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Abstract: One of the most important asymmetrical probability distributions that recently presented as
an extension of the conventional exponential distribution is the alpha power exponential distribution.
It may be compared to various asymmetrical well-known models, such as Weibull and gamma
distributions. As a result, using an adaptive progressive Type-II hybrid censoring scheme, this
paper investigates the estimation problems of the alpha power exponential distribution. Maximum
likelihood and Bayesian methods are used to estimate unknown parameters, reliability, and hazard
rate functions. Under the assumption of independent gamma priors and symmetric loss function,
Bayesian estimators are examined. The Bayesian credible intervals and estimated confidence intervals
of the relevant values are also calculated. The various estimating approaches are evaluated using a
simulation study that considers various sample sizes and censoring schemes. Furthermore, numerous
optimality criteria are examined, and the best progressive censoring schemes are offered. Finally,
for an explanation, two real data sets from engineering and chemical fields are provided to show
the applicability of the asymmetrical alpha power exponential distribution. The Bayesian method
for estimating the parameters and reliability indices of the alpha power exponential distribution is
recommended based on numerical results, especially when the number of observed data is small.

Keywords: alpha power exponential distribution; adaptive progressive censoring; Monte Carlo
simulation; maximum likelihood; Bayesian estimation; reliability function

1. Introduction

Censored data are a common feature of reliability and life testing studies. Experi-
menters must have the experience of various test situations pertaining to time, cost, or
money constraints where the removal of units is planned in advance before failure. Time
censoring (Type-I) and failure censoring (Type-II) schemes are the most often used censor-
ing systems in life testing and reliability studies. One of the major weaknesses of these
schemes is that they do not permit items to be withdrawn from the experiment at any point
other than the end. As a result, the progressive Type-II censoring scheme (PT-II-CS) is used,
which is a more widely used censoring system. n items are set on a test in the PT-II-CS, and
m is a prefixed number of items to be failed. At the time of the first failure X1:m:n, R1 items
are randomly extracted from the staying n− 1 outlasting items . Likewise, at the time of the
second failure, X2:m:n, R2 items of the remaining n− 2− R1 items are randomly withdrawn
and so on. At the time of the mth failure Xm:m:n all the remaining n−m−∑m−1

i=1 Ri items
are removed, see Balakrishnan [1] for more details.
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Kundu and Joarder [2] suggested a progressive Type-I hybrid censoring scheme
(PT-I-HCS), in which n identical items are tested using a specified progressive censoring
scheme. R1, R2, · · ·, Rm and the test is ended at random time T∗ = min(Xm:m:n, T), where
T is a predetermined time. The PT-I-HCS has the disadvantage that the useful sample
size is random and might turn out to be a very small number. As a result, the statistical
inference method will be efficient. Ng et al. [3] proposed an adaptive progressive Type-II
hybrid censoring scheme to increase the efficiency of statistical analysis (AP-II-HCS). The
number of failures m is predetermined in advance in the AP-II-HCS, and the testing time is
permitted to run over the time T. Moreover, we have the progressive censoring scheme
R1, R2, · · ·, Rm, but the values of some of the Ri maybe adjust consequently during the
test. If the mth failure happens before time T (i.e., Xm:m:m < T), the test stops at this
time and we will have the usual PT-II-CS. On the other hand, if XD:m:n < T < XD+1:m:n,
where D + 1 < m and XD:m:n is the Dth failure time happen before time T, then we will
not withdraw any surviving item from the test by putting RD+1, RD+2, · · ·, Rm−1 = 0 and
Rm = n−m−∑D

i=1 Ri. This setting ensures that we will terminate the experiment when
we reach the preferred number of failures m, and the total test time will not be too far
away from the ideal time T. Let x1:m:n < · · · < xD:m:n < T < xD+1:m:n < . . . xm:m:n be an
adaptive progressive Type-II hybrid censored sample from a continuous population with
probability density function (PDF) f (x) and cumulative distribution function (CDF) F(x)
with progressive censoring scheme R1, . . . , RD, 0, . . . , 0, Rm, then the likelihood function of
the observed data takes the form

L = C
m

∏
i=1

f (xi:m:n)
D

∏
i=1

[1− F(xi:m:n)]
Ri [1− F(xm:m:n)]

Rm , (1)

where C is a constant that is independent of the parameters. Various studies based on
the AP-II-HCS have been conducted; readers can refer to the findings of Hemmati and
Khorram [4], Nassar and Abo-Kasem [5], Ateya and Mohammed [6], Nassar et al. [7], and
Nassar et al. [8] among many others.

The alpha power exponential (APE) distribution was introduced by Mahdavi and
Kundu [9] as a novel extension of the exponential distribution. They studied the APE
distribution’s main characteristics and using the method of maximum likelihood to estimate
the unknown parameters. They claimed that the APE distribution had a lot of qualities.
Weibull, gamma, and exponentiated exponential distributions are all quite similar to it.
The Weibull, gamma, and exponentiated exponential distributions have similar PDF and
hazard rate functions (HRF). As a result, it may be thought of as a alternative choice to
these well-known distributions. Furthermore, because the APE distribution’s CDF can
be represented in an explicit structure, it may be used to investigate censored data very
easily. If X is a random variable that follows the APE distribution, its PDF and CDF may be
represented as follows.

f (x; α, θ) =
θ log(α)e−θxα1−e−θx

α− 1
, x > 0, θ, α > 0, α 6= 1, (2)

and

F(x; α, θ) =
α1−e−θx − 1

α− 1
. (3)

The shape and scale parameters, respectively, are α and θ. The APE distribution’s
reliability function (RF) and HRF are calculated as follows:

R(x; α, θ) =
α

α− 1

(
1− α−e−θx

)
, (4)

and

h(x; α, θ) =
θ log(α)e−θxα−e−θx

1− α−e−θx . (5)
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Nassar et al. [10] studied different classical estimation methods of the APE distribution
using a complete sample. Salah [11] investigated the estimation problems of the APE
distribution under PT-II-CS using the maximum likelihood approach. Salah et al. [12]
used the maximum likelihood approach to study the point and interval estimates of the
APE distribution based on Type-II hybrid censored data. These studies concentrated on
the estimations of the APE distribution using the classical approaches only by utilizing
complete samples or some conventional censoring schemes. Investigating the estimation
problems of the APE distribution using classical and Bayesian procedures are the main core
of the present study by utilizing a more flexible censoring scheme.

The originality of this study comes from the fact that, to the best of our knowledge, it
is the first time researchers have explored the estimation problems of the APE distribution
under an AP-II-HCS. Further, despite the various researches utilizing the APE distribution,
no study investigates the Bayesian estimation of its parameters and reliability indices. For
more information about the importance of estimating the reliability characteristics, one may
refer to Xu et al. [13], Luo et al. [14], Hu and Chen [15], and Chen and Ye [16]. The key role of
this study is three fold. Firstly, we consider the estimation problems of the APE distribution
using AP-II-HCS using classical and Bayesian approaches to fill the gap of the previous
studies that utilized only classical approaches. Accordingly, the point and interval estimates
of the unknown parameters as well as the RF and HRF are investigated. The second is to
find the optimal sampling scheme for adaptive progressive Type-II hybrid censored APE
distribution. The third is to create a policy to select the most suitable estimation method
for the APE distribution based on AP-II-HCS as well as the optimal sampling scheme.
In Bayesian estimation, the estimators are acquired by employing the squared error loss
function. The squared error loss function is the most commonly used symmetric loss
function, in which, the estimation treats overestimation and underestimation equally. To
evaluate the results, we perform a simulation research to test the behavior of the suggested
approaches, and two data sets are used as examples.

The rest of the article is organized as follows: The classical inference of the APE
distribution is discussed in Section 2. The Bayesian estimating method is discussed in
Section 3. Section 4 presents the results of a simulation investigation. In Section 5, we
provide different approaches for determining the best censoring scheme. Section 6 examines
two real data sets, and Section 7 concludes the paper.

2. Classical Inference

The maximum likelihood estimates (MLEs) of the unknown parameters and reliabil-
ity indices are investigated in this part, and the corresponding approximate confidence
intervals are also created using the Fisher information matrix and the large sample theory.

