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Abstract: In recent years, the Hankel determinant bounds for different subclasses of analytic, starlike
and symmetric starlike functions have been discussed and studied by the many well-known authors.
In this paper, we first consider a new subclass of analytic function and then we derive the fourth
Hankel determinant bound for this class.
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1. Introduction

We need to present some basic Geometric Function Theory literature for a better
understanding of the topic discussed in this article. In this regard, the letters A and S are
used to represent the classes of normalized analytic and univalent functions, respectively.
The following set-builder form is used to define these classes:

A :=

{
f ∈ H(D) : f (z) =

∞

∑
j=1

ajzj (a1 = 1)

}
(1)

and:

S :={ f ∈ A : f is univalent in D},

where H(D) stands for the set of analytic functions in the region D={z ∈ C : |z| < 1}.
Although function theory was started in 1851, it emerged as a good area of new research
in 1916, due to the conjecture |an| ≤ n, which was proved by De-Branges in 1985 and
many scholars attempted to prove or disprove this conjecture as a result they discovered
multiple subfamilies of a class S of univalent functions that are associated with different
image domains. The most basic of these families are the families of star-like, convex, and
close-to-convex functions which are defined by:
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S∗ =
{

f ∈ S : <
(

z f ′(z)
f (z)

)
> 0, z ∈ D

}
,

C =

{
f ∈ S : <

(
1 +

z f ′′(z)
f ′(z)

)
> 0, z ∈ D

}
,

K =

{
f ∈ S : <

(
z f ′(z)
g(z)

)
> 0, g(z) ∈ S∗ z ∈ D

}
.

Each of the functions classes described above has a distinct symmetry. We denote by
P , the class of analytic functions p normalized by:

p(z) = 1 + c1z + c2z2 + c3z3 + · · · (2)

and:

<(p(z)) > 0, (z ∈ D). (3)

Assume that f and g are two analytic functions in D. Then, we say that the function f
is subordinate to the function g, and we can write:

f (z) ≺ g(z), (z ∈ D), (4)

if there exists a Schwarz function w(z) with the following conditions:

w(0) = 0 and |w(z)| < 1, (z ∈ D),

such that:

f (z) = g(w(z)), (z ∈ D). (5)

Now, take the non-vanishing analytic functions q1(z) and q2(z) in D that satisfy the
following condition:

q1(0) = q2(0) = 1.

In this paper, we define a class of functions f (z) ∈ A that satisfy the following condition:

f ′(z)
q1(z)

≺ q2(z).

Instead of q2(z), we will now select a specific function. Additionally, q1(z) should be
subordinated to another function. These options are:

q1(z) ≺ ez and q2(z) = 1 + sin z.

Using the above-mentioned concept, we now consider the following class:

p∗ =
{

f ∈ A :
f ′(z)
q1(z)

≺ 1 + sin z & q1(z) ≺ ez, z ∈ D

}
. (6)

To show the functions class p∗ is nonempty. For this, let f1, q1 → C be given by:

q1(z) = ez

and:

f1(z) =
ez

2
(sin(z)− cos(z) + 2).

Then:

f ′1(z)
q1(z)

≺ 1 + sin z.
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The problem of determining coefficient bounds offers information on a complex-
valued function’s geometry. In particular, the second coefficient provides information
about the growth and distortion theorems for functions in class S . Similarly, in the study
of singularities and power series with integral coefficients, the Hankel determinants are
particularly useful. In 1976, Noonan and Thomas [1] stated the qth Hankel determinant for
q ≥ 1 and n ≥ 1 of functions f as follows:

Hq,n( f ) =

∣∣∣∣∣∣∣∣∣
an an+1 · · · an+q−1

an+1 an · · · an+q−2
...

...
...

...
an+q−1 an+q−2 · · · an

∣∣∣∣∣∣∣∣∣, (a1 = 1).

For some special choices of n and q we have the following selections.

1. For q = 2, n = 1:

H2,1( f ) = ∆1, where ∆1 =

∣∣∣∣ a1 a2
a2 a3

∣∣∣∣ = a3 − a2
2, a1 = 1,

is the famed Fekete-Szegő functional.
2. For q = 2, n = 2:

H2,2( f ) = ∆2, where ∆2 =

∣∣∣∣ a2 a3
a3 a4

∣∣∣∣ = a2a3 − a2
3 ,

is the second Hankel determinant. Janteng et al. [2] (see also [3]) investigated the
sharp boundaries of H2(2) for the class of S∗ , C, and R, which are listed below:

|H2,2( f )| ≤


1 f ∈ S∗,

1
8 f ∈ C,

4
9 f ∈ K.

