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Abstract: In this work, we propose a new bimodal distribution with support in the real line. We
obtain some properties of the model, such as moments, quantiles, and mode, among others. The
computational implementation of the model is presented in the tpn package of the software R. We
perform a simulation study in order to assess the properties of the maximum likelihood estimators
in finite samples. Finally, we present an application to a bimodal data set, where our proposal is
compared with other models in the literature.
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tion; asymmetric

1. Introduction

Describing a phenomenon by a probability distribution is very useful because of the
properties associated with it: expectation, shape, range, etc. However, this description
can be difficult when a phenomenon (in practice, an observed dataset) is bimodal, which
occurs commonly in areas like astrophysics, ecology and genetics; see [1–3], respectively.
The first approach to fit a bimodal data is using a mixture of two unimodal distributions,
for instance, a mixture of gaussian distributions; see [4]. The main disadvantage of this
procedure is the non-identifiability of the proposed mixture model. The second and the
most workable practical approach is to use distributions which already have bimodal
properties. Because of these properties, there is an increasing interest to derive bimodal
distributions in the literature: refs. [5,6] presented extensions of the skew-normal, ref. [7]
proposed a generalization of the Burr type X distribution and [8] derived an extension of
the sinh Cauchy distribution. In this paper, we will discuss an extension of the half normal
distribution proposed by [9], the truncated positive normal (tpn) model. The probability
density function (pdf) for the tpn model is given by

f (x; σ, λ) =
1

σΦ(λ)
φ
( x

σ
− λ

)
, x, σ ∈ R+, λ ∈ R,

where σ and λ are the scale and shape parameters, respectively, and φ(·) and Φ(·) are
the pdf and cumulative distribution function (cdf), respectively, of the standard normal
distribution. The corresponding cdf of the tpn model is

FX(x; σ, λ) =
Φ( x

σ − λ) + Φ(λ)− 1
Φ(λ)

.
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Note that the cdf above has a closed-form expression, which is useful for generating
random data besides defining quantiles. For more properties of the tpn model, see [9]. The
restriction to positive values is a limitation of the tpn model. To overcome this limitation,
the chief goal of this paper is to derive an extension of the tpn model which has support
in the real line. We describe in detail the model, studying its main properties and related
functions. Moreover, we show analytically the regions in which the model is unimodal and
bimodal, and such regions depend only on one parameter.

The paper is organized as follows. In Section 2, we derive an extension of the tpn with
support in the real line and study some properties of the distribution. The inference for
parameter estimation in the proposed model and computational aspects are presented in
Section 3. In Section 4, we perform a simulation study to evaluate the parameter estimation
in finite samples. An application to real data is discussed in Section 5. Finally, conclusions
are given in Section 6.

2. A Bimodal Truncation Positive Normal Distribution

In this section, we present the stochastic representation for the bimodal truncation
positive normal (btpn) distribution and some properties, such as its pdf and its cdf. We
also discuss some particular cases of the model.

2.1. Stochastic Representation, pdf and cdf

Let T be a discrete random variable such as

T =

{
−(1 + ε) , with probability (1 + ε)/2
1− ε , with probability (1− ε)/2

,

where ε ∈ (−1, 1). If Z ∼ tpn(σ, λ), independent from T, then we define a new random
variable given by X = ZT. We say that X follows a btpn distribution.

Proposition 1. The pdf for the btpn distribution is given by

f (x; σ, λ, ε) =


φ
(

x
σ(1+ε)

+λ
)

2σΦ(λ)
, if x < 0

φ
(

x
σ(1−ε)

−λ
)

2σΦ(λ)
, if x ≥ 0

,

where σ > 0, λ ∈ R and ε ∈ (−1, 1).

Proof. If x < 0, then the cdf for X is

FX(x) = P(X ≤ x) =
(1 + ε)

2
P
(

z ≥ −x
1 + ε

)
=

(1 + ε)

2

[
1− P

(
z ≤ −x

1 + ε

)]
=

(1 + ε)

2

[
1− FZ

(
−x

1 + ε

)]
.

Deriving the last expression in relation to x, we have

fX(x) =
(1 + ε)

2

[
− fZ

(
−x

1 + ε

)
−1

(1 + ε)

]
=

1
2

[
1

σΦ(λ)
φ

( −x
(1+ε)

σ
− λ

)]
=

φ
(

x
σ(1+ε)

+ λ
)

2σΦ(λ)
.