2.1. Estimation of Maximum Likelihood

Suppose that x1:m:n < · · · < xD:m:n < T < xD+1:m:n < . . . xm:m:n is an adaptive
progressive Type-II hybrid censored sample of size m with R1, . . . , RD, 0, . . . , 0, Rm from the
APE distribution with PDF and CDF given by (2) and (3), respectively. Then, the likelihood
function can be obtained from (1)–(3), as follows, without the constant term

L(α, θ) =

(
α

α− 1

)n
[θ log(α)]m exp

[
−θ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−θxi

]
D

∏
i=1

(
1− α−e−θxi

)Ri

×
(

1− α−e−θxm
)Rm

, (6)

where xi = xi:m:n for the sake of simplicity. Then, we can write the natural logarithm of the
likelihood function in (6) as
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`(α, θ) = n log(α)− n log(α− 1) + m log(θ) + m log[log(α)]− θ
m

∑
i=1

xi − log(α)
m

∑
i=1

e−θxi

+
D

∑
i=1

Ri log
(

1− α−e−θxi
)
+ Rm log

(
1− α−e−θxm

)
. (7)

The MLEs of the parameters α and θ symbolized by α̂ and θ̂ can be acquired by solving
the two normal equations simultaneously, which is obtained by carrying the first derivatives
of (7) with respect to α and θ. The normal equations are as follow

∂`(α, θ)

∂α
=

n
α
− n

α− 1
+

m
α log(α)

− 1
α

m

∑
i=1

e−θxi +
1
α

D

∑
i=1

Rie−θxi

αe−θxi − 1
+

Rme−θxm

α
(

αe−θxm − 1
) = 0 (8)

and

∂`(α, θ)

∂θ
=

m
θ
−

m

∑
i=1

xi + log(α)
m

∑
i=1

xie−θxi − log(α)
D

∑
i=1

Rixie−θxi

αe−θxi − 1
− log(α)

Rmxme−θxm

αe−θxm − 1
= 0. (9)

It is noticed from (8) and (9) that there are no closed forms for the MLEs α̂ and θ̂;
therefore, numerical methods may be employed to solve these equations to obtain α̂ and θ̂.
Once α̂ and θ̂ are acquired, the MLEs of the RF and HRF can be obtained directly based on
the invariance property of the MLEs from (4) and (5), respectively, as follow

R̂(x) =
α̂

α̂− 1

(
1− α̂−e−θ̂x

)
and

ĥ(x) =
θ̂ log(α̂)e−θ̂x α̂−e−θ̂x

1− α̂−e−θ̂x
.

2.2. Interval Estimation

We can construct estimated confidence intervals for the unknown parameters α and
θ using the MLEs’ asymptotic properties. According to the theory of large samples, it is
known that the asymptotic distribution of (α̂, θ̂) is normal distribution with mean (α, θ) and
variance–covariance matrix I−1(α, θ). Practically, we use I−1(α̂, θ̂) to estimate I−1(α, θ),
which is obtained based on the observed Fisher information matrix, where

I−1(α̂, θ̂) =

(
− ∂2`(α,θ)

∂α2 − ∂2`(α,θ)
∂α∂θ

− ∂2`(α,θ)
∂θ∂α − ∂2`(α,θ)

∂θ2

)−1

(α,θ)=(α̂,θ̂)

, (10)

where

∂2`(α, θ)

∂α2 = − n
α2 +

n
(α− 1)2 −

m[1 + log(α)]
α2 log2(α)

+
1
α2

m

∑
i=1

e−θxi +
D

∑
i=1

Riψi + Rmψm,

and

∂2`(α, θ)

∂θ2 = −m
θ2 − log(α)

m

∑
i=1

x2
i e−θxi − log(α)

D

∑
i=1

Riφi − Rmφm
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and

∂2`(α, θ)

∂α∂θ
=

1
α

m

∑
i=1

xie−θxi +
1
α

D

∑
i=1

Rix−1
i φi + Rmx−1

m φm, (11)

where

ψi =
e−θxi

[
1− αe−θxi (1 + e−θxi

)]
α2
(

1− αe−θxi
)2

and

φi =
x2

i e−θxi
[
1 + αe−θxi e−θxi log(α)− αe−θxi

]
(

1− αe−θxi
)2 .

Directly, the 100(1− γ)% approximate confidence intervals of the unknown parame-
ters α and θ can be obtained as

α̂± zγ/2

√
v̂ar(α̂), and θ̂ ± zα/2

√
v̂ar(θ̂).

where v̂ar(α̂) and v̂ar(θ̂) are the main diagonal elements of (10), respectively, and zα/2 is
the upper α/2th percentile point of the standard normal distribution.

To calculate the approximate confidence intervals of the RF and HRF of the APE
distribution, we need to obtain the variance of these functions. One of the numerous
significant employed techniques to approximate these variances is the delta method. In
our case and to apply this method, suppose that ∆R = (∂R/∂α, ∂R/∂θ)|(α,θ)=(α̂,θ̂) and
∆h = (∂h/∂α, ∂h/∂θ)|(α,θ)=(α̂,θ̂), where

∂R
∂α

=
1− αe−θx

+ (α− 1)e−θx

(α− 1)2αe−θx ,

∂R
∂θ

=
αxe−θx log(α)
(α− 1)αe−θx ,

∂h
∂α

=
θe−θx

[
αe−θx − αe−θx

e−θx log(α)− 1
]

α
(

αe−θx − 1
)2 ,

and

∂h
∂θ

=
e−θx log(α)

[
αe−θx(

1− θx + θxe−θx log(α)
)
+ θx− 1

]
(

αe−θx − 1
)2 .

Based on the above results, the approximate estimates for the variances of the RF and
HRF can be computed, respectively, as

v̂ar(R̂) ≈ [∆R I(α̂, θ̂)∆>R ] and v̂ar(ĥ) ≈ [∆h I(α̂, θ̂)∆>h ].

As a result, at the confidence level 100(1− γ), the two-sided approximate confidence
intervals for R(x) and h(x) are presented, respectively, by

R̂(x)± z γ
2

√
v̂ar(R̂) and ĥ± z γ

2

√
v̂ar(ĥ).
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3. Bayesian Estimation

The Bayesian estimators of the unknown parameters α and θ, as well as the RF and
HRF, are derived in this section. The related credible intervals are also studied in addition
to the point estimates. When compared to the maximum likelihood method in statistical
analysis, the Bayesian approach offers several advantages. The Bayesian technique is
very effective in dependability studies and many other fields where one of the significant
challenges is the restricted availability of data. The Bayesian estimates are investigated
in this paper under the assumption that the unknown parameters are independent and
have gamma distributions, i.e., α ∼ Gamma(ν1, ω1) and θ ∼ Gamma(ν2, ω2). In this case,
we can write the joint prior distribution of α and θ as

P1(α, θ) ∝ αν1−1 θν2−1 e−(ω1α+ω2θ), α, θ > 0, (12)

and νj, ωj > 0, j = 1, 2, are the hyper parameters. The posterior distribution is the most
significant part of the Bayesian analysis. It retains all the knowledge obtainable regarding
the unknown parameters after holding the observed data. Based on the likelihood function
in (6) and the joint prior distribution in (12), we can express the joint posterior distribution
of α and θ as follows

P2(α, θ|x) = A−1 αn+ν1−1

(α− 1)n θm+ν2−1[log(α)]m exp

[
−θ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−θxi − (ω1α + ω2θ)

]

×
D

∏
i=1

(
1− α−e−θxi

)Ri
(

1− α−e−θxm
)Rm

, (13)

where A is the normalized constant and given by

A =
∫ ∞

0

∫ ∞

0

αn+ν1−1

(α− 1)n θm+ν2−1[log(α)]m exp

[
−θ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−θxi − (ω1α + ω2θ)

]

×
D

∏
i=1

(
1− α−e−θxi

)Ri
(

1− α−e−θxm
)Rm

dα dθ.

Based on a specific loss function, the Bayesian estimator of any function of α and θ,
say ζ(α, θ), may be expressed as

ζ̃(α, θ) = Eα,θ|x[ζ(α, θ)]

=
∫ ∞

0

∫ ∞

0
ζ(α, θ) P2(α, θ|x)dα dθ. (14)

It is clear that calculating (14) analytically is not attainable. As a result, we recommend
using the Markov chain Monte Carlo (MCMC) approach to obtain Bayesian estimates
and, as a result, to construct Bayesian credible intervals. The full conditional posterior
distributions of the unknown parameters are naturally required to produce samples using
the MCMC approach. From (13), the full conditional distributions for α and θ may be stated
as follow

P2(α|θ, x) ∝
αn+ν1−1

(α− 1)n [log(α)]m exp

[
− log(α)

m

∑
i=1

e−θxi −ω1α

]

×
D

∏
i=1

(
1− α−e−θxi

)Ri
(

1− α−e−θxm
)Rm

(15)
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and

P2(θ|α, x) ∝ θm+ν2−1 exp

[
−θ

m

∑
i=1

xi − log(α)
m

∑
i=1

e−θxi −ω2θ

]

×
D

∏
i=1

(
1− α−e−θxi

)Ri
(

1− α−e−θxm
)Rm

. (16)

It is noted the full conditional distributions of α and θ in (15) and (16), respectively,
can not be expressed as well-known densities; therefore, generating α and θ from these
densities is not attainable by employing the standard methods. In this case, we need to
generate the unknown parameters by using Metropolis–Hastings algorithm. To apply the
Metropolis–Hastings steps, we consider the normal distribution as a proposal distribution
in order to obtain the Bayesian estimates and to construct the credible intervals for the
unknown parameters. To generate samples from (15) and (16), we offer the following steps
of the Metropolis–Hastings algorithm:

Step 1. Set the start values of (α, θ), say (α(0), θ(0)).
Step 2. Put k = 1.
Step 3. Simulate α∗ from (15) from the normal distribution N(α(k−1), var(α(k−1))).
Step 4. Compute the acceptance ratio:

r(α(k−1)|α∗) = min

[
1,

P2(α
∗|θ(k−1))

P2(α(k−1)|θ(k−1))

]
.