Krishna [4] derived a precise estimate of H2,2( f ) for the class of Bazilevič functions.
On the other hand the sharp bound of H2,2( f ) for the class of close-to-convex functions
remains unknown.

3. For q = 3, n = 1:

H3,1( f ) = ∆3, where ∆3 =

∣∣∣∣∣∣
a1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣,
is the third Hankel determinant. Babalola [5] obtained the upper bound of |H3,1( f )|
for S∗, C, and K. Later, other writers calculated the bounds of |H3,1( f )| for differ-
ent subclasses of analytic and univalent functions. In 2016, Zaprawa [6] enhanced
Babalola’s results and demonstrated that:

|H3,1( f )| 5


1 f ∈ S∗,

49
540 f ∈ C,

41
60 f ∈ K.

He also thought that the bounds were still not sharp. Later, in 2018, Kwon improved
the Zaprawa inequality for f ∈ S∗ by achieving |H3,1( f )| 5 8

9 , and in 2021, Zaprawa
refined this bound even further by establishing that |H3,1( f )| 5 5

9 for f ∈ S∗. In
the papers [7,8], the non-sharp bounds of this determinant for the sets S∗sin and S∗car,
respectively, were also computed. They succeeded in achieving:

|H3,1( f )| 5
{

0.51856, for f ∈ S∗sin,
1.1989, for f ∈ S∗car.
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Many specialists have attempted to find the determinant’s sharp bounds, but none has
been successful. Finally, in 2018, Kowalczyk et al. [9] and Lecko et al. [10] achieved
the following sharp bounds of |H3,1( f )| for the sets C and S∗

(
1
2

)
, respectively:

|H3,1( f )| 5
{ 4

135 , for f ∈ C,
1
9 , for f ∈ S∗

(
1
2

)
.

For more information on this topic, the reader should look at the works of Srivas-
tava et al. [11], and Wang et al. [12].

4. For q = 4, n = 1:

H4,1( f ) = ∆4, where ∆4 =

∣∣∣∣∣∣∣∣
a1 a2 a3 a4
a2 a3 a4 a5
a3 a4 a5 a6
a4 a5 a6 a7

∣∣∣∣∣∣∣∣,
is the fourth Hankel determinant. Since f ∈ S and a1 = 1, thus:

H4(1) = a7{a3 I1 − a4 I2 + a5 I3}
−a6{a3 I4 − a4 I5 + a6 I3}
+a5{a3 I6 − a5 I5 + a6 I2}
−a4{a4 I6 − a5 I4 + a6 I2},

where:

I1 = a2a4 − a2
3, I2 = a4 − a2a3, I3 = a3 − a2

2,

I4 = a2a5 − a3a4, I5 = a5 − a2a4, I6 = a3a5 − a2
4.

Many articles have been published in the last few years looking for upper bounds for
the second-order Hankel determinant H2(2), the third-order Hankel determinant H3(1)
and the fourth hankel determinant H4(1), see for example [13,14]. Arif et al. [15] recently
researched the problem of the fourth Hankel determinant for the class of bounded turning
functions for the first time and successfully achieved the bound of H4,1( f ). Khan et al. [16]
examined a range of bounded-turning functions that are connected to sine functions and
found upper bounds for the third- and fourth-order Hankel determinants. As far as we
know, there is minimal work related with the fourth Hankel determinant in the literature.
The major objective of this work is to define a new subclass of analytic function using a
new technique, we then find the fourth Hankel determinant for the our newly defined
functions class.

2. A Set of Lemmas

In order to prove our desired results, we shall require the following Lemmas:

Lemma 1 (see [17]). If p(z) ∈ P , then there exist some x, z with |x| ≤ 1, |z| ≤ 1, such that:

2c2 = c2
1 +

(
4− c2

1

)
,

4c3 = c3
1 + 2c1x

(
4− c2

1

)
− c1x2

(
4− c2

1

)
+ 2
(

4− c2
1

)(
1− |x|2

)
z.
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Lemma 2 (see [18]). Let p(z) ∈ P , then:∣∣∣c4 + c2
2 + 2c1c3 − 3c2

1c2 − c4

∣∣∣ ≤ 2,∣∣∣c5
1 + 3c1c2

2 + 3c2
1c3 − 4c3

1c2 − 2c1c4 − 2c2c3 + c5

∣∣∣ ≤ 2, (7)∣∣∣∣∣∣
c6

1 + 6c2
1c2

2 + 4c3
1c3 + 2c1c5 + 2c2c4 + c2

3 − c3
2 − 5c4

1c2

−3c2
1c4 − 6c1c2c3 − c6

∣∣∣∣∣∣ ≤ 2,

|cn| ≤ 2, n = 1, 2, 3, . . .

