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Abstract: The main contribution of this review is to show some relevant relationships between three
geometric structures on a connected Lie group G, generated by the same dynamics. Namely, Linear
Control Systems, Almost Riemannian Structures, and Degenerate Dynamical Systems. These notions
are generated by two ordinary differential equations on G: linear and invariant vector fields. A
linear vector field on G is determined by its flow, a 1-parameter group of Aut(G), the Lie group of
G-automorphisms. An invariant vector field is just an element of the Lie algebra g of G. The Jouan
Equivalence Theorem and the Pontryagin Maximum Principal are instrumental in this setup, allowing
the extension of results from Lie groups to arbitrary manifolds for the same kind of structures which
satisfy the Lie algebra finitude condition. For each structure, we present the first given examples;
these examples generate the systems in the plane. Next, we introduce a general definition for these
geometric structures on Euclidean spaces and G. We describe recent results of the theory. As an
additional contribution, we conclude by formulating a list of open problems and challenges on these
geometric structures. Since the involved dynamic comes from algebraic structures on Lie groups,
symmetries are present throughout the paper.

Keywords: linear control systems; almost Riemannian structures; degenerate dynamical systems;
singular locus

MSC: 93B05; 49j15; 53c17

1. Introduction

This review aims to give some information about three geometric structures on Lie
groups that essentially depend on the same kind of dynamics. Namely, Linear Control
Systems (LCS), Almost Riemannian Structures (ARS), and Degenerate Dynamical Systems
(DDS). These notions are strongly related through two particular ordinary differential equa-
tions on G: linear and invariant vector fields. A linear vector field on G is determined by
its flow, a 1-parameter group of Aut(G), the Lie group of G-automorphisms. An invariant
vector field is just an element of the Lie algebra g of G.

Our contribution is two-fold. Firstly, we show relevant relationships between these
geometric structures on Lie groups in more general setups. For instance, the Jouan Equiv-
alence Theorem allows us to classify on an arbitrary differential manifold M: Nonlinear
Control Systems, Almost Riemannian Structures, and Degenerate Dynamical Systems,
which satisfy the finitude condition of the Lie algebra L generated by their dynamic. There-
fore, from the corresponding linear structure on a determined Lie group G, it is possible to
give information about the same type of structures on M whenL is finite dimensional, deter-
mining G. This is one of the main reasons to develop linear structures on groups. Secondly,
we formulate a list of open problems and challenges on these geometric structures.
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From a linear control system point of view, the linear dynamics represents the drift
to be controlled, and the invariant ones are the control vectors. Thus, the trajectories of
the time-dependent vector fields induced by the family of the admissible control function
U play the role of determining integral curves and strategies to move an initial condition
to another desired one. So, the challenges here are first to characterize the controllability
property of the system. Secondly, to analyze the existence, uniqueness and topological and
algebraic properties of the control sets, i.e., regions of the manifold where controllability
holds inside of its interior. Finally, if it is possible to reach a desired state, then: how to
compute and optimal synthesis which reach the target at minimum time? or with minimum
energy, etc. In this context, the Pontryagin Maximum Principle is instrumental [1].

An almost Riemannian structure can be seen, at least locally, as an orthonormal ref-
erence frame that degenerates in a singular set called the locus, where the frame lost
dimension, see [2,3]. In our setup, there is a natural ARS called a simple almost Riemannian
structure defined by linear and invariant vector fields such as a LCS. In [4], the authors
establish the Hamiltonian equations of a simple ARS on G. This case is quite favorable
because the co-tangent bundle T∗G of G is trivial. It allows determination and decomposi-
tion of the Hamiltonian equations generated by the system on the identity element of the
manifold T∗G ∼= g∗ × G. Here, g∗ is the dual space of the Lie algebra g. Thus, to construct
the complete set of optimal arclength geodesics explicitly, the so-called optimal synthesis
of a given ARS on a Lie group is a crucial issue to challenge.

A degenerate dynamical system is defined by a symplectic structure which becomes
singular in a subset also called the locus. In this set up, the general problem is to understand
the evolution of the dynamic near to this singular set. As a matter of fact, the classical
Poincaré classification takes care of isolated singularities of the Hamiltonian. In this new
context, the singularities comes from the degeneracy of the symplectic form, normally on
submanifolds of co-dimension 1, which are the barriers, the walls. If some trajectories reach
the locus, what kind of dynamic behavior could we expect inside the singular set, or when
the trajectory leaves the locus? If the trajectory remains in the locus forever, it means that
the “trajectory” freezes some coordinates. Therefore, the main challenge here is to extend
the dynamic classification of Poincaré for regular systems to this particular degenerate
situation. On the other hand, intend to face Arnold’s challenge on degenerate symplectic
structures [5]. Following a suggestion of a reviewer, we also include the references [6,7].

A full classification of these three geometric structures in the low-dimensional case
would answer this question and provide a series of examples of such structures, which is
usually a starting point for more general results. Since the involved dynamics come from
algebraic structures on Lie groups, many symmetries are present throughout the paper.