Step 5. Simulate u, where U ∼ U(0, 1).
Step 6. If u ≤ r(α(k−1)|α∗), put α(k) = α∗, else, put α(k) = α(k−1).
Step 7. Redo Steps 3–6 for θ to obtain θ(k) from (16).
Step 8. Obtain R(k)(x) and h(k)(x) as

R(k)(x) =
α(k)

α(k) − 1

{
1− [α(k)]−e−θ(k)x

}
and

h(k)(x) =
θ(k) log(α(k))e−θ(k)x[α(k)]−e−θ(k)x

1−
[
α(k)

]−e−θ(k)x
.

Step 9. Set k = k + 1.
Step 10. Repeat Steps 3–8 M times to get[

α(k), θ(k), R(k)(x), h(k)(x)
]
, . . . ,

[
α(M), θ(M), R(M)(x), h(M)(x)

]
.

Step 11. Compute the Bayesian estimates of α, θ, R(x), and h(x) under squared error loss
function as

α̃ =
1

M− B

M

∑
k=B+1

α(k), θ̃ =
1

M− B

M

∑
k=B+1

θ(k),

R̃(x) =
1

M− B

M

∑
k=B+1

R(k)(x) and h̃(x) =
1

M− B

M

∑
k=B+1

h(k)(x).

Step 12. To obtain the highest posterior density (HPD) credible intervals of α, θ, R(x),
and h(x): First, order the MCMC samples of α(k), θ(k), R(k)(x), and h(k)(x) for
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k = 1, 2, . . . , M, after burn-in as α(B+1), α(B+2), . . . , α(M); θ(B+1), θ(B+2), . . . , θ(M);
R(B+1)(x), R(B+2)(x), . . . , R(M)(x), and h(B+1)(x), h(B+2)(x), . . . , h(M)(x), respectively.
Then, applying the approach proposed by Chen and Shao [17], the 100(1− γ)%
two-sided HPD credible interval for the unknown parameter α is given by

(α(k∗), α(k∗+(1−γ)(M−B))),

where k∗ = B + 1, B + 2, . . . , M is chosen such that

α(k∗+[(1−γ)(M−B)]) − α(k∗) = min
16k6γ(M−B)

(α(k+[(1−γ)(M−B)]) − α(k)).

The largest integer less than or equal to x is denoted by [x]. Then, the HPD credible
interval of x with the shortest length is that interval. The HPD credible intervals
of theta, R(x), and h(x) may be easily obtained in a similar way.

4. Monte Carlo Simulation

In this section, a Monte Carlo simulation study was used to examine the behavior of
the suggested estimators of α and θ, as well as R(t) and h(t). Based on the actual values of
the parameters (α, θ) = (1.2, 0.8), a large number of 1000 adaptive Type-II progressively
hybrid censored samples are generated from the APE distribution using various mixtures
of n(total test units), m(effective sample size), and T(threshold time point). As a result, at
the required time t = 0.1, the corresponding actual values of RF R(t) and HRF h(t) are
R(0.1) = 0.92942 and h(0.1) = 0.73457. Further, different values of (n, m, T) are taken
such as n = 50 and 100 for each specified time T = 0.25 and 0.75. The test is ended
when the number of failed subjects reaches a particular value m, where the failure ratio
(m/n)100% = 50% and 80%.

Briefly, for given values of n, m and T, we clarify the procedure of generating adaptive
Type-II progressive hybrid censored samples as follows:

Step 1: Using the algorithm outlined by Balakrishnan and Sandhu [18], generate an ordi-
nary progressive Type-II censored sample as follows:

(a) Create ω independent observations of size m as ω1, ω2, . . . , ωm.
(b) For specific n, m, T and Ri, i = 1, 2, . . . , m, put

υi = ω

(
i+∑m

j=m−i+1 Rj

)−1

i , i = 1, 2, . . . , m.
(c) Let ui = 1− υmυm−1 · · · υm−i+1 for i = 1, 2, . . . , m. Then, ui, i = 1, 2, . . . , m, is

a PT-II-CS sample of size m from U(0, 1) distribution.
(d) Set Xi = F−1(ui; α, θ), i = 1, 2, . . . , m, is the generated progressively Type-II

censored sample from APE(α, θ).

Step 2: Decide D, where XD < T < XD+1, and remove the staying sample XD+2, . . . , Xm.
Step 3: From f (x)/[1− F(xD+1)], generate the first m−D− 1 order statistics with sample

size n− D−∑D
j=1 Rj − 1 as XD+2, . . . , Xm.

To see the effects of the priors on the Bayesian inference, besides the noninformative
priors, say Prior 0: ai, bi = 0, i = 1, 2, we have used two different informative sets of the
hyperparameters ai, bi, i = 1, 2, namely Prior 1: (a1, a2) = (2.4, 1.6) and b1 = b2 = 2 and
Prior 2: (a1, a2) = (12, 8) and b1 = b2 = 10. Here, the hyperparameter values are selected
in such a way that the prior mean became the expected value of the model parameter.
It is clear that, when ai, bi = 0, i = 1, 2, the posterior distribution is proportional to the
corresponding likelihood function; therefore, if one does not have prior information on
the unknown parameters of interest, it is better to use the frequentist estimates instead of
the Bayesian estimates because the later are computationally more expensive. Using the
Metropolis–Hastings algorithm described in Section 3, we create 12,000 MCMC samples
with 2000 iterations as a burn-in period. Thus, using the remaining 10,000 MCMC samples,
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the average Bayesian estimates and the associated 95% HPD credible intervals of α, θ, R(t),
and h(t) are calculated.

To evaluate the performance of removal designs, for each n and m, we assume the
following different censoring schemes

Scheme-I : R1 = n−m, Ri = 0 for i 6= 1,

Scheme-II :

{
R m

2
= n−m, Ri = 0 for i 6= m

2 , if m even;
R m+1

2
= n−m, Ri = 0 for i 6= m+1

2 , if m odd,

Scheme-III : Rm = n−m, Ri = 0 for i 6= m.

The performance of the different estimates are evaluated based on the root mean square
error (RMSE) and relative absolute bias (RAB), while the performances of 95% two-sided
ACI/HPD credible intervals estimates are examined using the average interval lengths
(AILs). The average point estimates of any function of the unknown APE parameters α and
θ (say ϑ) are calculated numerically as follows:

ϑ̂τ =
1
Q ∑Q

j=1 ϑ̂
(j)
τ , τ = 1, 2, 3, 4,

RMSE(ϑ̂τ) =

√
1
Q ∑Q

j=1

(
ϑ̂
(j)
τ − ϑτ

)2
, τ = 1, 2, 3, 4,

RAB(ϑ̂τ) =
1
Q ∑Q

j=1

∣∣∣ϑ̂(j)
τ − ϑτ

∣∣∣
ϑτ

, τ = 1, 2, 3, 4,

and
AILϑτ

(1− γ)% =
1
Q ∑Q

j=1

(
U (ϑ̂(j)

τ )−L(ϑ̂(j)
τ )
)

, τ = 1, 2, 3, 4,

where ϑ̂ is the desired estimate of the parametric function ϑ, ϑ̂
(j)
τ represents the obtained

estimate of the unknown parameter at the j-th sample ϑτ , Q is number of generated
sequence data, ϑ1 = α, ϑ2 = θ, ϑ3 = R(t), ϑ4 = h(t), L(·), and U (·) refer to the lower and
upper interval limits, respectively, of (1− γ)% asymptotic (or credible) interval of ϑτ .

All numerical computations were achieved using R 4.0.4 software with two helpful
packages namely ‘coda’ package suggested by Plummer et al. [19] and ‘maxLik’ package
offered by Henningsen and Toomet [20]. Recently, these packages are also recommended
by Elshahhat and Nassar [21] and Elshahhat and Rastogi [22]. The average estimates of α,
θ, R(t), and h(t) with their RMSEs and RABs are obtained and displayed in Tables 1 and 2.
Moreover, the associated AILs are presented in Tables 3 and 4.

We may make the following observations based on Tables 1–4. In terms of minimum
RMSEs, RABs, and AILs, the suggested estimations of the unknown parameters and/or
reliability characteristics are often extremely excellent. Furthermore, the behavior of the
different estimates improves as n(or m) grows. When m/n increases, the same performance
pattern is also seen. Furthermore, when the total progressively censoring scheme decreases,
the RMSEs, RABs, and AILs of all estimates tend to decrease for fixed n. The RMSEs, RABs,
and AILs associated with α increase as T increases, whereas those related with θ, R(t), and
h(t) decrease.