Lemma 3 (see [19]). Let p(z) ∈ P , then:∣∣∣∣∣c2 −
∣∣c2

1

∣∣
2

∣∣∣∣∣ ≤ 2−
∣∣c2

1

∣∣
2

,

|cn+k − µcnck| < 2 0 ≤ µ ≤ 1, (8)∣∣∣cn+2k − µcnc2
k

∣∣∣ ≤ 2(1 + 2µ).

3. Main Results

We now state and prove the main results of our present investigation. The first result
is about to find the bounds for the first seven initial coefficients for our defined functions
class p∗. The proceeding results shall be used in order to prove the major result (the fourth
Hankel Determinant) for this define functions class.

Theorem 1. If the function f (z) ∈ p∗ and is of the form (1), then:

|a2| ≤ 1,

|a3| ≤ 0.666 67,

|a4| ≤ 0.5481125224, (9)

|a5| ≤ 0.608,

|a6| ≤ 0.5878016243,

|a7| ≤ 0.42857.

Proof. Since f (z) ∈ p∗, according to the definition of subordination, then there exists a
Schwarz function w(z) with w(0) = 0 and |w(z)| < 1, such that:

f
′
(z)

q1(z)
= 1 + sin w(z), (10)

where:

q1(z) ≺ ez

and we define a function:

p(z) =
1 + w(z)
1− w(z)

= 1 + c1z + c2z2 + · · · . (11)

It is easy to see that p(z) ∈ P and:

w(z) =
p(z) + 1
p(z)− 1

=
c1z + c2z2 + c3z3 + · · ·

2 + c1z + c2z2 + c3z3 + · · · .

On the other hand:
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1 + sin(w(z)) = 1 +
1
2

c1z +
(

1
2

c2 −
1
4

c2
1

)
z2 +

(
−1

2
c1c2 +

1
2

c3 +
5

48
c3

1

)
z3

+

(
5
16

c2c2
1 −

1
32

c4
1 −

1
4

c2
2 −

1
2

c1c3 +
1
2

c4

)
z4 . . .

(12)

and:

ew(z) = 1 +
1
2

c1z +
(

1
2

c2 −
1
8

c2
1

)
z2 +

(
−1

4
c1c2 +

1
2

c3 +
1
48

c3
1

)
z3

+

(
1
16

c2c2
1 +

1
384

c4
1 −

1
8

c2
2 −

1
4

c1c3 +
1
2

c4

)
z4 . . .

(13)

Using (12) and (13) we achieve:

(1 + sin w(z))ew(z) = c1z +

(
c2 −

c2
1
8

)
z2 +

(
c3 −

c1c2

4
−

c3
1

16

)
z3

+

(
c4 −

3c2c2
1

16
− c1c3

4
− 1c2

2
8

+
25c4

1
384

)
z4

+

(
c5 −

c2c3

4
− −c1c4

4
+

25c3
1c2

96
−

3c2c2
1

16
−

143c5
1

3840
−

3c2
1c3

16

)
z5 (14)

+

(
c6 −

3c4c2
1

16
−

c3
2c3

16
− −c1c5

4
+

25c3
1c3

96
+

25c2
1c2

2
64

−
143c2c4

1
768

−
743c6

1c3

46080
−

c2
3
8
− 3c1c2c3

8
− c2c4

4

)
z6 + · · · .

Additionally:

f
′
(z) = z +

∞

∑
n=2

nanzn−1 = 1 + 2a2z1 + 3a3z2 + 4a4z3 + 5a5z4 + · · · . (15)

When the coefficients of z, z2, z3 are compared between the Equations (14) and (15),
we get:

a2 =
c1

2
, a3 =

c2

3
−

c2
1

24
, a4 =

c1c2

16
−

c3
1

64
+

c3

4
, (16)

a5 = −
3c2

1c2

80
− c1c3

20
−

c2
2

40
+

c4

5
+

5c4
1

384
, (17)

a6 =
−c2c3

24
− c1c4

24
+

25c2c3
1

576
+

c5

6
−

3c1c2
2

96
−

143c5
1

23040
−

3c2
1c3

96
, (18)

a7 =
−3c2

1c4

112
−

c3
2

112
− c1c5

28
+

25c3c3
1

672
+

25c2
1c2

2
448

−
143c2c4

1
5376

+
743c6

1
322560

+
c6

7
−

c2
3

56
− 3c1c2c3

56
− c2c4

28
.

