + 4.
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Next, we discuss the remaining vertices in the graph and classify them according to
their neighbors.

• For 1 ≤ i ≤ m, 1 ≤ j ≤ k− 1, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + m;

• For m + 1 ≤ i ≤ m + n, 1 ≤ j ≤ k− 1, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + n;

• For m + n + 1 ≤ i ≤ m + n + 2, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + n + 2;

• For m + n + 3 ≤ i ≤ m + n + 4, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + m + 2;

• For 1 ≤ j ≤ k− 2, supp(vj
m+n+5) = ∑u∈N(vj

m+n+5)
d(u) = k + 3.

Therefore, we conclude that

supp(H) =
4

∑
i=1

supp(ti) +
m

∑
i=1

k−1

∑
j=1

supp(vj
i)

+
m+n

∑
i=m+1

k−1

∑
j=1

supp(vj
i) +

m+n+5

∑
i=m+n+1

k−2

∑
j=1

supp(vj
i)

=(k− 1)[m2 + n2 + (m + n)(k + 3) + 5k + 16].

Figure 3. The 4-graph J(2, 3).

Example 3. By Theorem 3, we have supp(J(2, 3)) = (4− 1)[22 + 32 + (2 + 3)(4 + 3) + 5×
4 + 16] = 252.

Recall that the lily graph is obtained by adding 2m edges to the P2m.

Theorem 4. Let H = Lm(m ≥ 2) be a lily graph. Then, supp(H) = 2(k− 1)[2m(k + 2) + (m +
1)(2m− 1)].

Proof. Let the vertex set of H be V(H) = {ti; 1 ≤ i ≤ 2m − 1}⋃{vj
1; 1 ≤ j ≤ k −

1}⋃{vj
i ; 2 ≤ i ≤ 2m − 1, 1 ≤ j ≤ k − 2}⋃{vj

2m; 1 ≤ j ≤ k − 1}⋃{vj
i ; 2m + 1 ≤ i ≤

4m, 1 ≤ j ≤ k − 1}, and the edge set of H be E(H) = {ei; 1 ≤ i ≤ 4m}, when we are
regarding lm as a P2m adding 2m edges, ei(1 ≤ i ≤ 2m) represents the i-th edge in the path;
ei(2m + 1 ≤ i ≤ 4m) is the edge adding to the path; ti(1 ≤ i ≤ 2m− 1) means the i-th joint
in the path; and vj

i means the j-th vertex (except the joint vertices) in the i-th edge. See
Figure 4 for the case m = 3, k = 3.

Clearly, the degree of each vertex in the graph is for 1 ≤ i ≤ m− 1, d(ti) = 2, and
d(tm) = 2m + 2, and for m + 1 ≤ i ≤ 2m− 1, d(ti) = 2, and for 1 ≤ j ≤ k− 1, d(vj

1) = 1,

for 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2, d(vj
i) = 1, for 2 ≤ i ≤ 2m− 1, 1 ≤ j ≤ k− 2, d(vj

i) = 1, for

1 ≤ j ≤ k− 1, d(vj
2m) = 1, and for 2m + 1 ≤ i ≤ 4m, 1 ≤ j ≤ k− 1, d(vj

i) = 1.
First, we calculate the open support of the joint vertices: supp(t1) = ∑u∈N(t1)

d(u) =
2k− 1, supp(tm−1) = ∑u∈N(tm−1)

d(u) = 2k+ 2m, supp(tm) = ∑u∈N(tm) d(u) = 2m(k− 1)+
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2k, supp(tm+1) = ∑u∈N(tm+1)
d(u) = 2k + 2m, supp(t2m−1) = ∑u∈N(t2m−1)

d(u) = 2k − 1,
and for 2 ≤ i ≤ m− 2,

supp(ti) = ∑
u∈N(ti)

d(u) = 2k,

for m + 2 ≤ i ≤ 2m− 2,
supp(ti) = ∑

u∈N(ti)

d(u) = 2k.

Now we consider the remaining vertices:

• For 1 ≤ j ≤ k− 1, supp(vj
1) = ∑u∈N(vj

1)
d(u) = k;

• For 2 ≤ i ≤ m− 1, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 1;

• For m ≤ i ≤ m + 1, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 2m + 1;

• For m + 2 ≤ i ≤ 2m− 1, 1 ≤ j ≤ k− 2, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 1;

• For 1 ≤ j ≤ k− 1, supp(vj
2m) = ∑u∈N(vj

2m)
d(u) = k;

• For 2m + 1 ≤ i ≤ 4m, 1 ≤ j ≤ k− 1, supp(vj
i) = ∑u∈N(vj

i)
d(u) = k + 2m.