A similar routine calculation shows that for x ≥ 0, we have that

fX(x) =
φ
(

x
σ(1−ε)

− λ
)

2σΦ(λ)
,

completing the proof.
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Figure 1 shows the pdf function for the btpn model with different combination of
parameters. Note that the model can assume different shapes, including unimodal, bimodal,
symmetric and asymmetric.
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Figure 1. Pdf for btpn(σ = 1, λ, ε) with different fixed values for λ and varying ε: (a) λ = −2;
(b) λ = −0.2; (c) λ = 0.4 and; (d) λ = 1.5.

Proposition 2. The cdf of X ∼ btpn(σ, λ, ε) is given by

FX(x) =


(1+ε)
2Φ(λ)

Φ
(

x
σ(1+ε)

+ λ
)

, if x ≤ 0
(1−ε)
2Φ(λ)

[
Φ
(

x
σ(1−ε)

− λ
)
+ Φ(λ)− 1

]
, if x ≥ 0

Proof. It is immediate from the last proof.

Proposition 3. Let there be X ∼ btpn(σ, λ, ε). Its quantile function is given by

QX(p) = F−1
X (p) =


σ(1 + ε)

[
Φ−1

(
2pΦ(λ)

1+ε

)
− λ

]
, if 0 < p ≤ 1+ε

2

σ(1− ε)
[
Φ−1

(
2pΦ(λ)

1−ε −Φ(λ) + 1
)
+ λ

]
, if 1+ε

2 < p < 1
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Proof. It is immediate from inverting the cdf for the btpn distribution given in
Proposition 2.

Corollary 1. The median for X ∼ btpn(σ, λ, ε) is given by

Me(X) =


σ(1 + ε)

[
Φ−1

(
Φ(λ)
1+ε

)
− λ

]
, if ε ≥ 0

σ(1− ε)
[
Φ−1

(
εΦ(λ)
(1−ε)

+ 1
)
+ λ

]
, if ε < 0.

Corollary 2. The median for X ∼ btpn(σ, λ, ε) is < 0, = 0 and > 0 if ε is > 0, = 0 and < 0,
respectively.

2.2. Moments and Moment-Generating Function

The following proposition presents the central moments of the btpn distribution.

Proposition 4. Let X ∼ btpn(σ, λ, ε). The r-th central moment of X is given by

E(Xr) =
σr

2
√

2πΦ(λ)

[
(−1)r(1 + ε)r+1 + (1− ε)r+1

] r

∑
k=0

(
r
k

)
λr−k(2)(k−1)/2Γ((k+1)/2, λ2/2),

where Γ(a, b) =
∫ +∞

b ta−1e−tdt is the upper incomplete gamma function.

Proof. Note that E(Xr) = E1(Xr) + E2(Xr), where E1(Xr) =
∫ 0
−∞ xr f (x)dx and E2(Xr) =∫ +∞

0 xr f (x)dx. For the first term, we perform the change of variable u = −x
σ(1+ε)

− λ.
With this,

E1(Xr) =
∫ 0

−∞

xr

2σ(1 + ε)
φ

(
−x

σ(1 + ε)
− λ

)
dx

=
(−σ)r(1 + ε)(r+1)

2Φ(λ)

∫ ∞

−λ
(u + λ)rφ(u)du.

Using the binomial theorem and the change of variable t = u2/2 in the last expression,
we obtain

E1(Xr) =
(−σ)r(1 + ε)(r+1)

2
√

2πΦ(λ)

r

∑
k=0

(
r
k

)
λr−k

∫ ∞

−λ
uke−u2/2du,

=
(−σ)r(1 + ε)(r+1)

2
√

2πΦ(λ)

r

∑
k=0

(
r
k

)
λr−k2(k−1)/2

∫ ∞

λ2/2
t(k−1)/2e−tdt,

Note that the last integral corresponds to Γ((k + 1)/2, λ2/2).
On the other hand, for E2(Xr), we perform the change of variable u = x

σ(1−ε)
− λ,

obtaining

E2(Xr) =
∫ ∞

0

xr

2σ(1− ε)
φ

(
x

σ(1− ε)
− λ

)
dx

=
σr(1− ε)(r+1)

2Φ(λ)

∫ ∞

−λ
(u + λ)rφ(u)du.