The structure of the review is as follows. In Section 2, we introduce the geometric
structures on Euclidean spaces. We start with examples on the plane that motivated the
study of these three geometric structures. Precisely, the time-optimal problem of a vehicle
moving through a line appears in [1]. The Grushin plane [8] is the first known example
of an almost Riemannian structure. Finally, we introduce a degenerate dynamic system
example which appears in [9]. After that, we state these structures on Rn. Section 3 explains
the notion of linear vector fields on Lie groups and their associated derivation of the Lie
algebra g. Some relationships involving the exponential maps are given. As a concrete
example, we compute all the linear and invariant vector fields on solvable Lie groups of
dimensions two and three. We do the same on the simple connected Heisenberg Lie group
of dimension three. Section 4 contains the definitions of LCS, ARS, and DDS on the Lie
group G. In Section 5, we establish the Pontryagin Maximum Principle on a differential
manifold and the Hamiltonian function associated to an almost Riemannian structure
appears in [4]. As a particular case, we obtain the Hamiltonian equations for a LCS on
G. On the other hand, we also include the Jouan Equivalence Theorem [10], which is one
of the reasons why it is relevant to develop LCS on Lie groups and homogeneous spaces,
and ARS. In Section 6 we mention some recent results on any of the geometric structures.
Finally, Section 7 includes challenges and open problems for LCS, ARS and DDS.
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2. The Geometric Structures on Euclidean Spaces

In this section, we start by presenting three examples on the plane R2, which give rise
to the geometrical structures we would like to show. From that, we define these structures
on the n-dimensional Euclidean space Rn.

2.1. A Pontryagin Example of a Linear Control System on the Plane

Let us consider a train moving through a line without friction. An optimization
problem arises: stop the train in a given station in the minimum time [1].

We denote with x(t) the distance from the train to the origin (the station). Therefore,
ẋ(t) = y(t) denotes the velocity, and the acceleration is ẏ(t) = u(t). Here, u belongs to U ,
the family of the local integrable measurable functions u : [0, Tu]→ Ω = [−1, 1] ⊂ R. In ad-
dition, the boundary of Ω represents the maximum and minimum normalized acceleration.

In a matrix form, this model reads as follows,

ΣR2 :
˙(

x(t)
y(t)

)
=

(
0 1
0 0

)(
x(t)
y(t)

)
+ u(t)

(
0
1

)
, (x(t), y(t)) ∈ R2, t ∈ R.

Any control u ∈ U generates an ordinary differential equation, and the optimiza-
tion problem here is: given an initial condition (x0, y0) ∈ R2 find u ∈ U such that the
integral curve of the system starting on (x0, y0) and with control u reaches the origin at
minimum time.

The dynamic of the system comes from the linear vector field A =

(
0 1
0 0

)
, the in-

variant vector field ∂
∂y generated by b =

(
0
1

)
, and U . By computing the Lie algebra of

ΣR2 through the Lie bracket [A, b] = −Ab, we obtain

SpanLA{A, b}(x, y) = T(x,y)R2 ∼= T(0,0)R2 = R2 = Span{b, Ab}. (1)

2.2. Linear Control Systems on Euclidean Spaces

In a Euclidean general frame, a linear control system ΣRn on Rn is written as

ẋ(t) = Ax(t) + Bu(t) = Ax(t) +
m

∑
j=1

ujbj, u ∈ U .

The vector fields bj, j = 1, . . . , m are the column vectors of the “cost matrix” B.
By definition [11], the system ΣRn depends on two classes of dynamics. The drift of

the system, i.e., the linear differential equation ẋ(t) = Ax(t), to be controlled. Moreover,
the invariant control vectors bj on Rn.

The flow of the vector field induced by the matrix A applied to the starting point x
reads as x(t) = etAx.. And, the analytical solution φ(x, u, t) of ΣRn with initial condition
x ∈ Rn and control u ∈ U , is given by

φ(x, u, t) = etA
(

x +
∫ t

0
e−τABu(τ)dτ

)
.

2.3. An almost Riemannian Structure Example. The Grushin Plane

Consider a 2-dimensional manifold M and X, Y two linear independent vector
fields on M. The frame {X, Y} induced a well defined Riemannian metric. On the other
hand, assume

dim{X, Y}(x) ≤ 2, SpanLA{X, Y}(x) = 2, x ∈ M. (2)

According to the Chow–Rashevskii Theorem [12,13], still there exists a locally defined
metric on M, but with singularities on the set called loci where X, Y are linear dependent.
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This situation is shown by the following example, which appears in the study of a certain
class of hypoelliptic operators [8].

The Grushin plane is the Abelian group R2 equipped with an almost Riemannian
metric determined by the vector fields X = ∂

∂x and Y = x ∂
∂y . Precisely, it is a Riemannian

manifold except on the particular subset

Z = {(0, y) : y ∈ R} (3)

called the (singular) locus, where Y = 0. It is worth mentioning that the Lie bracket
[X, Y] = ∂

∂y . Therefore, for any (x, y) ∈ R2

SpanLA{X, Y}(x, y) ∼= R2. (4)

From [2], the associated metric and the curvature are given by

g = dx2 +
1
x2 dy2, k = − 2

x2 . (5)

As for the LCS example above, we notice that x ∂
∂y is a linear vector field determined

by the matrix
(

0 0
1 0

)
, and ∂

∂x = (1, 0) which is invariant by translation on the plane.

Thus, both systems depend on the same kind of dynamics.

2.4. Almost Riemannian Structure on Euclidean Spaces

On the Euclidean space of arbitrary dimension n, an almost Riemannian structure can
be defined as follows.

Definition 1. A simply Almost Riemannian Structure (ARS) on Rn is determined by the family

F = {A, b1, . . . , bm}, (6)

1. A : Rn → Rn is a linear map
2. b1, . . . , bm ∈ Rn

3. rank(F (x)) = n, for x in an open and dense subset of Rn

4. TxRn = rank(B, AB, . . . , An−1B), for any x ∈ Rn.

Here, the column vectors of B are the invariant vector fields bj, j = 1, . . . , m.