(19)

Using Lemma 2, we are easily able to obtain:

|a2| ≤ 1,

|a3| =
∣∣∣∣∣ c2

3
−

c2
1

24

∣∣∣∣∣.
Using Lemma 1, we get:

|a3| =
∣∣∣∣∣ c2

1 + x
(
4− c2

1
)

6
−

c2
1

24

∣∣∣∣∣ =
∣∣∣∣∣ c2

1
8
+

x
(
4− c2

1
)

6

∣∣∣∣∣. (20)
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We suppose that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Additionally, if we apply the triangle
inequality to the equation above, we get:

|a3| 6
c2

8
+

t
(
4− c2)

6
.

Assume that:

F(c, t) =
c2

8
+

t
(
4− c2)

6
.

Then there is what we achieved:

∂F
∂t

=

(
4− c2)

6
≥ 0,

F(c, t) is clearly increasing on [0, 1]. As a result, at t = 1 , the function F(c, t) can obtain
the maximum value:

max F(c, t) = F(c, 1) =
c2

8
+

(
4− c2)

6
.

Let:

G(c) =
2
3
− c2

24
, G

′
(c) = − c

12
≤ 0.

As a result, G(c) has a maximum value at c = 0, as seen below:

|a3| ≤ G(0) =
2
3

,

|a4| =
∣∣∣∣∣ c1c2

16
−

c3
1

64
+

c3

4

∣∣∣∣∣ =
∣∣∣∣∣14[c3 −

c1c2

8

]
+

c1

32

[
c2 −

c2
1

2

]∣∣∣∣∣.
Let c1 = c, c ∈ [0, 2]; by using Lemma 3, we get:

|a4| =
∣∣∣∣∣14[c3 −

c1c2

8

]
+

c
32

[
c2 −

c2
1

2

]∣∣∣∣∣ ≤ 1
2
+

c
32

[
2− c2

2

]
.

Now, suppose:

F(c) =
1
2
+

c
16
− c3

64
.

Obviously, we come across:

F
′
(c) =

1
16
− 3c2

64
,

the critical points of the function F(c) are c = ± 2
√

3
3 , and we have:

F
′′
(c) = F

′′
(

2
√

3
3

)
= −0.1082531755 < 0.

Hence, the maximum value of F(c) is given by:

|a4| ≤ F

(
2
√

3
3

)
=

1
2
+

c
16
− c3

64
= 0.5481125224,

|a5| =
∣∣∣∣∣−3c2

1c2

80
− c1c3

20
−

c2
2

40
+

c4

5
+

5c4
1

384

∣∣∣∣∣
=

∣∣∣∣∣15[c4 −
c1c3

4

]
−

5c2
1

192

[
c2 −

c2
1

2

]
− c2

40

[
c2 −

c2
1

2

]
−

11c2
1c2

960

∣∣∣∣∣.
Let c1 = c, c ∈ [0, 2] according to Lemma 3:
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|a5| ≤
2
5
+

5c2

192

[
2− c2

2

]
+

1
20

[
2− c2

2

]
+

23c2

480

=
1
2
+

3c2

40
− 5c4

384
.

Assume that:

F(c) =
1
2
+

3c2

40
− 5c4

384
.

Obviously, we come across:

F
′
(c) =

3c
20
− 5c3

96
.

Setting F
′
(c) = 0, we get:

c =
6
√

2
5

, c = 0.

So, for c = 6
√

2
5 , we achieved:

F
′′
(

6
√

2
5

)
= − 3

10
< 0.

As a result, at c = 6
√

2
5 , the function F(c) can obtain the maximum value:

|a5| ≤ F

(
6
√

2
5

)
=

76
125

= 0.608.

|a6| =
∣∣∣∣∣−c2c3

24
− c1c4

24
+

25c2c3
1

576
+

c5

6
−

3c1c2
2

96
−

143c5
1

23040
−

3c2
1c3

96

∣∣∣∣∣
=

∣∣∣∣∣18[c5 −
c1c4

3

]
+

1
24

[c5 − c1c3] +
143c3

1
11520

[
c2 −

c2
1

2

]

−3c1c2

96

[
c2 −

c2
1

2

]
+

59c3
1c2

3840
−

3c2
1c3

96

∣∣∣∣∣.
Let c1 = c, c ∈ [0, 2], by using Lemma 3 we get:

|a6| ≤
2
8
+

2
24

+
143c3

11520

[
2− c2

2

]
+

1
8

[
2− c2

2

]
+

59c3

1920

=
7

12
− c2

16
+

c3

18
− 143c5

23040
+

3c2

48
.

Assume:

F(c) =
7

12
+

c3

18
− 143c5

23040
.