Comparing Schemes I–III, it is observed that the RMSEs, RABs, and AILs of α are
greater for Scheme-I than Scheme-III whereas for θ, R(t), and h(t) are smaller based on
Scheme-I than Scheme-III. This result is due the fact that the expected duration of the
experiments using Scheme-I, where the remaining n−m live items removed in the first
stage, is greater than any other; therefore, the data collected under Scheme-I provided more
information about the unknown parameters than those acquired by Schemes II and III.
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Table 1. The average estimates, RMSEs, and RABs (in parentheses) for α and θ.

T (n,m) Scheme
α θ

MLE
MCMC

MLE
MCMC

Prior→ 0 1 2 0 1 2

0.25 (50,25) I 3.093 (4.268,1.692) 1.604 (0.428,0.336) 1.313 (0.138,0.095) 1.250 (0.054,0.042) 0.918 (0.307,0.272) 0.679 (0.165,0.179) 0.709 (0.126,0.126) 0.778 (0.052,0.059)
II 1.006 (0.210,0.168) 1.347 (0.165,0.123) 1.269 (0.074,0.058) 1.190 (0.048,0.032) 0.208 (0.601,0.741) 0.247 (0.555,0.692) 0.646 (0.165,0.193) 0.831 (0.043,0.045)
III 1.004 (0.229,0.169) 1.414 (0.250,0.182) 1.267 (0.077,0.056) 1.240 (0.046,0.034) 0.188 (0.614,0.765) 0.273 (0.529,0.658) 0.393 (0.439,0.509) 0.495 (0.333,0.381)

(50,40) I 2.704 (3.184,1.362) 1.522 (0.345,0.268) 1.293 (0.102,0.078) 1.166 (0.039,0.028) 0.895 (0.231,0.209) 0.735 (0.109,0.115) 0.763 (0.043,0.048) 0.792 (0.013,0.013)
II 1.001 (0.200,0.167) 1.292 (0.111,0.079) 1.245 (0.048,0.038) 1.232 (0.035,0.027) 0.396 (0.411,0.506) 0.375 (0.454,0.532) 0.836 (0.039,0.046) 0.774 (0.029,0.033)
III 1.006 (0.221,0.169) 1.337 (0.161,0.115) 1.179 (0.038,0.027) 1.175 (0.030,0.022) 0.396 (0.411,0.505) 1.312 (0.558,0.641) 0.698 (0.111,0.128) 0.789 (0.045,0.048)

(100,50) I 2.242 (2.153,0.984) 1.371 (0.261,0.162) 1.253 (0.062,0.046) 1.169 (0.036,0.027) 0.894 (0.221,0.202) 0.808 (0.078,0.092) 0.745 (0.075,0.085) 0.817 (0.032,0.035)
II 1.002 (0.199,0.167) 1.261 (0.086,0.062) 1.211 (0.013,0.009) 1.208 (0.012,0.008) 0.231 (0.572,0.712) 0.406 (0.401,0.493) 0.767 (0.038,0.041) 0.799 (0.014,0.014)
III 1.003 (0.200,0.167) 1.315 (0.158,0.112) 1.219 (0.026,0.019) 1.203 (0.014,0.009) 0.189 (0.613,0.765) 0.303 (0.502,0.621) 0.642 (0.173,0.198) 0.660 (0.156,0.175)

(100,80) I 1.810 (1.335,0.624) 1.396 (0.224,0.166) 1.217 (0.023,0.015) 1.220 (0.022,0.017) 0.857 (0.149,0.139) 0.820 (0.051,0.053) 0.801 (0.011,0.011) 0.804 (0.008,0.007)
II 1.002 (0.201,0.167) 1.154 (0.067,0.046) 1.195 (0.013,0.008) 1.191 (0.009,0.007) 0.489 (0.317,0.388) 0.476 (0.336,0.406) 0.781 (0.029,0.028) 0.805 (0.007,0.007)
III 1.002 (0.201,0.167) 1.139 (0.081,0.056) 1.186 (0.021,0.015) 1.199 (0.014,0.010) 0.489 (0.317,0.388) 0.949 (0.178,0.186) 0.800 (0.018,0.019) 0.788 (0.018,0.019)

0.75 (50,25) I 2.908 (4.388,1.565) 1.554 (0.401,0.300) 1.408 (0.228,0.174) 1.320 (0.155,0.111) 0.892 (0.226,0.207) 0.687 (0.158,0.160) 0.707 (0.101,0.116) 0.739 (0.097,0.094)
II 3.358 (6.730,1.950) 1.283 (0.114,0.077) 1.108 (0.101,0.077) 1.275 (0.085,0.063) 0.925 (0.332,0.284) 0.915 (0.222,0.225) 0.745 (0.063,0.071) 0.841 (0.049,0.052)
III 2.973 (8.075,1.762) 1.520 (0.363,0.271) 1.279 (0.086,0.066) 1.272 (0.077,0.060) 0.535 (0.600,0.674) 1.270 (0.553,0.588) 0.571 (0.262,0.287) 0.568 (0.255,0.290)

(50,40) I 2.489 (3.172,1.208) 1.525 (0.374,0.276) 1.281 (0.089,0.068) 1.246 (0.056,0.039) 0.879 (0.195,0.179) 0.862 (0.136,0.143) 0.822 (0.028,0.029) 0.795 (0.014,0.015)
II 1.291 (0.862,0.335) 1.242 (0.125,0.092) 1.285 (0.089,0.071) 1.209 (0.033,0.024) 0.675 (0.272,0.273) 0.649 (0.187,0.201) 0.807 (0.056,0.056) 0.801 (0.023,0.025)
III 1.007 (0.219,0.170) 1.453 (0.291,0.214) 1.252 (0.059,0.044) 1.233 (0.036,0.028) 0.426 (0.383,0.468) 0.778 (0.315,0.313) 0.849 (0.055,0.063) 0.792 (0.052,0.056)

(100,50) I 2.116 (2.213,0.905) 1.433 (0.368,0.394) 1.283 (0.088,0.069) 1.167 (0.036,0.027) 0.869 (0.177,0.162) 0.914 (0.135,0.132) 0.773 (0.064,0.053) 0.793 (0.016,0.017)
II 2.368 (3.243,1.120) 1.228 (0.103,0.066) 1.284 (0.095,0.069) 1.230 (0.043,0.031) 0.903 (0.241,0.207) 0.923 (0.151,0.159) 0.768 (0.036,0.040) 0.822 (0.032,0.032)
III 1.230 (1.657,0.349) 1.305 (0.142,0.091) 1.142 (0.063,0.049) 1.158 (0.045,0.035) 0.339 (0.543,0.644) 1.025 (0.257,0.282) 0.667 (0.147,0.166) 0.700 (0.117,0.125)

(100,80) I 1.810 (1.524,0.650) 1.230 (0.104,0.074) 1.141 (0.063,0.049) 1.192 (0.021,0.015) 0.844 (0.138,0.127) 0.866 (0.084,0.096) 0.799 (0.007,0.007) 0.803 (0.007,0.006)
II 1.277 (0.627,0.299) 1.136 (0.076,0.055) 1.170 (0.035,0.026) 1.197 (0.011,0.008) 0.696 (0.247,0.232) 0.867 (0.078,0.086) 0.794 (0.017,0.018) 0.801 (0.010,0.010)
III 1.003 (0.210,0.168) 1.220 (0.079,0.058) 1.172 (0.030,0.024) 1.223 (0.023,0.019) 0.505 (0.302,0.369) 0.864 (0.178,0.183) 0.789 (0.016,0.016) 0.792 (0.014,0.015)
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Table 2. The average estimates, RMSEs, and RABs (in parentheses) for R(t) and h(t).