Therefore, we conclude that

supp(H) =
2m−1

∑
i=1

supp(ti) +
k−1

∑
j=1

supp(vj
1) +

2m−1

∑
i=2

k−2

∑
j=1

supp(vj
i)

+
k−1

∑
j=1

supp(vj
2m) +

4m

∑
i=2m+1

k−1

∑
j=1

supp(vj
i)

=2(k− 1)[2m(k + 2) + (m + 1)(2m− 1)].

Figure 4. The 3-graph L3.

Example 4. By Theorem 4, we have supp(L3) = 2(3 − 1)[2 × 3(3 + 2) + (3 + 1)(2 × 3 −
1)] = 200.

The Pm−1(1, 2, . . . , m) in the next theorem can be regarded as a graph generated by
adding m(m+1)

2 edges to the Pm−1.

Theorem 5. Let H = Pm−1(1, 2, . . . , m). Then, supp(H) = m3

3 (k − 1) + m2

2 (k2 + k + 2) +
m
6 (9k2 + 19k− 64)− (k− 1)(k + 6).

Proof. Let the vertex set of H be V(H) = {ti; 1 ≤ i ≤ m}⋃{vq
i ; 1 ≤ i ≤ m − 1, 1 ≤

q ≤ k − 2}⋃{vq
i,j; 1 ≤ i ≤ m, 1 ≤ j ≤ i, 1 ≤ q ≤ k − 1}, and the edge set of H be
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E(H) = {ei; 1 ≤ i ≤ m − 1}⋃{ei,j; 1 ≤ i ≤ m, 1 ≤ j ≤ i}, where we are regarding

Pm−1(1, 2, . . . , m) as a path adding m(m+1)
2 edges, ei(1 ≤ i ≤ m− 1) represents the i-th edge

in the path; ei,j(1 ≤ i ≤ m, 1 ≤ j ≤ i) is the edge adding to the path; ti(1 ≤ i ≤ m) means
the i-th joint; vq

i (1 ≤ i ≤ m− 1) means the q-th vertex in the ei; and vq
i,j(1 ≤ i ≤ m, 1 ≤ j ≤ i)

means the q-th vertex (except the joint vertices) in the ei,j. See Figure 5 for the case m = 4,
k = 3.

The degree of vertices in the graph is obviously, for 1 ≤ i ≤ m− 1, d(ti) = i + 2, and
d(tm) = m + 1, for 1 ≤ i ≤ m− 1, 1 ≤ q ≤ k− 2, d(vq

i ) = 1, for 1 ≤ i ≤ m− 1, 1 ≤ j ≤
i, 1 ≤ q ≤ k− 1, d(vq

i,j) = 1, and for 1 ≤ j ≤ m, 1 ≤ q ≤ k− 1, d(vq
m,j) = 1.

The open support of the vertices in the joint is as follows: supp(t1) = ∑u∈N(t1)
d(u) =

2k + 1, supp(t2) = ∑u∈N(t2)
d(u) = 4k + 1, and for 3 ≤ i ≤ m− 2,

supp(ti) = ∑
u∈N(ti)

d(u) = ik + 2k + 6,

and supp(tm−1) = ∑u∈N(tm−1)
d(u) = mk + m + k− 2, supp(tm) = ∑u∈N(tm) d(u) = mk +

k− 1.
Next, we consider the open support of the remaining vertices in pm−1(1, 2, . . . , m):

• For 1 ≤ q ≤ k− 2, supp(vq
1) = ∑u∈N(vq

1)
d(u) = k + 3;

• For 2 ≤ i ≤ m− 2, 1 ≤ q ≤ k− 2, supp(vq
i ) = ∑u∈N(vq

i )
d(u) = 2i + k + 2;

• For 1 ≤ t ≤ k− 2, supp(vq
m−1) = ∑u∈N(vq

m−1)
d(u) = 2m + k− 1;

• For 1 ≤ q ≤ k− 1, supp(vq
1,1) = ∑u∈N(vq

1,1)
d(u) = k;

• For 2 ≤ i ≤ m− 1, 1 ≤ j ≤ i, 1 ≤ t ≤ k− 1, supp(vq
i,j) = ∑u∈N(vq

i,j)
d(u) = k + i;

• For 1 ≤ j ≤ m, 1 ≤ q ≤ k− 1, supp(vq
m,j) = ∑u∈N(vq

m,j)
d(u) = k + m + 1.