2.5. A Degenerate Dynamic System Example

Similar dynamic behavior to the LCS in 2.0.2 and the ARS in 2.0.3 arises when con-
sidering the degenerate dynamical system model appearing in [9]. Let us consider the

real matrix Q(t) =
(

0 x(t)
−x(t) 0

)
of order 2, and the associated singular differential

equations

Q(t)
˙(

x(t)
y(t)

)
=

(
p
q

)
, pq 6= 0. (7)

If for any real time t, x(t) 6= 0 we obtain

˙(
x(t)
y(t)

)
=

1
x(t)

(
−q
p

)
(8)

The singular set x = 0 acts a barrier for the dynamics. However, geodesics can cross
this barrier without any singularities.
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2.6. Degenerate Dynamical Systems on Euclidean Spaces

On the Euclidean space Rn, a degenerate structure can be defined through skew-
symmetric vector fields A on the tangent bundle. Precisely, a family {A(x) : x ∈ Rn} of
skew-symmetric linear maps such that

A(x) : TxRn → TxRn,< A(x)v, w >=< v,A(x), w >, (9)

and there exists an open and dense U in Rn with

detA(x) 6= 0, x ∈ U. (10)

Let b ∈ Rn. A Degenerate Dynamical System on Euclidean spaces reads

A(x)(ẋ) = b, (11)

which is determined by an algebraic-dynamical equation.
The examples in this section have several common issues. At first place, the dynamic of

these structures is determined by linear and invariant vector fields. Secondly, by computing
the corresponding Lie brackets, the Lie Algebra Rank Condition (LARC) is satisfied, i.e.,

SpanLA{X, Y}(x, y) ∼= R2. (12)

In any case, the existence of a metric is guaranteed by the Chow–Rashevskii Theo-
rem [13]. To determine the geodesics, the Pontryagin Maximum Principle is instrumental.
Because of that, in Section 5 we establish the Hamiltonian functions for an ARS on G, and
the Pontryagin Maximum Principle for a time optimal problem in LCS [14]. In order to
compute geodesics for an ARS on G, we note that reference [4] contains the Hamiltonian
equation, including the normal and abnormal cases.

In the following, we define the structures on a connected Lie group G of arbitrary
dimension. We establish some relevant results and list some challenges and open problems
for research.

3. From Euclidean Spaces to Lie Groups

For the Lie theory we suggest to the readers the references [15–17]. Let G be a con-
nected Lie group with Lie algebra g considered as the set of left-invariant vector fields on
G. In this section, we first explain how to extend the notion of a linear differential equation
from G = Rn to arbitrary group G. After that, we list some of it properties, especially those
related with the exponential map

expG : g→ G, Y ∈ g→ Y1(e). (13)

where {Yt : t ∈ R} is the flow associated to the left invariant vector field induced by the
vector Y ∈ TeG, and e denotes the identity element of G.

A particular case of this extension was first provided by [18]. In [19], the authors
introduced a general definition involving the notion of the normalizer which is out of the
scope of this review. Therefore, we prefer to give a direct generalization based on two
different but dependent facts from the distinguished dynamics on Euclidean spaces. Let A
be a real matrix of order n and b ∈ Rn.

First, the flow induced by A satisfied{
etA : t ∈ R

}
⊂ Aut+(n,R). (14)

Here, Aut+(n,R) denotes the connected component containing the identity element
of Aut(Rn), the real invertible matrices of order n. On the other hand, the Lie bracket
[A, b] = −Ab ∈ Rn. It turns out that [A, ] : rn → rn leaves the Lie algebra invariant
rn ∼= T0Rn of Rn.
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For the following definition and results, we follow references [15,19].

Definition 2. A linear vector field X on G is determined by its flow {Xt : t ∈ R} which is a
1-parameter subgroup of Aut(G), the Lie group of G-automorphism.

Even though in general X is a nonlinear vector field, we keep the linear name based
on the picture coming from the following equivalence [20],

X (gh) = (dLg)hX (h) + (dRh)gX (g), for all g, h ∈ G. (15)

Recall that a derivation on a Lie algebra (g, [, ]) is a linear map D : g → g which
satisfied the Leibnitz rule,

D[X, Y] = [DX, Y] + [X,DY], X, Y ∈ g. (16)

We denote by ∂g the Lie algebra of g-derivations.
From the Jacobi identity property of the Lie algebra, we can associate to each X an

element D ∈ ∂g determined by the formula

DY = −[X , Y](e), for all Y ∈ g.

For a real time t the relationship between Xt and D is given through

(dXt)e = etD , for any t ∈ R. (17)

Furthermore, from the commutative diagram

g
(dXt)e−→ g

exp ↓ ↓ exp
G −→

Xt
G

we obtain the formula

Xt(exp Y) = exp(etDY), for all t ∈ R, Y ∈ g,

which allows computing of Xt(exp Y). In fact, since the group is connected, any g ∈ G can
be expressed as a finite product of exponentials, andXt respects the algebraic structure of G.

Reciprocally, if the group is simply connected, any derivationD ∈ ∂g has an associated
linear vector field X = X D through the same formula above. For connected Lie groups,
the same is true when D ∈ aut(G), the Lie algebra of Aut(G) (see [19]). More precisely,

aut(G) ( ∂g and aut(G) = ∂g⇔ G is connected and simply connected.

A particular linear dynamics comes from inner automorphisms. Consider an element
Z ∈ g. Since Z is an invariant vector field, the solution starting on g ∈ G is obtained by left
translation of the solution through the identity element.

In other words,
Zt(g) = expG(tZ)g, g ∈ G

defines by conjugation a 1-parameter group of inner automorphisms on G by

Xt(x) = Z−t(e) g Zt(e), g ∈ G.

Thus, Xt ∈ Aut(G) for any t ∈ R. In this case, the associated derivation D : g → g

reads D(Y) = −[Z, Y], Y in g.
To better understand the algebraic objects introduced here, we finish this section with

examples on low-dimensional groups. The Affin group on R2, a solvable 3-dimensional
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group, and the classical Heisenberg Lie group are teh examples given. In any case, we
explicitly show a basis of the Lie algebra, the Lie algebra of derivations, the associated
linear vector fields, and their corresponding flows.