Obviously, we come across:

F
′
(c) =

c2

6
− 143c4

4608
.

Setting F
′
(c) = 0, we get c = 0 is only one root lies in [0, 2]. So for c = 0, the function

F(c) can obtain the maximum value:
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|a6| ≤ F(0) =
7

12
= 0.5833.

|a7| =
∣∣∣∣∣−3c2

1c4

112
−

c3
2

112
− c1c5

28
+

25c3c3
1

672
+

25c2
1c2

2
448

−
143c2c4

1
5376

+
743c6

1
322560

+
c6

7
−

c2
3

56
− 3c1c2c3

56
− c2c4

28

∣∣∣∣∣
=

∣∣∣∣∣−3c2
1
[
c4 − c2

1
]

112
− 3c1c2[c3 − c1c2]

56
+

25c3
1[c3 − c1c3]

672

+
19c4

1
1792

[
c2 −

c2
1

2

]
−

c2
2

112

[
c2 −

c2
1

2

]

− 1
7

[
c6 −

c2c4

4

]
+

2453c6
1

322560
+

11c2
1c2

2
64

−
c2

3
56
− c1c5

28

∣∣∣∣∣.
By taking c1 = c, c ∈ [0, 2], along with the use of Lemma 3, we obtained:

|a7| ≤
5
14

+
2c
7
− 81c2

56
+

25c3

336
+

19c4

896
+

743c6

322560
.

Assume:

F(c) =
5

14
+

2c
7
− 81c2

112
+

25c3

336
+

19c4

896
+

743c6

322560
.

Obviously, we come across:

F
′
(c) =

2
7
− 81c

56
+

25c2

112
+

19c3

224
+

743c5

53760
.

When we set F
′
(c) = 0, we get c = 0.20449, which is the only root of F

′
(c) = 0,

belonging to the interval [0, 2], obviously, we find:

F
′′
(c) = −81

56
+

25c
56

+
57c2

224
+

743c4

10752
,

F
′′
(c = 0.20449) = −1.3439.

As a result, at c = 0.20449, F(c) reaches its maximum value:

|a7| ≤ F(0.20449) = 0.386000091.

Hence the proof is completed.

Theorem 2. If the function f (z) ∈ p∗ and is of the form (1), then we have:∣∣∣a3 − a2
2

∣∣∣ ≤ 2
3

. (21)

Proof. From (16), we have: ∣∣∣a3 − a2
2

∣∣∣ = ∣∣∣∣∣ c2

3
−

7c2
1

24

∣∣∣∣∣.
Using Lemma 1, we get:∣∣∣a3 − a2

2

∣∣∣ = ∣∣∣∣∣ c2
1 + x

(
4− c2

1
)

6
−

7c2
1

24

∣∣∣∣∣. (22)



Symmetry 2022, 14, 663 10 of 17

We suppose that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Additionally, if we apply the triangle
inequality to the equation above, we get:∣∣∣a3 − a2

2

∣∣∣ ≤ t
(
4− c2)

6
− c2

8
.

Assume that:

F(c, t) =
∣∣∣a3 − a2

2

∣∣∣ ≤ t
(
4− c2)

6
− c2

8
.

Obviously, we find:

∂F
∂t

=

(
4− c2)

6
≥ 0,

F(c, t) is clearly increasing on [0, 1]. As a result, at t = 1 , the function F(c, t) can obtain
the maximum value:

max F(c, t) = F(c, 1) =

(
4− c2)

6
− c2

8
=

2
3
− c2

24
.

Let:

G(c) =
2
3
− c2

24

G
′
(c) = − c

12
≤ 0,

G(c) is clearly decreasing on [0, 2]. As a result, at c = 0 , the function G(c) can obtain
the maximum value: ∣∣∣a3 − a2

2

∣∣∣ ≤ G(0) =
2
3

.

Hence, proving Theorem 2.

Theorem 3. If the function f (z) ∈ p∗ and of the form (1), then we have:

|a2a3 − a4| ≤ 0.540256083. (23)

Proof. From (16), we have:

|a2a3 − a4| =

∣∣∣∣∣ c1c2

6
−

c3
1

48
− c1c2

16
+

c3
1

64
− c3

4

∣∣∣∣∣
=

∣∣∣∣∣5c1c2

48
−

c3
1

192
− c3

4

∣∣∣∣∣.
We can deduce from the Lemma 1 that:

|a2a3 − a4| =

∣∣∣∣∣∣−c3
1

64
+

7c1x
(
4− c2

1
)

96
+

c1x2(4− c2
1
)

16
−

(
4− c2

1
)(

1− |x|2
)

z

8

∣∣∣∣∣∣.
We suppose that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Additionally, if we apply the triangle

inequality to the equation above, we get:

|a2a3 − a4| ≤
c3

64
+

7ct
(
4− c2)
96

+
ct2(4− c2)

16
+

(
4− c2)

8
.