Using the same routine calculation, we obtain

E2(Xr) =
σr(1− ε)(r+1)

2
√

2πΦ(λ)

r

∑
k=0

(
r
k

)
λr−k2(k−1)/2

∫ ∞

λ2/2
t(k−1)/2e−tdt,
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where again the last integral corresponds to Γ((k + 1)/2, λ2/2). The final result is obtained
by summing E1(Xr) and E2(Xr).

Proposition 5. Let X ∼ btpn(σ, λ, ε). The moment-generating function (mgf) for X is given by

Mx(t) =
(1 + ε) exp

{
(1+ε)2

2 t2σ2 − tσλ(1 + ε)
}

Φ(λ− tσ(1 + ε))

2Φ(λ)
,

+
(1− ε) exp

{
(1−ε)2

2 t2σ2 + tσλ(1− ε)
}

Φ(λ + tσ(1− ε))

2Φ(λ)
.

Proof. Note that MX(t) = MX1(t)+ MX2(t), where MX1(t) =
∫ 0
−∞ etx f (x)dx and MX2(t) =∫ +∞

0 etx f (x)dx. For the first integral and using the change of variable u = x/[σ(1+ ε)] + λ,
we obtain

MX1(t) =
(1 + ε)

2Φ(λ)

∫ λ

−∞
etσ(1+ε)(µ−λ)φ(u)du.

Completing the square of a binomial in the last term of the exponential and using the
change of variable z = µ− tσ(1 + ε), we have

MX1(t) =
(1 + ε) exp

{
t2σ2(1+ε)2

2 − tσλ(1 + ε)
}

2Φ(λ)

∫ λ−tσ(1+ε)

−∞

e−z2/2
√

2π
dz,

=
(1 + ε) exp

{
t2σ2(1+ε)2

2 − tσλ(1 + ε)
}

2Φ(λ)
Φ(λ− tσ(1 + ε)).

For X ≥ 0, and similarly to the previous development, we use the change of variable
u = x/[σ(1− ε)]− λ, obtaining that

MX2(t) =
(1− ε)

2Φ(λ)

∫ ∞

−λ
etσ(1−ε)(µ+λ)φ(u)du.

Again, completing the square and using z = µ− tσ(1− ε), we obtain

MX2(t) =
(1− ε) exp

{
t2σ2(1−ε)2

2 + tσλ(1− ε)
}

2Φ(λ)

∫ ∞

−λ−tσ(1−ε)

e−z2/2
√

2π
dz,

=
(1− ε) exp

{
t2σ2(1−ε)2

2 + tσλ(1− ε)
}

2Φ(λ)
Φ(λ + tσ(1− ε)).

Finally, the result is obtained by summing MX1(t) and MX2(t).

Corollary 3. Using properties of the mgf, the first four moments of X ∼ btpn(σ, λ, ε) can be
obtained from the expression µr = (∂r MX(t)/∂tr)

∣∣
t=0.

• µ1 = E[X1] = −2εσ[λ + Ω(λ)]

• µ2 = E[X2] = σ2(1 + 3ε2)[λ2 + λΩ(λ) + 1]
• µ3 = E[X3] = −4εσ3(1 + ε2)[λ3 + λ2Ω(λ) + λ + 2Ω(λ)]

• µ4 = E[X4] = σ4[1 + 5ε2(2 + ε)][λ4 + λ3Ω(λ) + 6λ2 + 5λΩ(λ) + 3]

where Ω(λ) = φ(λ)/Φ(λ) is the reciprocal of the Mill’s ratio for the standard normal distribution.
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Corollary 4. The variance, coefficients of skewness and kurtosis for X ∼ btpn(σ, λ, ε) are given by

Var(X) = σ2[λ2(1− ε2) + λΩ(λ)(1− 5ε2) + ε2(3− 4Ω(λ)) + 1
]
,√

b1 =
−4ε(1 + ε2)[λ3 + λ2Ω(λ) + 2Ω(λ)][

(1 + 3ε)(λ2 + λΩ(λ) + 1)
]3/2 , and

b2 =
[1 + 5ε2(2 + ε)][λ4 + λ3Ω(λ) + 6λ2 + 5λΩ(λ) + 3]

[(1 + 3ε2)(λ2 + λΩ(λ) + 1)]2
,

respectively.