T (n,m) Scheme
R(t) h(t)

MLE
MCMC

MLE
MCMC

Prior→ 0 1 2 0 1 2

0.25 (50,25) I 0.940 (0.018,0.016) 0.948 (0.020,0.021) 0.939 (0.013,0.013) 0.929 (0.004,0.003) 0.623 (0.181,0.197) 0.542 (0.431,0.268) 0.628 (0.132,0.147) 0.734 (0.042,0.045)
II 0.980 (0.051,0.054) 0.980 (0.050,0.528) 0.944 (0.016,0.016) 0.927 (0.004,0.003) 0.208 (0.537,0.720) 0.208 (0.528,0.717) 0.577 (0.168,0.215) 0.766 (0.039,0.046)
III 0.981 (0.052,0.056) 0.977 (0.048,0.051) 0.966 (0.039,0.039) 0.957 (0.030,0.029) 0.188 (0.549,0.745) 0.236 (0.501,0.679) 0.350 (0.412,0.523) 0.445 (0.314,0.394)

(50,40) I 0.940 (0.016,0.014) 0.938 (0.011,0.010) 0.932 (0.003,0.003) 0.930 (0.001,0.001) 0.636 (0.164,0.175) 0.645 (0.114,0.136) 0.649 (0.094,0.117) 0.723 (0.015,0.018)
II 0.961 (0.034,0.034) 0.960 (0.031,0.033) 0.933 (0.003,0.003) 0.928 (0.002,0.002) 0.395 (0.348,0.463) 0.328 (0.432,0.553) 0.702 (0.035,0.045) 0.732 (0.012,0.013)
III 0.961 (0.033,0.034) 0.889 (0.044,0.043) 0.929 (0.021,0.025) 0.942 (0.013,0.013) 0.395 (0.347,0.462) 1.184 (0.492,0.612) 0.707 (0.035,0.003) 0.733 (0.013,0.015)

(100,50) I 0.937 (0.013,0.011) 0.936 (0.008,0.007) 0.933 (0.004,0.003) 0.929 (0.001,0.001) 0.664 (0.129,0.139) 0.663 (0.081,0.098) 0.669 (0.079,0.097) 0.739 (0.028,0.032)
II 0.977 (0.048,0.051) 0.968 (0.041,0.041) 0.936 (0.007,0.007) 0.929 (0.003,0.002) 0.231 (0.507,0.686) 0.378 (0.362,0.485) 0.702 (0.039,0.046) 0.741 (0.009,0.009)
III 0.981 (0.052,0.056) 0.974 (0.045,0.048) 0.944 (0.015,0.015) 0.934 (0.005,0.005) 0.188 (0.548,0.744) 0.268 (0.472,0.636) 0.584 (0.163,0.205) 0.605 (0.144,0.177)

(100,80) I 0.935 (0.011,0.009) 0.933 (0.006,0.006) 0.929 (0.001,0.001) 0.929 (0.001,0.001) 0.684 (0.107,0.113) 0.702 (0.067,0.075) 0.793 (0.021,0.025) 0.934 (0.005,0.005)
II 0.952 (0.024,0.025) 0.963 (0.034,0.036) 0.931 (0.002,0.002) 0.930 (0.001,0.001) 0.490 (0.253,0.334) 0.409 (0.333,0.443) 0.719 (0.025,0.026) 0.928 (0.002,0.002)
III 0.952 (0.024,0.025) 0.915 (0.017,0.015) 0.937 (0.009,0.009) 0.930 (0.001,0.001) 0.489 (0.254,0.335) 0.450 (0.408,0.520) 0.731 (0.013,0.013) 0.733 (0.007,0.007)

0.75 (50,25) I 0.939 (0.017,0.014) 0.946 (0.018,0.017) 0.931 (0.005,0.005) 0.928 (0.002,0.002) 0.646 (0.173,0.179) 0.561 (0.192,0.236) 0.629 (0.129,0.143) 0.621 (0.119,0.155)
II 0.938 (0.018,0.015) 0.943 (0.017,0.016) 0.939 (0.012,0.011) 0.940 (0.011,0.012) 0.611 (0.209,0.218) 0.586 (0.180,0.214) 0.682 (0.063,0.076) 0.712 (0.029,0.035)
III 0.969 (0.044,0.044) 0.933 (0.051,0.059) 0.951 (0.024,0.023) 0.951 (0.023,0.023) 0.309 (0.459,0.588) 1.202 (0.546,0.636) 0.509 (0.252,0.308) 0.505 (0.250,0.313)

(50,40) I 0.938 (0.015,0.012) 0.933 (0.011,0.010) 0.931 (0.002,0.002) 0.929 (0.001,0.001) 0.652 (0.150,0.155) 0.704 (0.120,0.129) 0.715 (0.052,0.056) 0.756 (0.030,0.035)
II 0.941 (0.020,0.016) 0.928 (0.015,0.013) 0.934 (0.006,0.006) 0.932 (0.003,0.003) 0.628 (0.196,0.187) 0.754 (0.163,0.181) 0.719 (0.057,0.061) 0.750 (0.025,0.028)
III 0.959 (0.030,0.031) 0.888 (0.049,0.045) 0.940 (0.011,0.011) 0.937 (0.009,0.008) 0.425 (0.320,0.422) 0.693 (0.314,0.322) 0.720 (0.019,0.022) 0.740 (0.012,0.013)

(100,50) I 0.936 (0.013,0.010) 0.922 (0.009,0.008) 0.930 (0.002,0.002) 0.928 (0.002,0.002) 0.674 (0.126,0.129) 0.809 (0.098,0.113) 0.688 (0.072,0.071) 0.731 (0.014,0.016)
II 0.935 (0.013,0.010) 0.920 (0.012,0.011) 0.934 (0.007,0.005) 0.930 (0.001,0.001) 0.685 (0.125,0.129) 0.844 (0.138,0.157) 0.746 (0.023,0.028) 0.733 (0.023,0.024)
III 0.965 (0.040,0.039) 0.918 (0.013,0.012) 0.931 (0.005,0.004) 0.928 (0.003,0.002) 0.364 (0.413,0.513) 0.862 (0.149,0.173) 0.626 (0.121,0.148) 0.654 (0.100,0.110)

(100,80) I 0.935 (0.011,0.008) 0.924 (0.008,0.007) 0.929 (0.001,0.001) 0.930 (0.001,0.001) 0.684 (0.105,0.104) 0.789 (0.087,0.103) 0.744 (0.016,0.018) 0.734 (0.013,0.014)
II 0.940 (0.019,0.014) 0.924 (0.007,0.007) 0.928 (0.002,0.001) 0.929 (0.001,0.001) 0.654 (0.179,0.188) 0.790 (0.076,0.091) 0.738 (0.018,0.022) 0.736 (0.011,0.011)
III 0.951 (0.022,0.023) 0.941 (0.012,0.013) 0.929 (0.002,0.002) 0.929 (0.001,0.001) 0.504 (0.239,0.313) 0.615 (0.124,0.162) 0.743 (0.010,0.012) 0.730 (0.007,0.006)
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Table 3. The AILs of α and θ.

T (n,m) Scheme
α θ

ACI
HPD

ACI
HPD

Prior→ 0 1 2 0 1 2

0.25 (50,25) I 0.2298 0.5270 0.0953 0.0713 0.2411 0.4314 0.1012 0.1353
II 0.1696 0.5990 0.1061 0.0609 0.5008 0.4630 0.2448 0.1524
III 0.1243 0.2646 0.0768 0.0581 0.5749 0.8136 0.4412 0.1552

(50,40) I 0.1431 0.4183 0.0915 0.0655 0.2133 0.3443 0.0593 0.0349
II 0.1553 0.4181 0.0624 0.0539 0.2425 0.3776 0.0776 0.0501
III 0.1227 0.2405 0.0685 0.0292 0.5216 0.4999 0.1444 0.1368

(100,50) I 0.1174 0.3987 0.0846 0.0274 0.1873 0.1723 0.0614 0.0234
II 0.0440 0.2982 0.0338 0.0129 0.2228 0.3086 0.1839 0.0977
III 0.0569 0.2235 0.0532 0.0080 0.4912 0.2931 0.2171 0.1091

(100,80) I 0.0609 0.3402 0.0499 0.0151 0.1311 0.0993 0.0384 0.0168
II 0.0282 0.1658 0.0215 0.0091 0.2161 0.2677 0.0614 0.0488
III 0.0564 0.1829 0.0367 0.0004 0.3821 0.2427 0.0769 0.0541

0.75 (50,25) I 0.3006 0.6933 0.2931 0.0877 0.2644 0.4890 0.1037 0.1391
II 0.1523 0.5713 0.1258 0.0655 0.5635 0.7238 0.2629 0.1899
III 0.1261 0.8318 0.1008 0.0505 0.8746 0.9072 0.3736 0.3511

(50,40) I 0.1381 0.6141 0.1079 0.0528 0.2501 0.4099 0.0564 0.0432
II 0.1101 0.3812 0.1035 0.0373 0.5455 0.4538 0.0762 0.0904
III 0.1186 0.5016 0.0899 0.0364 0.8407 0.4533 0.1639 0.1084

(100,50) I 0.1043 0.3547 0.0841 0.0536 0.2213 0.2138 0.0649 0.0514
II 0.1375 0.3769 0.1108 0.0361 0.4386 0.3116 0.2082 0.0839
III 0.0572 0.2817 0.0747 0.0210 0.6937 0.3795 0.2209 0.1949

(100,80) I 0.0712 0.3230 0.0541 0.0165 0.1515 0.2057 0.0228 0.0198
II 0.0622 0.2516 0.0584 0.0078 0.3517 0.1496 0.0421 0.0435
III 0.0382 0.1613 0.0234 0.0065 0.5415 0.1737 0.0564 0.0446

Table 4. The AILs of R(t) and h(t).