Suppose that:

F(c, t) =
c3

64
+

7ct
(
4− c2)
96

+
ct2(4− c2)

16
+

(
4− c2)

8
.
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Then, we obtain:
∂F
∂t

=
7c
(
4− c2)
96

+
ct
(
4− c2)

8
≥ 0.

As a result, F(c, t) is an increasing function about t on the closed interval [0, 1]. This
means that F(c, t), reaches its maximum value at t = 1, which is:

max F(c, t) = F(c, 1) =
c3

64
+

7c
(
4− c2)
96

+
c
(
4− c2)

16
+

(
4− c2)

8
.

Now, define:

G(c) =
c3

64
+

7c
(
4− c2)
96

+
c
(
4− c2)

16
+

(
4− c2)

8

=
1
4
+

13c
24
− c2

8
− 23c3

192
.

Obviously, we find:

G
′
(c) =

13
24
− c

4
−23c2

64
.

When we set G
′
(c) = 0, we get c = −24+

√
29280

138 , obviously, we find:

G
′′
(c) = −1

4
− 23c

32
,

G
′′
(c) = G

′′
(
−24 +

√
29280

138

)
= −1.066043457.

As a result, the function G(c) reaches its greatest value at c c = r = −24+
√

29280
138 , which

is also:

|a2a3 − a4| = G(c) = G

(
−24 +

√
29280

138

)
≤ 0.540256083.

The proof of Theorem 3 is completed.

Theorem 4. If the function f (z) ∈ p∗ and is of the form (1), then we have:∣∣∣a2a4 − a2
3

∣∣∣ ≤ 17
18

. (24)

Proof. From (16), we have:∣∣∣a2a4 − a2
3

∣∣∣ =

∣∣∣∣∣∣ c
2
1c2

32
−

c4
1

128
+

c1c3

8
−
(

c2

3
−

c2
1

24

)2
∣∣∣∣∣∣

=

∣∣∣∣∣17c2
1c2

288
−

11c4
1

64
+

c1c3

8
−

c2
2

9

∣∣∣∣∣.
As a result of Lemma 1, we obtain:
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∣∣∣a2a4 − a2
3

∣∣∣ = ∣∣∣∣∣17c2
1c2

288
−

11c4
1

64
+

c1c3

8
−

c2
2

9

∣∣∣∣∣
=

∣∣∣∣∣∣7c2
1x
(
4− c2

1
)

192
−

c2
1x2(4− c2

1
)

32
+

c1
(
4− c2

1
)(

1− |x|2
)

z

16

+
x2(4− c2

1
)2

36
+

3c4
1

128

∣∣∣∣∣.
We suppose that |x| = t ∈ [0, 1], c1 = c ∈ [0, 2]. Additionally, if we apply the triangle

inequality to the equation above, we get:

∣∣∣a2a4 − a2
3

∣∣∣ ≤ 7tc2(4− c2)
192

+
c2t2(4− c2)

32
+

t2(4− c2)2

36
+

(
4− c2)

2
+

3c4

128
.

Suppose that:

F(c, t) =
7tc2(4− c2)

192
+

c2t2(4− c2)
32

+
t2(4− c2)2

36
+

(
4− c2)

2
+

3c4

128
.

Obviously, we find:

∂F
∂t

=
7c2(4− c2)

192
+

tc2(4− c2)
16

+
t
(
4− c2)2

18
≥ 0.

As a result, F(c, t) is an increasing function about t on the closed interval [0, 1]. This
means that F(c, t), reaches its maximum value at t = 1, which is:

max F(c, t) = F(c, 1) =
7c2(4− c2)

192
+

c2(4− c2)
32

+

(
4− c2)2

36
+

(
4− c2)

2
+

3c4

128
.

Now, define:

G(c) =
7c2(4− c2)

192
+

c2(4− c2)
32

+

(
4− c2)2

36
+

(
4− c2)

2
+

3c4

128

=
17
18
− 11c2

144
− 19c4

1152
.

Then:

G
′
(c) = −11c

72
− 19c3

288
≤ 0.

This means that at c = 0, the function G(c) can reach its maximum value:∣∣∣a2a4 − a2
3

∣∣∣ = G(c) = G(0) ≤ 17
18

.

We complete the proof of Theorem 4.