Figure 2 shows the plots for asymmetry and kurtosis coefficients. Note that a more
right-skewed distribution is obtained when ε → −1 and λ → −∞, whereas a more left-
skewed model is obtained when ε→ 1 and λ→ −∞. On the other hand, a greater kurtosis
is obtained when ε→ −1 and λ→ −∞, whereas a lower kurtosis is obtained when |ε| → 1
and λ → ∞. Note that this pattern is consistent with the pdf for different parameters
presented in Figure 1.

(a) (b)

Figure 2. (a) Asymmetry coefficient and (b) kurtosis coefficient for btpn(σ = 1, λ, ε) distribution.

2.3. Mode and Unimodality and Bimodality Regions

The next proposition presents the unimodality and bimodality property of the btpn
distribution.

Proposition 6. Let X ∼ btpn(σ, λ, ε). For λ ≤ 0, the model is unimodal, and for λ > 0, the
model is bimodal. Moreover, for the unimodal case, the mode of the model is 0, and for the bimodal
case, the two modes are −σλ(1 + ε) and σλ(1− ε), respectively.

Proof. By definition, the mode is the value that maximizes the pdf or, equivalently, the
logarithm of the pdf. For X ∼ btpn(σ, λ, ε), it is straighforward to show that

∂ log f (x; σ, λ, ε)

∂x
=


− 1

σ(1+ε)

(
x

σ(1+ε)
+ λ

)
, if x < 0

− 1
σ(1−ε)

(
x

σ(1−ε)
− λ

)
, if x ≥ 0

and

∂2 log f (x; σ, λ, ε)

∂x2 =


− 1

σ2(1+ε)2 , if x < 0

− 1
σ2(1−ε)2 , if x ≥ 0

.
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Therefore, solving the equation ∂ log f (x; σ, λ, ε)/∂x = 0, we obtain x1 = −σλ(1 + ε)
and x2 = σλ(1− ε) as the potential mode for each branch, because the second derivative is
negative for each respective case. However, this is valid if and only if x1 < 0 and x2 > 0,
respectively. In other words, if −σλ(1 + ε) < 0, then x1 is a mode and if σλ(1− ε) > 0,
then x2 also is a mode. This is equivalent to

{λ > 0∧ 1 + ε > 0} ∨ {λ < 0∧ 1 + ε < 0} ⇒ x1 is a mode and

{λ > 0∧ 1− ε > 0} ∨ {λ < 0∧ 1− ε < 0} ⇒ x2 is a mode.

where 1 + ε > 0 and 1− ε > 0, ∀ε(−1, 1). On the other hand, 1 + ε ≮ 0 and 1− ε ≮ 0.
For this reason, it is immediate that for λ > 0, the btpn distribution have two modes, and
such modes are x1 and x2. Finally, for λ ≤ 0, it is immediate that ∂ log f (x; σ, λ, ε)/∂x > 0,
for x < 0 and ∂ log f (x; σ, λ, ε)/∂x ≤ 0 for x ≥ 0. In other words, the pdf for the btpn
distribution is an increasing function in (−∞, 0) and a decreasing function in (0, ∞), where
we can deduce that the model is unimodal and the respective mode is attached in zero.

Figure 3 shows the regions of unimodality and bimodality for the btpn depending on
the parameters λ and ε.

●

−4 −2 0 2 4

−1.0

−0.5

0.0

0.5

1.0

λ

ε bimodalunimodal

Figure 3. Regions of unimodality and bimodality for the btpn model in terms of λ and η.

2.4. Particular Cases

By construction, the following models are particular cases for the btpn distribution:

• btpn(σ = σ/2, λ, ε = −1) ≡ tpn(σ, λ);
• btpn(σ, λ = 0, ε = 0) ≡ N(0, σ2), i.e., the normal distribution with mean 0 and

variance σ2;
• btpn(σ = 1, λ = 0, ε) ≡ esn(σ, ε), i.e., the epsilon skew-normal distribution (Mud-

holkar and Hutson [10]).

Figure 4 summarizes the relationships among the btpn and its particular cases.
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btpn(σ, λ, ε)

λ=0

  

ε=−1, σ=σ/2

~~
σ=σ/2,λ=ε=0

��

tpn(σ, λ)

λ=0

  

esn(σ, ε)

ε=0

~~
N(0, σ2)

Figure 4. Particular cases for the btpn distribution.

3. Inference

In this section, we discuss the maximum likelihood (ML) method for parameter
estimation for the btpn model. We also provide details about the computational aspects.