T (n,m) Scheme
R(t) h(t)

ACI
HPD

ACI
HPD

Prior→ 0 1 2 0 1 2

0.25 (50,25) I 0.0204 0.0319 0.0133 0.0100 0.2183 0.3416 0.1916 0.1445
II 0.0257 0.0408 0.0151 0.0076 0.2328 0.4262 0.1516 0.0824
III 0.0442 0.0663 0.0385 0.0136 0.4614 0.7572 0.4053 0.1347

(50,40) I 0.0115 0.0258 0.0059 0.0042 0.1377 0.2783 0.1179 0.0882
II 0.0172 0.0254 0.0061 0.0039 0.2119 0.2663 0.0665 0.0429
III 0.0244 0.0265 0.0109 0.0080 0.2367 0.2911 0.0648 0.0443

(100,50) I 0.0154 0.0191 0.0102 0.0044 0.1671 0.2042 0.1097 0.0855
II 0.0203 0.0239 0.0058 0.0040 0.1843 0.2503 0.0627 0.0435
III 0.0198 0.0222 0.0183 0.0095 0.2068 0.2298 0.1962 0.0977

(100,80) I 0.0064 0.0129 0.0039 0.0024 0.0689 0.1369 0.0557 0.0391
II 0.0128 0.0152 0.0041 0.0015 0.1286 0.1560 0.0452 0.0165
III 0.0184 0.0164 0.0048 0.0035 0.1977 0.1684 0.0424 0.0258

0.75 (50,25) I 0.0237 0.0427 0.0144 0.0126 0.2830 0.4618 0.2528 0.1342
II 0.0598 0.0549 0.0177 0.0072 0.4208 0.6032 0.1914 0.0779
III 0.0319 0.0752 0.0312 0.0236 0.3386 0.8582 0.3301 0.2489

(50,40) I 0.0207 0.0292 0.0039 0.0036 0.1891 0.3133 0.1501 0.0782
II 0.0563 0.0398 0.0108 0.0062 0.3928 0.4256 0.1157 0.0651
III 0.0272 0.0387 0.0156 0.0138 0.2544 0.4168 0.0424 0.0396

(100,50) I 0.0186 0.0228 0.0072 0.0046 0.2005 0.2456 0.1401 0.0491
II 0.0391 0.0272 0.0085 0.0064 0.2689 0.2988 0.0911 0.0708
III 0.0171 0.0235 0.0165 0.0072 0.2171 0.2637 0.1773 0.1521

(100,80) I 0.0141 0.0181 0.0021 0.0016 0.0742 0.1968 0.0459 0.0432
II 0.0259 0.0162 0.0056 0.0041 0.2699 0.1735 0.0604 0.0438
III 0.0059 0.0118 0.0043 0.0040 0.1834 0.1248 0.0226 0.0175

In terms of the smallest RMSEs, RABs, and AILs, the Bayesian estimates using gamma
informative priors perform better than the frequentist estimates since they contain prior
knowledge. Furthermore, because Prior 2 has a smaller variance than Prior 1, the Bayesian
(point/interval) based on Prior 2 perform better than those based on Prior 1 while both are
more informative than the Prior 0. This result is due the fact that, if the prior information
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of α and θ is not available, the posterior PDF is reduced in proportion to the corresponding
likelihood function. In summary, the Bayesian inference of the unknown parameters of the
APE lifetime model using the Metropolis–Hastings method is recommended.

5. Optimal Progressive Censoring Plan

In recent years, the statistical literature has focused on finding the best censoring
scheme; see, for example, Chapter 10 of Balakrishnan and Aggarwala [23], Ng et al. [24],
Balasooriya and Balakrishnan [25], Balasooriya et al. [26], and Pradhan and Kundu [27]. For
specified n and m, probable censoring schemes refers to all likely R1, . . . , Rm combinations
such that m + ∑m

i=1 Ri = n, and selecting the progressive censoring scheme that gives the
most information about the unknown parameters among all possible progressive censoring
schemes is part of selecting the optimal sample approach. Practically, we would like
to pick the censoring scheme that delivers the maximum information of the unknown
parameters, see Elshahhat and Rastogi [22] and Alotaibi et al. [28] for more information. In
our example, numerous widely used measures are offered in Table 5 to help us choose the
most progressive censoring approach.

Table 5. Some practical censorship plan optimal criteria.

Criterion Objective

C1 Maximize trace(I(·))
C2 Minimize trace(I−1(·))
C3 Minimize det(I−1(·))
C4 Minimize Var(log(Q̂p))

C5 Minimize
∫ 1

0 Var(log(Q̂p))w(p)dp

Regarding criterion C1, our goal is to maximize the observed Fisher I(α̂, θ̂) information
values. In addition, regarding criteria C2 and C3, our goal is to minimize the determinant
and the trace of I−1(α̂, θ̂), respectively. When dealing with single-parameter distributions,
comparing multiple criteria is easy; however, when dealing with multi-parameter distribu-
tions are unknown, then the comparison of the two Fisher information matrices is more
difficult since the criterion C2 and C3 are not scale invariant—see Gupta and Kundu [29];
however, the optimal censoring scheme of multi-parameter distributions can be chosen
using scale invariant criteria C4 and C5.

It is clear that the criterion C4 depends on the choice of p, tends to minimize the
variance of logarithmic of MLE of the p-th quantile, log(Q̂p), where 0 < p < 1. Accord-
ing to criterion C5, the weight function w(p) 6 0 is a non-negative function satisfying∫ 1

0 w(p)dp, also, log(Q̂p) is the same as in criterion C4. Without loss of generality, the
weight function can be taken as w(p) = 1 for 0 < p < 1. Hence, the logarithmic for Qp of
the APE distribution is given by

log(Q̂p) = log
[
−1

θ

[
log(1− log(1 + p(α− 1)))

log(α)

]]
, 0 < p < 1. (17)

From, (3), the delta method is used to obtain the approximated variance for log(Q̂p)
of the APE distribution as

Var(log(Q̂p)) = [∇ log(Q̂p)]
T I−1(α̂, θ̂)[∇ log(Q̂p)],

where

[∇ log(Q̂p)]
T =

[
∂

∂α
log(Q̂p),

∂

∂θ
log(Q̂p)

]
(α=α̂,θ=θ̂)

.

However, the optimized progressive censoring corresponds to the highest value of the
criterion C1 and the lowest value of the criteria Ci, i = 2, 3, 4, 5.
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6. Real-Life Data Applications

In this part, we use two real data sets from the engineering and chemical domains to
illustrate the significance and use of the proposed methodologies to real events.

6.1. Electronic Devices

In this application, we shall utilize the failure times of 18 electronic devices given by
Wang [30]. Recently, this data set has been investigated by Elshahhat and Abu El Azm [31].
The failure times are: 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330,
350, and 420. Firstly, we require to check whether the APE distribution is an appropriate
model to fit these data or not. For this purpose, the MLEs of α and θ are employed to
obtain the Kolmogorov–Smirnov (K-S) distance and its related p-value. The MLEs α̂ and θ̂
along their standard errors (SEs) of the model parameters α and θ are 3.0805 (3.8591) and
0.0074 (0.0022), respectively. Hence, the K-S distance is 0.104 with p-value 0.979. It is to
be mentioned here that since the parameters are unknown and the maximum likelihood
approach is used to estimate them, we utilize the bootstrap technique to obtain the desired
P-value. Moreover, when the adaptive Type-II progressively hybrid censored data are
observed, one can use the modified Kolmogorov–Smirnov test for progressive Type-II
censored data proposed by Pakyari and Balakrishnan [32] for this purpose. It implies that
the APE distribution fits the given data quite satisfactorily.

One of the main concerns in the likelihood iterations is that frequently it is not attain-
able to verify with analytically steps the existence and uniqueness of the MLEs α̂ and θ̂. To
overcome this issue, a contour plot of the log-likelihood function for α and θ operating the
complete data set is depicted in Figure 1. It indicates that the most suitable starting values
of α and θ are close to 3.08 and 0.0074, respectively. In addition, it indicates that the MLEs α̂
and θ̂ are exist and unique.
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Figure 1. Contour plot of α and θ for electronic devices data.

Now, we illustrate the proposed estimates under the electronic devices data. Us-
ing some specified choices of m, T, and R, different adaptive progressive Type-II hybrid
censored samples are generated and presented in Table 6. For brevity, the progressively cen-
soring scheme (R1, R2, . . . , Rm) is referred as Sm:n. Using the MCMC algorithm represented
in Section 3, we generate 30,000 MCMC samples and discard the first 5000 samples as a
burn-in. Because we lack prior knowledge about the APE parameters, the Bayesian MCMC
estimates of α and θ as well as the reliability characteristics R(t) and h(t), at distinct mission
time t = 3, using non-informative priors, i.e., P1(α, θ) ∝ (αθ)−1 are developed. Using the
generated samples, the MLEs and Bayesian estimates of α, θ, R(t), and h(t) are obtained
and displayed in Table 7. Further, the two-sided 95% ACI/HPD intervals of α, θ, R(t), and
h(t) are computed and presented in Table 7. The SEs and interval lengths (ILs) are also



Symmetry 2022, 14, 651 15 of 21

obtained and presented in Table 7. The results in Table 7 show that the point and interval
estimates of α, θ, R(t), and h(t) obtained by the likelihood and Bayesian approaches are
quite close to each other. Figure 2 indicates the log-likelihood functions of α, θ for S15:18

1
as example, which demonstrate that the MLEs are exist and unique. In order to evaluate
the convergence of MCMC algorithm, trace plots for 25,000 MCMC simulated variate of
α, θ, R(t), and h(t) (for S13:18

1 and S15:18
1 as an example) are plotted in Figure 3. Using the

Gaussian kernel density, the corresponding histograms for the MCMC values of α, θ, R(t),
and h(t) are also represented in Figure 3. In each trace plot, the sample mean and 95% HPD
credible intervals shown as solid and dashed lines, respectively, while in each histogram
plot the sample mean is shown as a vertical dash-dotted line. Figure 3 indicates that the
MCMC procedure converges very well. It also shows that the generated posterior estimates
are very close well to the theoretical posterior density functions.