Theorem 5. If the function f (z) ∈ p∗ and is of the form (1), then we have:

|a2a5 − a3a4| ≤
1
3

. (25)

Proof. From (16) and (17), we have:
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|a2a5 − a3a4| =
∣∣∣∣∣9c3

1c2

640
−

7c2
1c3

480
+

c1c2
2

30
+

c1c4

10
−

3c5
1

512
− c2c3

12

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
9c3

1

[
c2 −

c2
1
2

]
640

−
c3

[
c2 −

c2
1
2

]
12

− 9c1[c4 − c1c3]

160

+

7c1

[
c4 −

16c2
2

21

]
160

+
33c5

1
2560

∣∣∣∣∣∣∣∣.
Using Lemma 3, we obtain:

|a2a5 − a3a4| ≤
9c3
[
2− c2

2

]
640

+

[
2− c2

2

]
6

+
c
5
+

33c5

2560

=
1
3
+

c
5
− c2

12
+

9c3

320
+

3c5

512
.

Assume that:

F(c) =
1
3
+

c
5
− c2

12
+

9c3

320
+

3c5

512
.

Obviously, we find:

F′(c) =
1
5
− c

6
+

27c3

320
+

15c4

512
.

When we set F
′
(c) = 0, we get c = 0, c = 1.2678. Consequently, we find:

F′′(c) = −1
6
+

27c
160

+
15c3

512
,

F′′(0) = −1
6
< 0.

Consequently, at c = 0, F(c) reaches its maximum value, which is:

|a2a5 − a3a4| ≤ F(0) ≤ 1
3

.

We complete the proof of Theorem 5.

Theorem 6. If the function f (z) ∈ p∗ and is of the form (1), then we have:

|a5 − a2a4| ≤
2147
3680

. (26)

Proof. From (16) and (17), we have:

|a5 − a2a4| =
∣∣∣∣∣ c4

1
48
− 7c1c3

40
−

3c1c2
2

160
−

c2
2

40
+

c4

5

∣∣∣∣∣
=

∣∣∣∣∣
[
c4

1 + c2
2 + 2c1c3 − 3c2

1c2 − c4
]

40
+

3c2
1
[
c2 − c2

1�2
]

32

−
c4

1
960

+
7[c4 − 40c1c3�56]

40

∣∣∣∣∣.
Letting |x| = t ∈ [0, 1], c1 = c ∈ [0, 2] and using Lemmas 2 and 3, we obtain:
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|a5 − a2a4| ≤
2

40
+

3c2[2− c2�2
]

32
+

7
20

+
c4

960
.

Suppose that:

F(c) =
2
5
+

3c2

16
− 23c4

480
.

Obviously, we find:

F′(c) =
3c
8
− 23c3

120
.

When we set F
′
(c) = 0, we get c = 0, c = ± 3

√
115

23 . Consequently, we find:

F′′(c) =
3
8
− 23c2

40
, F′′

(
3
√

115
23

)
= −0.7499999.

This means that F(c) reaches its maximum value at c = 3
√

115
23 , which is:

|a5 − a2a4| ≤ F

(
3
√

115
23

)
=

2147
3680

.

The proof of the Theorem 6 is now complete.

Theorem 7. If the function f (z) ∈ p∗ and is of the form (1), then we have:∣∣∣a5a3 − a2
4

∣∣∣ ≤ 7
12

. (27)

Proof. From (16) and (17), we have:∣∣∣a5a3 − a2
4

∣∣∣ = ∣∣∣∣∣9c2
1c2

2
768

− 23c1c2c3

480
−

c3
2

120
+

c2c4

15
+

133c4
1c2

23040

+
19c3

1c3

1920
−

c2
1c4

120
−

29c6
1

36864
−

c2
3

16

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
c2

15

[
c4 −

23c1c3

2

]
− c3

16

[
c3 −

23c1c2

2

]
−

c2
2

[
c2 −

c2
1
2

]
120

−
11c2

1c2

[
c2 −

c2
1
2

]
3840

+
19c3

1
1920

[
c3 −

9600c1c2

21888

]
−

c2
1c4

120
−

29c6
1

36864

∣∣∣∣∣∣∣∣.
After that, use Lemmas 2 and 3, we obtain:

∣∣∣a5a3 − a2
4

∣∣∣ ≤ 4
15

+
1
4
+

1
30

[
2− c2

2

]
+

11c2

1920

[
2− c2

2

]
+

19c3

960
+

c2
1c4

120
− 29c6

36864
.