Example 1. The solvable 2-dimensional group.

The 2-dimensional affine group is the semi-direct product G = R ×ρ R, with Lie
algebra the semi-direct product g = R×θ R, see [21] for details. Here, the action on G and
g are given by ρx = ex and θ = IdR, respectively.

The product in G reads

(x1, y1) ∗ (x2, y2) = (x1 + x2, y1 + ex1 y2).

Any (α, β) ∈ R2 determines a left-invariant vector field as follows

Y(x, y) = (α, exβ).

Furthermore, the bracket between two elements of R×θ R is

[(α1, β1), (α2, β2)] = (0, α1β2 − α2β1).

Let Y1 and Y2 be the canonical basis of g. From the previous formula we obtain the
rule

[
Y1, Y2] = Y2. It follows that the Lie algebra is solvable [17].

The exponential map is explicitly given by,

expG(a, b) =

{
(0, b), if a = 0(

a, 1
a (e

a − 1)b
)

if a 6= 0
,

The Lie algebra of g-derivations is 2-dimensional. Precisely,

∂g =

{
D =

(
0 0
a b

)
: a, b ∈ R.

}
(18)

Since G is connected and simply connected, any pair (a, b) ∈ R2 induces a well defined
linear vector field on G which reads as

X (x, y) = (0, by + (ex − 1)a). (19)

The associated 1-parameter group of automorphisms defining its flow is given by
the formula

Xt(x, y) =

{
(x, y + t(ex − 1)a) if b = 0,(

x, etby + 1
b (e

tb − 1)(ex − 1)a
)

if b 6= 0.

For the next two examples, we consider connected and simple connected groups of
three dimensions.

Example 2. A non-nilpotent 3-dimensional solvable group.

Let us consider the solvable Lie algebra g as the semi-direct product R⊗θ R2 with the
bracket rule

[(z1, v1), (z2, v2)] = (0, z1θv2 − z2θv1) ∈ g.

Here, θ =

(
0 0
0 1

)
, see [22] for details.
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By considering the canonical basis of g, we obtain

g = Span
{

Y1 = (1, 0, 0), Y2 = (0, 1, 0), Y3 = (0, 0, 1)
}

.

Therefore,
[
Y1, Y2] = 0, and [Y1, Y3] = Y3. The connected and simply connected

Lie group G with Lie algebra g is given by the semi-direct product G = R ⊗ρ R2 via
ρ(t) = etθ . Recall that

etθ =
∞
Σ

n=0

tn

n!
θn, θ0 = Id, t ∈ R.

A left-invariant vector field is written as Y = (a, w) ∈ g with flow

Yt = (a, etθw), t ∈ R (20)

On the other hand, a general shape of a linear vector field on G reads as

X (t, v) = (0,D∗v + Λtξ). (21)

In this context, D∗ is defined through the formula D(0, v) = (0,D∗v), where (0, ξ) =

D(1, 0), and Λt =

(
t 0
0 et − 1

)
.

Example 3. Let us consider the 3-dimensional connected and simply connected Heisenberg Lie
group G homemorphic to R3,

G =


 1 x z

0 1 y
0 0 1

; x, y, z ∈ R

, (22)

with Lie algebra
g = Span

{
Y1, Y2, Y3

}
, (23)

where the only non null brackets are
[
Y1, Y2] = Y3. The Lie algebra ∂g has dimension six and is

given by

∂g =

D =

 a b 0
c d 0
e f a + d

 : a, b, c, d, e, f ∈ R

.

Any invariant vector field is a linear combination of the basis of g. Furthermore, according
to [23], the linear vector field associated with a derivation D ∈ ∂g reads as follows

X (x, y, z) = (ax + dy)
∂

∂x
+ (bx + ey)

∂

∂y
+ (

b
2

x2 +
d
2

y2 + cx + f y + (a + e)z)
∂

∂z
. (24)

4. The Corresponding Structures on Lie Groups

Here, we give a general definition of these three structures on a Lie group G.

4.1. Linear Control System

A linear control system ΣG on G is determined by the family,

ΣG : ˙g(t) = X (g(t)) +
m

∑
j=1

uj(t)Y j(g(t)), g(t) ∈ G, t ∈ R, u ∈ U ,

of ordinary differential equations parametrized by the class U = L1
loc(Ω), of admissible

controls, i.e., by locally integrable functions u : [0, Tu] → Ω ⊂Rm. The set Ω is closed
and 0 ∈ int(Ω). The drift X is a linear vector field. Furthermore, for any j, the control
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vector Y j ∈ g is considered as a left-invariant vector field. If Ω = Rm, the system is called
unrestricted. Otherwise, ΣG is restricted [19].

We assume ΣG satisfies the Lie algebra rank condition (LARC), which means that for
any g ∈ G,

SpanLA

{
X , Y1, . . . , Ym

}
(g) = TgG. (25)

Denote by ϕ(g, u, t) the solution of ΣG associated to the control u with initial condition
g at the time t. It turns out [24]

ϕ(g, u, t) = Xt(g)ϕ(e, u, t). (26)

Thus, to compute the system’s solution through an initial condition g, we need to
translate the solution through the identity element by the flow of the linear vector field
acting on g. Just observe the symmetry with the solution of a classical linear system on
Euclidean spaces

φ(x, u, t) = etA
(

x +
∫ t

0
e−τABu(τ)dτ

)
. (27)

4.2. Almost Riemannian Structures

Let k ∈ N, an almost Riemannian structure ARS of order k on a Lie group G is
determined by the data

F = {X1, . . . ,Xk, Y1, . . . , Yn−k} : (28)

1. X1, . . . ,Xk are linear vector fields
2. Y1, . . . , Yn−k are left invariant vector fields
3. rank(F (g)) = dim(G) over an open and dense subset of G
4. TgG = {X(g) : X ∈ FLA}, where FLA is the F -generated Lie algebra.