3.1. Maximum Likelihood Function

Hereafter, and to simplify the estimation procedure, we consider the reparameteriza-
tion η = ε√

1−ε2 ∈ R. Therefore, henceforth, we denote X ∼ btpn(σ, λ, η), with σ, λ and η

scale, shape and asymmetry parameters, respectively, if its pdf is given by

f (x; σ, λ, η) =


1

2σΦ(λ)
φ

(
−x
√

1+η2

σ(
√

1+η2+η)
− λ

)
, if x < 0

1
2σΦ(λ)

φ

(
x
√

1+η2

σ(
√

1+η2−η)
− λ

)
, if x ≥ 0

Given z1, . . . , zn, a random sample from the btpn(σ, λ, η) distribution, the log-likelihood
function for θ = (σ, λ, η) is given by

`(θ) = −n
[

log(2σΦ(λ)) +
1
2

log(2π) +
λ2

2

]
+ `1(θ) + `2(θ), (1)

where

`1(θ) = −
1
2 ∑

i:zi≤0


(

zi
√

1 + η2

σ(
√

1 + η2 − η)

)2

− 2ziλ
√

1 + η2

σ(
√

1 + η2 − η)

, and

`2(θ) = −
1
2 ∑

i:zi>0


(

zi
√

1 + η2

σ(
√

1 + η2 + η)

)2

+
2ziλ

√
1 + η2

σ(
√

1 + η2 + η)

.

To find the ML estimator of θ, say θ̂, we need to maximize `(θ) in (1) in relation to
θ. However, no closed-form expressions for the ML estimates are possible. Therefore,
we must use an iterative method for nonlinear optimization. For instance, we solve this
problem using the Broyden-–Fletcher—Goldfarb—Shanno (BFGS) quasi-Newton method;
see [11] (p. 199).

3.2. Computational Aspects

The ML estimators for the btpn model and the obtaining of their standard errors are
included in the tpn package [12] from the R [13] software. The following function can be
used to obtain these results:

est.btpn(y)
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where y is the sample. The function returns a list with the estimates, the iterations used
for the maximization algorithm, the log-likelihood function evaluated in the parameter
estimations and the corresponding Akaike information criterion (AIC, see [14]) and the
Bayesian information criterion (BIC, see [15]). Models with lower AIC and/or BIC are
preferable. The package also includes the functions to drawn values to evaluate the pdf
and the cdf for the btpn model named rbtpn, dbptn and pbtpn, respectively.

4. Simulation Study

In this section, we present a simulation study in order to evaluate the behaviour of
the ML estimators in finite samples. The study was conducted using the tpn package [12].
Specifically, random samples were generated using the rbtpn function, and the estimation
was performed using the est.btpn function. We considered 5000 Monte Carlo replicates for
3 sample sizes: 50, 100 and 200. We also considered 2 combinations for the scale parameter
σ: 2 and 10; 3 values for λ: −0.75, 1 and 3; and 2 values for η: −0.5 and 0.75. This setting
provides 36 combinations of the parameters σ, λ and η and the sample size. Tables 1 and 2
summarize the empirical bias, the standard errors of the MLE (SE), the root-mean-squared
error (RMSE) and the 95% coverage probability (CP) based on the asymptotic distribution
of the MLE. In general terms, the bias and RMSE terms are reduced when the sample size
is increased, suggesting the consistency of the MLE. Note also that the SE and RMSE terms
are closer when the sample size is increased, suggesting that the standard errors of the
estimators are also well estimated. Additionally, the CP terms converge reasonably to the
nominal value used to their construction (95%), suggesting that the normality is reasonable
as an asymptotic distribution to the ML estimators in the btpn model, even in reasonable
sample sizes.

Table 1. Empirical bias, SE, RMSE and 95% CP for the ML estimators of σ, λ and η in the btpn
distribution with different combinations of parameters (case true σ = 2).