Assume that:

F(c) =
4

15
+

1
4
+

1
30

[
2− c2

2

]
+

11c2

1920

[
2− c2

2

]
+

19c3

960
+

c2c4

120
− 29c6

36864

=
7

12
+

11c2

960
+

19c3

960
− 11c4

3840
+

29c6

36834
.
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Then for all c ∈ [0, 2] we have:

F′(c) =
11c
480

+
19c2

320
− 11c3

960
+

29c5

6144
.

When we set F
′
(c) = 0, we get c = 0, which is the only root of F

′
(c) = 0, belonging to

the [0, 2], obviously, we find:

F′′(c) = − 7
160

+
19c
160
− 11c2

320
+

145c4

6144
,

F′′(0) = − 7
160

.

This means that F(c) reaches its maximum value at c = 0, which is:∣∣∣a5a3 − a2
4

∣∣∣ ≤ 7
12

. (28)

We complete the proof of Theorem 7.

We now state and prove the result related to fourth Hankel Determinant. We will use
all the above results in order to obtain the bound for H4(1).

Theorem 8. If the function f (z) ∈ p∗ and is of the form (1), then we have:

|H4(1)| ≤ 1.15 (29)

Proof.

H4(1) = a7

{
a3

(
a2a4 − a2

3

)
− a4(a4 − a2a3) + a5

(
a3 − a2

2

)}
− a6

{
a3(a2a5 − a3a4)− a4(a5 − a2a4) + a6

(
a3 − a2

2

)}
{
−a6a3(a2a5 − a3a4)− a4(a5 − a2a4) +

(
a6a3 − a2

2

)}
+ a5

{
a3

(
a3a5 − a2

4

)
− a5(a5 − a2a4) + a6(a4 − a2a3)

}
− a4

{
a4

(
a3a5 − a2

4

)
− a5(a2a5 − a3a4) + a6(a4 − a2a3)

}
,

so, by applying the triangle inequality, we obtain:

H4(1) = |a7||a3|
∣∣∣a2a4 − a2

3

∣∣∣+ |a4||a4 − a2a3|+ |a5|
∣∣∣a3 − a2

2

∣∣∣
+ |a6||a3||a2a5 − a3a4|+ |a4||a5 − a2a4|+ |a6|

∣∣∣a3 − a2
2

∣∣∣
+ |a6||a3||a2a5 − a3a4|+ |a4||a5 − a2a4|+ |a6|

∣∣∣a3 − a2
2

∣∣∣
+ |a5||a3|

∣∣∣a3a5 − a2
4

∣∣∣+ |a5||(a5 − a2a4)|+ |a6||a4 − a2a3|

+ |a4|2
∣∣∣a3a5 − a2

4

∣∣∣− |a5||a2a5 − a3a4|+ |a6||a4 − a2a3|. (30)

Next, substituting Equations (9), (21), (23)–(28) into (30), we easily get the desired
assertion as given in (29).

4. Conclusions

In Geometric Function Theory, many authors have studied and investigated the third
Hankel determinant problems for different subclasses of analytic functions as described
in the introduction section. Recently, the investigation of the third and fourth Hankel
determinant got attractions of many well-known mathematicians see for example [20–27].
We have essentially motivated by the recent research going on, in this paper, we have first



Symmetry 2022, 14, 663 16 of 17

considered the class of normalized holomorphic functions f in such way that the ratio f ′(z)
q1(z)

is subordinate to q2(z), where q1(z) and q2(z) are non-vanishing holomorphic functions in
the open unit disc. We have then derived the fourth Hankel determinant bound for our
defined functions class.

In concluding our present investigation, one may attempt to produce the similar
bounds for different subclasses of analytic functions. The current results presented in this
article can be derive by means of certain q-difference operators.
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26. Zaprawa, P.; Obradović, M.; Tuneski, N. Third Hankel determinant for univalent starlike functions. Rev. Real Acad. Cienc. Exactas
Fis. Nat. Mat. 2021, 115, 49. [CrossRef]

27. Zhang, Y.H.; Tang, H. A Study of Fourth-Order Hankel Determinants for Starlike Functions Connected with the Sine Function. J.
Funct. Spaces 2021, 2021, 9991460.

http://dx.doi.org/10.1016/j.crma.2015.03.003
http://dx.doi.org/10.1016/j.aml.2012.04.002
http://dx.doi.org/10.4134/JKMS.2015.52.6.1139
http://dx.doi.org/10.1186/1029-242X-2013-281
http://dx.doi.org/10.1155/2021/6116172
http://dx.doi.org/10.3390/math8061041
http://dx.doi.org/10.1186/1029-242X-2013-412
http://dx.doi.org/10.1007/s13398-020-00977-2

	Introduction
	A Set of Lemmas
	Main Results
	Conclusions
	References