The ARS is called simply if k = 1 [4]. In this set up, the locus is given by

Z = {g ∈ G : rank(F (g)) < n}. (29)

4.3. Degenerate Dynamical Systems

Let (M, g, v) be a symplectic Riemannian manifold. An almost complex structure
on M is a smooth field J of skew-symmetric structures on the tangent bundle as follows.
The family of linear maps

x ∈ M→ Jx : Tx M→ Tx M, (30)

satisfies J2
x = −idTx M.

We say that J is compatible with v if the map

x ∈ M→ gJ
x : Tx M× Tx M→ R, gJ

x(p, q) = vx(p, Jxq) (31)

is a Riemannian metric on M. It turns out that any symplectic manifold admits a compatible
almost complex structure, but with a metric Jx different from the original one, XXX.

Let f : M→ R a smooth function f ∈ C∞(M) and denote with

Z = {x ∈ M : f (x) = 0}, Crit( f ) (32)

the zeros and the critical points of f , respectively. A degenerate dynamical system is
determined by an algebraic-dynamical equation

f (x)Jx(ẋ) = Xh(x), (33)

where Xh is the Hamiltonian vector field associated with a smooth function h ∈ C∞(M) on
M. In particular, this definition works when M = G is a connected Lie group.
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On the manifold M−Z , the degenerate system is equivalent to the regular

ẋ = − 1
f (x)

gradgJ (h(x)). (34)

Assume f is a Morse–Bott type function on M, and denote with C a connected compo-
nent of Z . It turns out that

1. C is a M-submanifold of co-dimension one or;
2. C is a connected component of Crit( f ).

In the first case, C acts as a wall for the dynamic. In the second case, the dimension is
arbitrary. Moreover, C can be seen as phase flow where the Hamiltonian gradient diverges
as it approaches the locus. Recall that the gradient is computed concerning the Riemannian
metric gJ .

5. Time Optimal Pontryagin Maximum Principle

In this setup, the space state M is a n-dimensional manifold and ΣM is a control system
on M, determined by the family of differential equations

ΣM : ˙x(t) = f (x(t)) +
m

∑
j=1

uj(t)gj(x(t)), x(t) ∈ M, t ∈ R, u ∈ U ,

where f , g1, . . . , gm are arbitrary vector fields defined on M, and U as before.
The Hamiltonian function associated to the system reads as

H(λx, x, u) = 〈λx, f (x) +
m

∑
j=1

ujY j(x)〉 with λx ∈ T∗x M.

Here, T∗x M denotes the dual of the vector space Tx M, the tangent space of M at the
state x. Moreover, λx : Tx M→ R is a linear transformation.

The symplectic structure of T∗M comes from a canonical non-degenerate 2-differential
form σ [15]. It turns out that for any admissible control u ∈ U the Hamiltonian function
Hu : T∗M→ R determines a well defined vector field ~Hu on T∗M through the identity

σλ(·, ~Hu) = dλHu.

By considering a canonical locally coordinates (qi, xi) on T∗x M, we obtain

dHu =
n

∑
i=1

(
∂Hu

∂qi
dqi +

∂Hu

∂xi
dxi),

λ̇ = (q̇i, ẋi) = ~Hu =
n

∑
i=1

(−∂Hu

∂xi

∂

∂qi
+

∂Hu

∂qi

∂

∂xi
), λ ∈ T∗M .

Therefore, the Hamiltonian differential equations system induced by the vector field
~H on T∗M reads

q̇i = −
∂Hu

∂xi
, ẋi =

∂Hu

∂qi
= f (x) +

m

∑
j=1

ujY j(x), i = 1, . . . , n.

The Pontryagin Maximum Principle gives a non-null 1-parameter of covectors
λ = (λt)t∈R, with several necessary conditions to find an optimal control. As a par-
ticular case, we consider the time-optimal problem steering the initial state x0 to the desired
condition x1 at minimum time.
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Theorem 1 (The time-optimal Pontryagin maximum principle). Let ΣM be a control system
on a manifold M as before. If the ΣM -solution associated to the control u∗(t), t ∈ [0, T], minimizes
the time, there exists a Lipschitzian curve (λ(t), x(t)) in the cotangent space T∗M with λ(t) 6= 0
for all t ∈ [0, T], such that for almost all t ∈ [0, T]

H(λ(t), x(t), u∗(t)) = max
u∈U
H(λ(t), x(t), u),

H(λ(t), x(t), u∗(t)) ≥ 0, and

λ̇t = ~Hu∗(λt).

The curve λt is called an extremal and its projection on M is an optimal trajectory for the
initial optimization problem of ΣM.

Remark 1. The Hamiltonian function for a simply almost Riemannian structure

F = {X , Y1, . . . , Yn−1} (35)

on G reads,

Hξ(λ, g, v, u1, . . . , un−1) = 〈λ, v +
n−1

∑
1

ujYj)〉 −
1
2

ξ

(
v2 +

n−1

∑
1

u2
j

)
.

In our context, we used a particular case with ξ = 0 and v = 1. It means a time-optimal
problem on LCS [14].