Further, using different optimum criteria presented in Table 5, the concept of choosing
an optimal progressive censoring scheme is illustrated, see Table 8. It is evident from the
calculated optimum criteria that, for both m(= 13, 15), scheme S3 is the optimal scheme
based on Ci, i = 1, 2, 3 while S1 is the optimal scheme based on Ci, i = 4, 5.

Table 6. Three different generated samples from electronic devices data.

Sm:n (m, T) = (13, 120) D R∗m

S13:18
1 = (5, 0∗12) 5, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, 420 2 0
S13:18

2 = (0∗4, 1∗5, 0∗4) 5, 11, 21, 31, 46, 98, 145, 196, 224, 245, 293, 321, 330 6 2
S13:18

3 = (0∗12, 5) 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245 7 5

Sm:n (m, T) = (15, 180) D R∗m

S15:18
1 = (3, 0∗14) 5, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321, 330, 350, 420 7 0
S15:18

2 = (0∗8, 1∗3, 0∗4) 5, 11, 21, 31, 46, 75, 98, 122, 145, 196, 245, 293, 321, 330, 350 9 1
S15:18

3 = (0∗14, 3) 5, 11, 21, 31, 46, 75, 98, 122, 145, 165, 196, 224, 245, 293, 321 10 3

Table 7. The point estimates (SEs) and interval estimates (ILs) of α, θ, R(t), and h(t) under electronic
devices data.

Scheme Parameter MLE MCMC ACI HPD

S13:18
1 α 65.323 (5.9380) 65.322 (1.25 × 10−5) (53.685,76.961) [23.276] (65.318,65.327) [0.0009]

θ 0.0088 (0.0015) 0.0088 (7.55 × 10−6) (0.0059,0.0117) [0.0058] (0.0065,0.0111) [0.0046]
R(3) 0.9982 (0.0003) 0.9982 (1.60 × 10−6) (0.9975,0.9989) [0.0014] (0.9977,0.9987) [0.0010]
h(3) 0.0006 (0.0001) 0.0006 (5.79 × 10−7) (0.0004,0.0008) [0.0004] (0.0004,0.0008) [0.0004]

S13:18
2 α 2.0232 (2.9868) 2.0230 (6.37 × 10−6) (0.0000,7.8772) [7.8772] (2.0211,2.0251) [0.0040]

θ 0.0054 (0.0023) 0.0052 (5.03 × 10−6) (0.0008,0.0100) [0.0092] (0.0037,0.0068) [0.0031]
R(3) 0.9889 (0.0133) 0.9891 (1.03 × 10−6) (0.9627,0.9999) [0.0372] (0.9860,0.9923) [0.0063]
h(3) 0.0037 (0.0009) 0.0036 (3.50 × 10−6) (0.0019,0.0056) [0.0037] (0.0026,0.0047) [0.0021]

S13:18
3 α 1.0919 (2.3451) 1.0917 (6.30 × 10−6) (0.0000,6.0917) [5.6883] (1.0899,1.0938) [0.0039]

θ 0.0051 (0.0036) 0.0049 (8.09 × 10−6) (0.0000,0.0123) [0.0123] (0.0033,0.0065) [0.0032]
R(3) 0.9854 (0.0255) 0.9858 (1.44 × 10−6) (0.9353,0.9999) [0.0646] (0.9814,0.9904) [0.0090]
h(3) 0.0049 (0.0021) 0.0047 (4.87 × 10−6) (0.0008,0.0090) [0.0082] (0.0032,0.0062) [0.0030]

S15:18
1 α 21.979 (6.0238) 21.979 (6.34 × 10−6) (10.172,33.785) [23.612] (21.977,21.981) [0.0039]

θ 0.0087 (0.0015) 0.0085 (5.27 × 10−6) (0.0057,0.0117) [0.0060] (0.0069,0.0102) [0.0033]
R(3) 0.9961 (0.0011) 0.9961 (2.45 × 10−6) (0.9938,0.9983) [0.0045] (0.9954,0.9969) [0.0015]
h(3) 0.0014 (0.0003) 0.0013 (8.69 × 10−7) (0.0009,0.0018) [0.0009] (0.0011,0.0016) [0.0005]

S15:18
2 α 1.9089 (2.7499) 1.9088 (6.29 × 10−6) (0.0000,7.2987) [60.269] (1.9068,1.9107) [0.0038]

θ 0.0059 (0.0024) 0.0057 (5.10 × 10−6) (0.0012,0.0107) [0.0095] (0.0042,0.0074) [0.0031]
R(3) 0.9873 (0.0144) 0.9876 (1.08 × 10−6) (0.9591,0.9999) [0.0408] (0.9842,0.9909) [0.0067]
h(3) 0.0043 (0.0011) 0.0041 (3.67 × 10−6) (0.0022,0.0063) [0.0041] (0.0030,0.0053) [0.0023]

S15:18
3 α 1.3581 (2.1476) 1.3580 (6.27 × 10−6) (0.0000,5.5673) [5.5673] (1.3560,1.3599) [0.0039]

θ 0.0055 (0.0027) 0.0053 (5.08 × 10−6) (0.0003,0.0108) [0.0105] (0.0038,0.0070) [0.0032]
R(3) 0.9859 (0.0177) 0.9863 (1.28 × 10−6) (0.9512,0.9999) [0.0487] (0.9822,0.9902) [0.0080]
h(3) 0.0047 (0.0015) 0.0045 (4.36 × 10−6) (0.0018,0.0076) [0.0058] (0.0033,0.0060) [0.0027]
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Figure 2. The log-likelihood functions of α and θ under electronic devices data.
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Figure 3. Trace plots (left panel) and histograms with estimated kernel density (right panel) under
electronic devices data.
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Table 8. Optimal progressive censoring plan under electronic devices data.

Scheme
C1 C2 C3

C4 C5

p→ 0.3 0.6 0.9 0.3 0.6 0.9

S13:18
1 459,798.4 35.25937 0.000077 580.4244 580.4244 4877.928 608.1471 1945.152 6207.023
S13:18

2 545,183.5 8.921012 0.000016 939.5688 2947.314 18,183.11 960.4032 2965.523 17,944.02
S13:18

3 507,177.9 5.499799 0.000010 698.9182 2585.247 28,892.05 714.2520 2805.433 32,738.18

S15:18
1 436,135.1 36.28584 0.000083 440.0363 1390.546 4724.009 427.6525 1349.603 4583.571
S15:18

2 509,881.2 7.562193 0.000014 735.6637 2194.777 12,401.63 752.4166 2297.627 13,063.74
S15:18

3 537,295.2 4.612386 0.000008 645.2009 2224.144 15572.08 640.4340 2213.778 15,683.08

6.2. Vinyl Chloride

This application analyzes vinyl chloride, a recognized human carcinogen, received
from clean up-gradient monitoring wells, see (Bhaumik et al. [33]). Elshahhat and Ele-
mary [34] have recently investigated this data collection. This data set consists of 34 data
points (in mg/L) as: 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1,
1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3, 2.4, 2.5, 2.7, 2.9, 3.2, 4.0, 5.1, 5.3, 6.8, and 8.0. To verify the
validity of the APE lifetime model for the vinyl chloride data set, the K-S statistic and its
corresponding p-value are computed. The MLEs (SEs) of α̂ and θ̂ are 0.6520(0.8535) and
0.4767(0.1885), respectively. The K-S(p-value) is 0.0879(0.955). This result indicates that the
APE distribution is a suitable model to fit vinyl chloride data. Using the complete vinyl
chloride data set, the contour plot of the log-likelihood function is presented in Figure 4.
It indicates that the best starting values of α and θ are close to 0.652 and 0.475, respectively.
In addition, it indicates that the MLEs α̂ and θ̂ exist and are also unique.
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Figure 4. Contour plot of α and θ for vinyl chloride data.