True Value n = 50 n = 100 n = 200
λ η par. bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

−0.75 −0.5 σ 0.894 3.271 8.403 0.814 0.170 1.089 3.165 0.856 0.035 0.514 0.584 0.898
λ −0.831 3.405 8.561 0.862 −0.132 1.237 3.050 0.891 −0.028 0.638 0.691 0.917
η −0.018 0.112 0.121 0.940 −0.008 0.078 0.081 0.945 −0.003 0.055 0.057 0.947

0.75 σ 0.736 2.490 7.381 0.802 0.233 1.218 3.497 0.862 0.041 0.538 0.630 0.901
λ −0.663 2.663 7.325 0.855 −0.205 1.368 3.453 0.897 −0.029 0.660 0.728 0.924
η 0.030 0.142 0.167 0.936 0.014 0.099 0.106 0.945 0.009 0.070 0.073 0.947

1 −0.5 σ −0.057 0.350 0.360 0.887 −0.026 0.248 0.250 0.914 −0.012 0.175 0.176 0.936
λ 0.073 0.406 0.416 0.938 0.035 0.285 0.289 0.946 0.014 0.201 0.201 0.949
η −0.014 0.086 0.095 0.932 −0.008 0.061 0.064 0.940 −0.003 0.043 0.045 0.944

0.75 σ −0.055 0.350 0.355 0.884 −0.024 0.248 0.251 0.919 −0.015 0.174 0.176 0.931
λ 0.072 0.406 0.412 0.935 0.035 0.285 0.288 0.943 0.020 0.200 0.203 0.942
η 0.028 0.109 0.127 0.940 0.012 0.076 0.082 0.942 0.006 0.054 0.055 0.943

3 −0.5 σ −0.049 0.203 0.214 0.919 −0.022 0.145 0.152 0.930 −0.013 0.103 0.106 0.936
λ 0.103 0.356 0.383 0.948 0.047 0.248 0.262 0.947 0.028 0.174 0.180 0.948
η −0.007 0.051 0.054 0.937 −0.003 0.036 0.036 0.949 −0.001 0.025 0.026 0.950

0.75 σ −0.048 0.203 0.214 0.917 −0.023 0.145 0.148 0.932 −0.012 0.103 0.103 0.946
λ 0.105 0.356 0.385 0.946 0.046 0.248 0.253 0.952 0.024 0.174 0.175 0.953
η 0.011 0.064 0.072 0.933 0.005 0.045 0.048 0.939 0.002 0.032 0.033 0.942
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Table 2. Empirical bias, SE, RMSE and 95% CP for the ML estimators of σ, λ and η in the btpn
distribution with different combinations of parameters (case true σ = 10).

True Value n = 50 n = 100 n = 200
λ η par. bias SE RMSE CP bias SE RMSE CP bias SE RMSE CP

−0.75 −0.5 σ 2.279 10.597 19.571 0.802 0.961 5.254 11.695 0.864 0.221 2.538 3.411 0.900
λ −0.400 2.336 4.023 0.857 −0.161 1.209 2.328 0.896 −0.034 0.632 0.780 0.924
η −0.020 0.112 0.126 0.938 −0.009 0.079 0.083 0.949 −0.004 0.055 0.056 0.950

0.75 σ 1.748 9.147 17.694 0.797 0.608 5.063 7.312 0.859 0.157 2.496 3.225 0.891
λ −0.272 2.046 3.498 0.856 −0.093 1.172 1.548 0.895 −0.021 0.623 0.734 0.920
η 0.038 0.143 0.177 0.933 0.013 0.099 0.103 0.951 0.007 0.069 0.072 0.945

1 −0.5 σ −0.225 1.772 1.829 0.887 −0.126 1.237 1.260 0.916 −0.057 0.876 0.891 0.932
λ 0.065 0.408 0.415 0.938 0.037 0.285 0.289 0.940 0.015 0.201 0.205 0.943
η −0.014 0.086 0.095 0.936 −0.005 0.060 0.063 0.943 −0.002 0.043 0.043 0.952

0.75 σ −0.284 1.744 1.756 0.886 −0.136 1.236 1.255 0.913 −0.059 0.875 0.869 0.933
λ 0.073 0.405 0.405 0.941 0.037 0.285 0.288 0.943 0.016 0.201 0.201 0.946
η 0.028 0.109 0.131 0.926 0.012 0.076 0.081 0.945 0.008 0.054 0.056 0.946

3 −0.5 σ 1.985 2.784 30.165 0.913 1.699 1.824 26.982 0.928 1.113 0.799 22.887 0.932
λ 0.023 0.420 1.320 0.941 −0.032 0.287 1.178 0.947 −0.025 0.184 0.955 0.941
η −0.004 0.051 0.054 0.934 −0.002 0.036 0.037 0.944 −0.001 0.026 0.026 0.948