Since the co-tangent bundle of G is trivial, it turns out that TG ∼= g∗ × G, where g∗

denotes the dual of the Lie algebra g. This favorable situation allows translationH to the
tangent space at the identity, and describe all the equations at e. This convenient situation
is possible according to the formulas

Y j
g = (dLg)eY j, Fg = (dLg−1)gXg ∈ TeG, λg = λ ◦ TLg−1 . (36)

Precisely, consider the optimal time Hamiltonian function

Hν(λ, g, u1, u2, . . . , um) = 〈λ,X +
n−1

∑
j=1

ujY j〉

Following reference [14], the optimal time Hamiltonian equations of a LCS on in
g∗ × G, read as 

ġ = Xg + ∑n−1
j=1 ujY j(g)

λ̇ = (−D + ad(vF(g)∑n−1
j=1 uj Y j )∗λ

where D is the derivation of g associated to X .
When v = 1, we obtain the optimal time Hamiltonian equations of a linear control

system on G. In this situation, the difference between the LCS and ARS is important.
Contrary to the ARS case, the identity element e ∈ G is not in general an interior point of
the reachable set from e.

The Jouan Equivalence Theorem

This section shows why it is relevant to classify linear control systems and almost
Riemannian structures on Lie groups. The equivalent theorem gives information to general
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LCS and general ARS on manifolds the dynamics of which generate a finite dimensional
Lie algebra. As in Section 5, let us consider an arbitrary affine control system

ΣM : ˙x(t) = f (x(t)) +
m

∑
j=1

uj(t)Y j(x(t)), x(t) ∈ M, t ∈ R, u ∈ U ,

on a differentiable connected manifold M.
We take use these available systems to introduce the notion of controllability and

control sets. Roughly speaking, the controllability property of a system means that it is
possible to connect any two points of the manifold through the solutions of the systems in
non-negative time. A control set is a region of M where controllability holds in its interior.

Definition 3. The system ΣM is said to be controllable, if for any pair x, y ∈ M there exists a
control u ∈ U and a positive time t, such that the corresponding solution ϕ(x, u, .) with control u
as an initial condition x, reaches y at time ty, i.e., ϕ(x, u, ty) = y.

Definition 4. A subset C ⊂ M is called a control set if for any x ∈ M,

1. There exists u ∈ U such that ϕ(x, u, t) ∈ C, for any t > 0;
2. clA(x) contains C ;
3. C is maximal with respect (1), and (2).

where the reachable set A(x) from x reads as

A(x) = {ϕ(x, u, t) : t ≥ 0, u ∈ U}. (37)

Next, we state the Jouan equivalence theorem [10],

Theorem 2. ΣM is equivalent by diffeomorphism to a linear control system on a Lie group or a
homogeneous space if and only if the vector fields of the system are complete, and generate a finite
dimensional Lie algebra, i.e.,

SpanLA

{
f , g1, . . . , gm

}
< ∞. (38)

Remark 2. Equivalent systems share the same properties. For example, controllability, existence,
uniqueness, and boundedness of control sets, and of course, optimal problems. In other words, it is
possible to obtain properties of ΣM through the knowledge of the equivalent system ΣG.

A similar result as Theorem 2 is valid for a general almost Riemannian structure on
manifolds [4]. In particular, it is possible to obtain information for ARS on manifolds,
and for degenerate dynamical systems by knowing topological–dynamical–algebraic prop-
erties of the locus, acting as a barrier for the degenerate structure.

6. Recent Results on the Geometric Structures

According to the Equivalence theorem, both for almost Riemannian structures and
control systems, it is necessary to develop these structures on Lie groups and homogeneous
spaces. Furthermore, it is worth understanding these structures on low-dimensional groups
as much as possible for real applications. For more than 20 years, several researchers have
been working on these topics. Here, we mention some references to characterize the con-
trollability properties, the existence, uniqueness, and the boundedness of control systems.
Moreover, time-optimal problems for different classes of groups: nilpotent, solvable and
semi-simple [18,23–28].

For any result we obtain for the locus of an ARS, it is possible to adapt for the locus
of the corresponding degenerate dynamical system reciprocally. So, we obtain relevant
information to the singular set in both senses.
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6.1. Recent Results on Linear Control Systems

We start by mentioning very recent results of a linear control system on homogeneous
spaces of the solvable group G of two dimensions to appear in [29].

Let G be the solvable group of two dimensions as described in Example 1. According
to the computation there, a general linear control system has the shape

ΣG : ˙g(t) = X (g(t)) + u(t)Y(g(t)), g(t) ∈ G, t ∈ R, u ∈ U ,

where U = L1
loc(Ω), u : [0, Tu]→ Ω ⊂ Rm, with a closed set Ω and 0 ∈ int(Ω).

The drift X is a linear vector field depending on two parameters, a and b, coming from
the associated derivation. Moreover, the left invariant control vector Y is defined by the
pair (α, β) ∈ g. In coordinates g = (x, y) we obtain ΣG

˙x(t) = u(t)α
ẏ(t) = by(t) + (ex(t) − 1)a + u(t)ex(t)β, u ∈ U ,

We first consider the closed subgroup L = {0} × Z, and the homogeneous space
L/G, which turns out to be a horizontal cylinder. The canonical projection π : G → L/G
∼= R× S1 is well defined and given by π(x, y) = (x, [y]). In order to project the linear
vector fields its flows must leave invariant the subgroup L. This condition implies that
X (x, y) = (0, ex − 1)a.

On the other hand, any invariant vector field on G can be projected on every homo-
geneous space of G. As a result, we can project ΣG in a homogeneous control system on
the cylinder.

In the new coordinates (z, w) ∈ R× S1, we obtain the system ΣL/G

˙z(t) = u(t)α
ẇ(t) = (ez(t) − 1)a + u(t)ez(t)β, u ∈ U .

Theorem 3. ΣL/G is controllable⇔ LARC is satisfied⇔ aα 6= 0 [29].