Using complete vinyl chloride data, three different adaptive progressive Type-II hybrid
censored samples are generated and presented in Table 9. The MLEs and Bayesian estimates
as well as the associated interval estimates of α, θ, R(t), and h(t), at specified time t = 1,
are calculated and reported in Table 10. It can be seen that, from Table 10, the Bayesian
(point/interval) estimates have similar performance of the frequentist estimates. Figure 5
indicates the log-likelihood functions of α, θ for S24:34

1 as an example, which demonstrate
that the MLEs are exist and unique. Moreover, the trace and histogram plots for 25,000
MCMC simulated variate of α, θ, R(t), and h(t) (for S14:34

1 and S24:34
1 as an example) are

displayed in Figure 6. Using the generated samples reported in Table 9, the criteria given
in Table 5 can be easily computed and reported in Table 11. It is clear that, for m = 14,
scheme S1 is the optimal scheme based on C1, scheme S2 is the optimal scheme based on
Ci, i = 2, 3 and S3 is the optimal scheme based on Ci, i = 4, 5. Further, for m = 24, we
observe that the censoring scheme S2 is the optimum scheme. Finally, we can conclude that



Symmetry 2022, 14, 651 18 of 21

the proposed methodologies provide a good demonstration of our model in the presence
of engineering or chemical data.

Table 9. The different generated samples from vinyl chloride data.

Sm:n (m, T) = (14, 0.5) D R∗m

S14:34
1 = (20, 0∗13) 0.1, 2.0, 2.0, 2.3, 2.4, 2.5, 2.7, 2.9, 3.2, 4.0, 5.1, 5.3, 6.8, 8.0 1 0
S14:34

2 = (0∗5, 5∗4, 0∗5) 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.6, 1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3 6 10
S14:34

3 = (0∗13, 20) 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9 7 20

Sm:n (m, T) = (24, 1) D R∗m

S24:34
1 = (10, 0∗23) 0.1, 0.6, 0.8, 0.9, 0.9, 1.0, 1.1, 1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3,

2.4, 2.5, 2.7, 2.9, 3.2, 4.0, 5.1, 5.3, 6.8, 8.0 5 0
S24:34

2 = (0∗11, 2∗5, 0∗8) 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.9, 1.2,
1.8, 2.3, 2.4, 2.5, 2.7, 2.9, 3.2, 4.0, 5.1, 5.3 13 2

S24:34
3 = (0∗23, 10) 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.8, 0.9,

0.9, 1.0, 1.1, 1.2, 1.2, 1.3, 1.8, 2.0, 2.0, 2.3 15 10

Table 10. The point (SEs) and 95% interval estimates (ILs) of α, θ, R(t) and h(t) under vinyl chlo-
ride data.

Scheme Parameter MLE MCMC ACI HPD

S14:34
1 α 79.229 (11.900) 79.229 (1.26 × 10−5) (55.906,102.55) [46.646] (79.225,79.233) [0.0080]

θ 0.5825 (0.0931) 0.5826 (1.26 × 10−5) (0.4000,0.7651) [0.3651] (0.5786,0.5864) [0.0078]
R(1) 0.9247 (0.0212) 0.9247 (2.71 × 10−6) (0.8831,0.9663) [0.0832] (0.9238,0.9255) [0.0017]
h(1) 0.1355 (0.0428) 0.1355 (5.79 × 10−6) (0.0516,0.2194) [0.1678] (0.1338,0.1373) [0.0036]

S14:34
2 α 1.5783 (2.8534) 1.2866 (7.49 × 10−5) (0.0000,7.1709) [7.1709] (1.2678,1.2957) [0.0278]

θ 0.3954 (0.2691) 0.1393 (2.20 × 10−4) (0.0000,0.9229) [0.0929] (0.0845,0.1655) [0.0810]
R(1) 0.7221 (0.3458) 0.8841 (1.74 × 10−4) (0.0443,0.9999) [0.9556] (0.8635,0.9275) [0.0639]
h(1) 0.3378 (0.1281) 0.1246 (1.97 × 10−4) (0.0867,0.5888) [0.5021] (0.0756,0.1482) [0.0726]

S14:34
3 α 5.7495 (7.8849) 5.7259 (6.40 × 10−4) (0.0000,21.204) [21.204] (5.5292,5.9229) [0.3938]

θ 1.0862 (0.4921) 1.0671 (5.78 × 10−4) (0.1216,2.0507) [1.9291] (0.8942,1.2535) [0.3593]
R(1) 0.5397 (0.3395) 0.5475 (2.31 × 10−4) (0.0000,0.9999) [0.9999] (0.4792,0.6221) [0.1429]
h(1) 0.7969 (0.4573) 0.7798 (5.69 × 10−4) (0.0008,1.6932) [1.6932] (0.5993,0.9528) [0.3535]

S24:34
1 α 10.616 (7.1511) 10.616 (1.26 × 10−5) (0.0000,24.632) [24.632] (10.612,10.620) [0.0080]

θ 0.6504 (0.1192) 0.6504 (1.26 × 10−5) (0.4167,0.8841) [0.4674] (0.6466,0.6544) [0.0078]
R(1) 0.7822 (0.0934) 0.7822 (5.00 × 10−6) (0.5992,0.9652) [0.3660] (0.7806,0.7837) [0.0031]
h(1) 0.3298 (0.0861) 0.3298 (9.47 × 10−6) (0.1611,0.4986) [0.3375] (0.3270,0.3329) [0.0059]

S24:34
2 α 1.0001 (0.0450) 1.0099 (6.34 × 10−6) (0.9117,1.0883) [0.1765] (1.0081,1.0120) [0.0039]

θ 0.4120 (0.0126) 0.4119 (6.36 × 10−6) (0.3872,0.4369) [0.0497] (0.4100,0.4140) [0.0040]
R(1) 0.6624 (0.0079) 0.6634 (4.26 × 10−6) (0.6470,0.6778) [0.0308] (0.6621,0.6648) [0.0026]
h(1) 0.4119 (0.0221) 0.4106 (6.40 × 10−6) (0.3686,0.4552) [0.0866] (0.4086,0.4126) [0.0040]

S24:34
3 α 1.0010 (0.0521) 1.0101 (6.36 × 10−6) (0.8995,1.1035) [0.2040] (1.0080,1.0119) [0.0039]

θ 0.5461 (0.0388) 0.5459 (6.32 × 10−6) (0.4701,0.6222) [0.1521] (0.5440,0.5479) [0.0039]
R(1) 0.5794 (0.0185) 0.5805 (3.74 × 10−6) (0.5432,0.6156) [0.0724] (0.5793,0.5817) [0.0024]
h(1) 0.5459 (0.0450) 0.5444 (6.39 × 10−6) (0.4576,0.6342) [0.1766] (0.5423,0.5463) [0.0040]

Table 11. Optimal progressive censoring plan under vinyl chloride data.

Scheme
C1 C2 C3

C4 C5

p→ 0.3 0.6 0.9 0.3 0.6 0.9

S14:34
1 115.9997 141.6136 1.220811 0.129898 0.350576 1.047464 0.121881 0.328820 0.982469
S14:34

2 100.3357 8.214269 0.081867 0.092742 0.516396 6.719861 0.090931 0.483916 6.389591
S14:34

3 19.22729 62.41417 3.246125 0.020207 0.103615 0.785744 0.021480 0.106009 0.795044

S24:34
1 102.2684 51.15239 0.500177 0.053886 0.152032 0.597285 0.054015 0.151033 0.590135
S24:34

2 2708.035 0.002189 0.000001 0.002609 0.014134 0.063575 0.002237 0.011835 0.050417
S24:34

3 2126.100 0.004216 0.000002 0.003311 0.019923 0.110015 0.002407 0.014292 0.077598
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Figure 5. The log-likelihood functions of α and θ under vinyl chloride data.
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Figure 6. Trace plots (left panel) and histograms with estimated kernel density (right panel) under
vinyl chloride data.
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7. Concluding Remarks

Based on an adaptive progressive Type-II hybrid censored data, we investigated the
estimation issues of the alpha power exponential distribution. To obtain point estimators
for unknown parameters, reliability, and hazard rate functions, the maximum likelihood
estimation method is used as a classical approach. Further, the approximate confidence
intervals of these quantities are obtained. Moreover, the Bayesian approach is considered
based on independent gamma priors. The Bayesian estimators are acquired under the
squared error loss function and by utilizing the MCMC procedure. The highest posterior
density credible intervals are also computed. We have also offered various criteria to
compare different sampling schemes. To compare the performance of the various proposed
estimators, a simulation study was implemented by considering different scenarios for the
sample sizes, observed number of failures, and censoring schemes. To show the applicabil-
ity of the offered procedures in real-life two real data sets are investigated. The simulation
and real data analysis outcomes revealed that the Bayesian approach provides more ac-
curate estimates than the maximum likelihood approach. As future works, following
the same approaches of Chaudhary and Tomer [35] and Jovanović [36] it is of interest to
investigate the estimation problems of stress-strength parameter and multi-component
stress-strength reliability from the alpha power exponential distribution in the presence of
adaptive progressive Type-II hybrid censored data.
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