Therefore, we conclude that

supp(H) =supp(t1) + supp(v2) +
m−2

∑
i=3

supp(ti) + supp(tm−1) + supp(tm)

+
k−2

∑
q=1

supp(vq
1) +

m−2

∑
i=2

k−2

∑
q=1

supp(vq
i ) +

k−2

∑
t=1

supp(vq
m−1) +

k−1

∑
q=1

supp(vq
1,1)

+
m−1

∑
i=2

i

∑
j=1

k−1

∑
q=1

supp(vq
i,j) +

m

∑
j=1

k−1

∑
q=1

supp(vq
m,j)

=
m3

3
(k− 1) +

m2

2
(k2 + k + 2) +

m
6
(9k2 + 19k− 64)− (k− 1)(k + 6).

Figure 5. The 3-graph P3(1, 2, 3, 4).

Example 5. By Theorem 5, we have supp(P3(1, 2, 3, 4)) = 43

3 (3− 1) + 42

2 (3
2 + 3 + 2) + 4

6 (9×
32 + 19× 3− 64)− (3− 1)(3 + 6) = 186.



Symmetry 2022, 14, 669 8 of 10

4. Concluding Remarks

In this paper, we generalized the concept of open support of graphs to hypergraphs.
We obtained the open support of some special types of hypergraphs. The method used in
this paper can be extended to study the open support of other hypergraphs.

The skeleton support of an edge e under addition is defined by ∑v∈e d(v) and it is denoted
by ske(e). The skeleton support of a hypergraph H under addition is defined by ∑e∈E(H) ske(e)
and it is denoted by ske(H).

Theorem 6. For any hypergraph H, ske(H) = ∑v∈V(H)

(
d(v)

)2.

Proof. Let V(H) = {v1, v2, . . . , vn} and E(H) = {e1, e2, . . . , em} be the vertex set and edge
set of H, respectively. Considering Table 1, the degree-incidence matrix with entry ai,j, where
for i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . , m},

ai,j =

{
d(vi) vi ∈ ej,
0 otherwise.

Table 1. Degree-incidence matrix.

e1 e2 . . . em

v1 a1,1 a1,2 . . . a1,m

v2 a2,1 a2,2 . . . a2,m

. . . . . . . . . . . . . . .

vn an,1 an,2 . . . an,m

On one hand, summing up entries in the i-th row, corresponding to vertex vi, we get

∑n
j=1 ai,j =

(
d(vi)

)2; next, summing up over all vertices, we get

n

∑
i=1

n

∑
j=1

ai,j =
n

∑
i=1

(
d(vi)

)2. (1)

On the other hand, summing up entries in the j-th column, corresponding to edge ej,
we get ∑n

i=1 ai,j = ske(ej), and summing up over all edges, we obtain

n

∑
j=1

n

∑
i=1

ai,j = ske(H). (2)

It follows from (1) and (2) that

ske(H) = ∑
v∈V(H)

(
d(v)

)2.

Theorem 7. For any hypergraph H, supp(H) = ∑v∈V(H) |NH(v)|d(v).

Proof. Let V(H) = {v1, v2, . . . , vn} be the vertex set of H. Considering Table 2, the degree-
adjacency matrix with entry ai,j, where for i, j ∈ {1, 2, . . . , n},

ai,j =

{
d(vi) vj ∈ NH(vi),
0 otherwise.
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Table 2. Degree-adjacency matrix.

v1 v2 . . . vn

v1 a1,1 a1,2 . . . a1,n

v2 a2,1 a2,2 . . . a2,n

. . . . . . . . . . . . . . .

vn an,1 an,2 . . . an,n

Since there are |NH(vi)| vertices adjacent to vi, summing the elements of the i-th row of
the degree-adjacency matrix, we get ∑n

j=1 ai,j = |NH(vi)|d(vi), then the summation results
of all rows are summed

n

∑
i=1

n

∑
j=1

ai,j =
n

∑
i=1
|NH(vi)|d(vi) = ∑

v∈V(H)

|NH(v)|d(v). (3)

Next, we sum the elements of the j-th column of the degree-adjacency matrix, and the
result is the sum of the degrees of all neighbors of the vertex vj; we get ∑n

i=1 ai,j = supp(vj),
then sum over all columns

n

∑
j=1

n

∑
i=1

ai,j =
n

∑
j=1

supp(vj) = supp(H). (4)

From (3) and (4), we can see that

supp(H) = ∑
v∈V(H)

|NH(v)|d(v). (5)

In the following corollary, we show the connection of supp(H) and ske(H).

Corollary 1. For any k-graph with k = 2, we have supp(H) = ske(H).
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