From a geometric picture, controllability can be seen as follows. Take any state (z, w).
By choosing u = 0, we obtain z(t) = z. Thus, the system turns around the circle {z} ×R.
However, if u 6= 0, the solution (z(t), w(t), u) starting on (z, w) turns around the horizontal
cylinder traveling to the right or to the left according to the signal and size of the selected
control u. Therefore, if we consider an arbitrary point (z1, w1), we obtain: after the solution
(z(t), w(t), u) hit the circle {z1} ×R with a control u1, take the control u = 0, and rotate on
the circle up to reach w1.

Next, we consider the subgroup L = Z × {0}, and the homogeneous space L/G,
which is a vertical cylinder. The canonical projection

π : G → L/G ∼= S1 ×R, π(x, y) = ([x], y) (39)

is well defined. As before, we compute the associated homogeneous system ΣL/G. As a
matter of fact, in this situation any linear vector fields are projectable. We obtain [29],

Theorem 4. Assume ΣL/G satisfy LARC, b < 0 with b ∈ int(αΩ). Then, there are two intervals
I, J ⊂ R with I ∩ J = φ which determines two control sets on the vertical cylinder as follows

C1 = S1 × I, C2 = S1 × J. (40)

Here, C1 contains the identity element (0, 0). In addition as we know, the homogeneous
system ΣL/G is controllable at the interior of these control sets.

We present a controllability result on the nonnilpotent solvable Lie group of dimen-
sion three as explained in Example 3. However, we first need to introduce an especial
decomposition induced by a derivation on any arbitrary Lie algebra g.
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In the sequel, we follow [17,24]. Given a derivation D : g → g, and α ∈ Spec(D), a
α-generalized eigenspace reads as

gα = {X ∈ g : (D − α)nX = 0 for some n ≥ 1}.

As a matter of fact, if β is also an eigenvalue of D,

[gα, gβ] ⊂ gα+β if α + β is an eigenvalue of D, [gα, gβ] = 0, otherwise.

The vector spaces g+, g0 and g− defined by

g+ = ⊕α : Re(α)>0(gα), g0 = ⊕α : Re(α)=0(gα) and g− = ⊕α : Re(α)<0(gα),

are Lie algebras. Let G+, G0 and G− be the connected Lie groups with Lie algebra g+, g0

and g−, respectively. If G = G+G0G−, the Lie group is said to be decomposable.

Example 4. Consider the restricted linear system ΣG on G = R⊗ρ R2 with Lie algebra g =
R⊗θ R2 determined by

ΣG : ˙g(t) = X (g(t)) + u1(t)Y j(g(t)) + u2(t)Y2(g(t)), g(t) ∈ G, t ∈ R, u ∈ U ,

which satisfy LARC. Here, ρt = etθ , ∆ = Span
{

Y1, Y2} has dimension 2, and θ is the real matrix
of order 2 with all the coefficients 0 except 1 in the position 22. Therefore, we obtain [22].

Theorem 5. The system ΣG is controllable if and only if dim(g0) > 1, or dim(g0) = 1 and[
Y1, Y2] = Y2.

The following Theorem collects several results on ΣG [24].

Theorem 6. Let ΣG be a restricted system on G such thatA = A(e) is open. If G is decomposable,
there is precisely one control set C = cl(A) ∩ A− with a nonempty interior. Any solvable
lie group is decomposable. Furthermore, if G is nilpotent and simply connected, C is bounded
⇔ cl(A∩ G−), cl(A− ∩ G+) are compacts.

As for the restricted classical linear system on Euclidean spaces, the next result charac-
terizes the controllability property on nilpotent groups.

Theorem 7. A restricted linear control system ΣG on a nilpotent Lie group G is controllable if an
only if A = A(e) is open and G = G0.

Just observe that in Euclidean spaces the Kalman condition is equivalent to the open-
ness of A.

6.2. Some Results on Simply almost Riemannian Structures

In this section, we start by describing a satisfactory geometric result by Agrachev et
al. for an ARS. In [2], the authors show a Gauss–Bonett-like formula for a 2-dimensional
almost Riemannian manifold F as follows. In this context, an element x ∈ Z is said to be a
tangency point if F (x) is tangent to Z . F is triviallizable if a pair of vector fields globally
generate it, and orientable if there exists a volume form. The curvature is denoted by K.

Theorem 8. Let M be an oriented compact manifold of 2 dimensions. For a generic oriented
2-dimensional ARS on M without a tangency point it turns out∫

KdAs = 2π(χ(M+)− χ(M−)) (41)

where χ denotes the Euler Characteristic. In addition, if F is trivializable, then
∫

KdAs = 0.
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In the same direction, we also mention the reference [3].

Next, we state a general result of a simply almost Riemannian structure on Lie groups
appears [4]. Through a generic example, we show that the singular locus can be a very
wild set.

Theorem 9. Let F = {X , Y1, . . . , Yn−1} a simply almost Riemannian structure on g. Assume,
∆ = Span{Y1, . . . , Yn−1} is a subalgebra. Then, the singular locus Z is an analytic, embedded
co-dimension 1 submanifold of G. Its tangent space at the identity element is given by D−1(∆).
Furthermore, if G is solvable the locus is a subgroup with Lie algebra D−1(∆).

If ∆ is not a subalgebra the locus can be wild. On the Heisenberg group of Example 4
consider the distribution ∆ =

{
Y1, Y2}, the linear vector field X induced by a general

derivation D and the almost Riemannian structure

F =
{
X , Y1, Y2

}
. (42)

It turns out that the singular Z locus of F reads as [23],

Z =

{
ex + f y + (a + d)z− 1

2
cx2 +

1
2

by2 − dxy = 0
}

. (43)

Obviously, the locus generated by these quadratic forms need not be subgroups,
not even manifolds. However, for a = b = c = e = f = 0, and d = 1, we obtain the
hyperbolic paraboloid.