0.75 σ 0.386 4.618 13.399 0.918 0.596 1.816 14.121 0.924 0.355 0.929 10.561 0.943
λ 0.071 0.474 0.692 0.954 0.016 0.285 0.680 0.941 0.003 0.188 0.503 0.952
η 0.019 0.065 0.076 0.925 0.015 0.046 0.051 0.935 0.008 0.033 0.034 0.941

5. Application

In this section, we present an application to a real data set in order to illustrate the
btpn model. We consider the height data set, which consists of the height of 126 students
from the University of Pennsylvania (Cruz-Medina [16]). We compare our proposal with
other bimodal proposals, such as the epsilon skew inverted gamma (esig, see Abdulah
et al. [17]) and the alpha skew-normal (asn, Elal-Olivero [18]). The pdf for the esig model is
given by:

f (x; σ, λ, η) =
λσ

2Γ(σ)


(

x
1−η

)−(σ+1)
e−

λ(1−η)
x x ≥ 0(

−x
1+η

)−(σ+1)
e−

λ(1+η)
−x x < 0

,

where λ > 0, σ > 0 and |η| < 1 are the scale, shape and skewness parameters, respectively.
The pdf for the asn model is given by:

f (x; η, λ, σ) =

(
[1− η( x−λ

σ )]2 + 1
σ(2 + η2)

)
φ

(
x− λ

σ

)
,

where η, λ ∈ R and σ > 0 are the shape, location and scale parameters, respectively.

Table 3 summarizes some descriptive statistics for the sample, where we highlight the
symmetrical behaviour of the data (

√
b1 = −0.05).

Table 3. Descriptive statistics for the height data set.

Data Set n X S2 √
b1 b2

weight measured 126 0 1 −0.05 3.053

Table 4 presents the estimatives, standard errors, AIC and BIC criteria for the men-
tioned models. Note that, based on both criteria, btpn presents a better fit than the rest
of the distributions. Figure 5 shows the histogram for the height data and the pdf for
the three considered distributions, where the better performance for the btpn in this data
set is demonstrated. Moreover, as discussed in Proposition 6, λ̂ = 0.496 > 0 implies a
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bimodal model, and such modes are equal to x1 = −0.402 and x2 = 0.404. In addition, the
distribution of height is very close to symmetry.

We also compute the randomized quantile residuals [19] for the three fitted models.
If the model was correctly specified, these residuals should be a random sample from the
standard normal distribution. Figure 6 shows the qqplot for such residuals, also suggesting
that the btpn is a more appropriated model for this data set.

Table 4. Estimated parameters and their standard errors (in parentheses) for the btpn, esig and asn
models for the height data set. The AIC and BIC criteria are also presented.

Estimated btpn esig asn

σ 0.813 (0.113) 1.304 (0.148) 0.996 (0.063)
λ 0.496 (0.316) 0.527 (0.073) 0.014 (3.422)
η −0.002 (0.048) 0.095 (0.059) 0.014 (3.409)

AIC 360.76 415.79 362.67
BIC 369.27 424.30 375.91
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Figure 5. Histogram for the height data set and the estimated pdf for the btpn, esig and asn models.
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Figure 6. Quantile residuals for fitted models: (a) asn, (b) esig, and (c) btpn.
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6. Conclusions

The importance of fitting an observable dataset by a probability distribution is well-
known, since it will be covered with convenient properties. Difficulty arises when the data
is bimodal, because there are not traditional distributions with this property. This gap is
being filled by an increasing movement in the statistical literature to develop probability
distributions which already have a bimodality feature. In this paper, we made our contri-
bution with the bimodal positive truncation normal distribution. The btpn distribution has
the following advantages: support in the real line, closed-form cdf and moments, and the
ability to generalize the standard normal and treatable maximum likelihood estimators.
The ML procedure works very reasonably, i.e, as the sample size increases, the bias and the
SE decrease. Since there are models for which the estimation procedure does not work even
for large samples, the btpn distribution also has this strength. We ended the advantages of
our proposed distribution with an application where btpn was the best choice of fitting.
As suggestions for future work, we can mention two possibilities: the first entails the
improvement of the asymptotic properties of the ML estimation through bias and variance
corrections (see [20,21], respectively), and the second involves the addition of a regression
structure. A closed-form cdf allows even a quantile regression structure, see [22,23], for
instance, as [24] did for the gamma–sinh Cauchy distribution. For the applicability and
possibilities of future works, we think the bimodal positive truncation normal distribution
is useful for practitioners and researchers of many different areas.
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