Finally, we give the reference Isometries of almost-Riemannian structures on Lie groups [20].
Here, the authors prove that two different ARS: F1 and F2 on a Lie group G are isometric if
and only if there exists an isometry ψ : G → G that fixes the identity element. The isometry
preserves the associated left-invariant distribution, i.e., ψ(∆1) = ∆2, and the linear vector
field. Furthermore, if the Lie group is nilpotent ψ is an automorphism.

This characterization makes it possible to obtain a complete classification of the ARS
on the solvable 2-dimensional group and the Heisenberg group of dimension 3.

6.3. Some Results on Degenerate Dynamical Systems

As we say, Degenerate Dynamical Systems (DDS) is a new branch in Mathematics with
relevant application in physics. Furthermore, this kind of structure needs to be developed.
We hope that any result on almost Riemannian structures, especially on the corresponding
singular locus, will help the analysis of degenerate behavior. The locus acts as a barrier for
the corresponding degenerated dynamical system.

We finish this chapter inviting the readers to look at the very interesting article Degen-
eracy Index and Poincaré-Hopf Theorem, by Zanelli, J. and Ruan, H., which appears in [30]. It
is about a relationship between a 2-dimensional degenerate dynamical system as explained
in Section 2.5 and the Poincaré-Hopf Theorem.

7. Open Problems and Challenges

To finish this review, we write down a list of open problems and general challenges
for each of the geometrical structures considered.

7.1. About Linear Control Systems on Lie Groups

The main challenge here is to classify several fundamental properties of a linear control
system ΣG on a connected Lie group G. Specifically, the controllability property, the exis-
tence, uniqueness, and other topological properties of control sets should be characterized
on different classes of Lie groups: nilpotent, solvable, simple, semi-simple, semi-direct and
direct product of groups. As we mention, many references are totally or partially answering
these open problems. On the other hand, from the concrete applications point of view,
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the Jouan Equivalence Theorem gives an important reason why it is relevant to challenge
this project [11,31].

Other relevant challenges are to extend all the ΣG theory to ΣG/H on homogeneous
spaces, and to affine control system as explained below.

In the following we list some specific open problems for ΣG when G is an arbitrary
connected Lie group.

1. To characterize controllability properties on every dimension;
2. To characterize the control sets and its topological properties;
3. To study topology equivalence and conjugacy of linear control systems;
4. To apply the Pontryagin Maximum Principle to solve.

- The minimum time connecting two desired states;
- Quadratic optimal problems, such a minimum energy, etc.

5. To study the previous problems on homogeneous spaces;

- What is the relationship of controllability and control sets between ΣG/H and ΣG?

6. Finally, to extend the ΣG-theory to the affine control systems, i.e., by replacing in ΣG
the linear vector field X by X + Y with Y ∈ g and for any j = 1, . . . , m, by replacing
Y j ∈ g by X j + Y j, where X j is linear.

7.2. About almost Riemannian Structures

We propose to work out the following issues involving the compute of geodesics
associated to the Chow–Rashevskii metric.

1. To classify k-ARS on low dimensional Lie groups;

- 1-ARS and and 2-ARS on solvable 3-dimensional Lie groups;
- 1-ARS and 2-ARS in 3-dimensional semisimple Lie groups;
- To study the relationships between Z and the manifolds G+, G−;

2. To classify k-ARS from an algebraic point of view;

- Under which conditions Z is a Lie subgroup of G?
- Under which condition the Lie algebra z of Z is an ideal of g?

3. Are 2-ARS, k-ARS related with appropriate sub-Riemannian structures?
4. To find relationship between ARS and the Degenerate Dynamical System

7.3. About Degenerate Dynamical Systems

The general problem here is understanding the evolution of the dynamic near the
locus set. Moreover, it is outside of the Poincaré classification, which takes care of the
Hamiltonian isolated singularities. In this new context, the singularities comes from the
degeneracy of the symplectic form, which normally are submanifold of co-dimension 1,
including the barriers and the walls.

There are many open problems and challenges with this kind of structure. The theory
should be developed in different situations. For instance, on Euclidean space, Compact
symplectic manifolds, Hamiltonian actions on symplectic manifolds, and co-adjoint orbits
of Lie groups.

Assume some trajectories reach the locus Z. What kind of forwarding dynamic
behavior could we expect inside the singular set or when the trajectory leaves the locus?
If the trajectory remains in the locus forever, it means that the “trajectory” freezes some
coordinates. Moreover, this study should be critical in real applications [9].

8. Conclusions

This review provides new information about three geometric structures on Lie groups
that depend on the same kind of dynamics: Linear Control Systems, Almost Riemannian
Structures, and Degenerate Dynamical Systems. We started with the examples that mo-
tivated the study of these linear structures on the plane. We computed all the linear and
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invariant vector fields on solvable Lie groups of dimensions two and three and the classical
3-dimensional Heisenberg Lie group. After providing the definitions of these structures
on Euclidean spaces and Lie groups, we established the Pontryagin Maximum Principle
and the Hamiltonian equations for an LCS on G. We also included the Jouan Equivalence
Theorem, which gives one of the main reasons that it is worth developing linear structures
on Lie groups and homogeneous spaces. We discussed some recent results on the three
geometric structures studied here. The last section includes a list of open problems and
challenges for LCS, ARS, and DDS. With the aim of possible applications, an effective
dissemination of the theory for a broad audience is valuable. We would like to thank the
Editor of this Special Issue for inviting us to publish this article in Symmetry.
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