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Abstract: We calculated the shear viscosity of hot and dense nuclear matter produced in a symmetric
system of central gold–gold collisions at energies of BES RHIC, FAIR and NICA. For calculations of
the collisions, the transport model UrQMD was employed. The shear viscosity was obtained within
the Green–Kubo formalism. The hadron resonance gas model was used to determine temperature
and chemical potentials of baryon charge and strangeness out of microscopic model calculations. In
contrast to our previous works, we determined the partial viscosity of the main hadron species, such
as nucleons, pions, kaons and Lambdas, via the nucleon–nucleon, pion–pion and so forth, correlators.
A decrease in the beam energy from Elab = 40 to 10 AGeV leads a to rise in baryon shear viscosity
accompanied by a drop in the shear viscosity of mesons. The ratio of total shear viscosity to entropy
density also decreases.

Keywords: relativistic heavy-ion collisions; transport models; HRG model; shear viscosity; η/s ratio

1. Introduction

The interest in this topic is due to several reasons. The theory of strong interactions,
quantum chromodynamics (QCD), predicts the transition of nuclear matter to a new state,
called quark–gluon plasma QGP, at extremely high density and temperature; see, e.g., [1,2]
and references therein. Such transition may take place in, e.g., neutron stars; however,
the only means to get the nuclear matter under extreme conditions in the laboratory are
heavy-ion collisions at (ultra)relativistic energies. Although the first hydrodynamic model
of multiparticle production was proposed almost 70 years ago [3], its further modifications
have become very popular nowadays because of the successful description of experimental
results obtained for heavy-ion collisions at energies of RHIC BNL (up to

√
s = 200 GeV)

and LHC CERN (up to
√

s = 5.02 TeV). After analysis of RHIC data, it was announced by
all four RHIC collaborations, BRAHMS, PHENIX, PHOBOS and STAR, that the created
hot and dense nuclear substance behaved similarly to a perfect fluid [4–7]. At the same
time, theoretical calculations of the shear viscosity to entropy density, made within strongly
coupled conformal gauge theory by means of the anti-de Sitter/conformal field theory
(AdS/CFT) correspondence [8], set the lower limit for this ratio, η/s ≥ 1/(4π), for all
physical systems. Additionally, more thorough study of differential elliptic flow v2 [9,10] of
charged particles, produced in A+A collisions at energies of RHIC and LHC, as a function
of transverse momentum pT , has revealed that a small but nonzero value of the ratio η/s is
needed for the correct description of the signal at pT ≥ 2.5 GeV/c. Recall that for all known
substances the shear viscosity over entropy density should reach minimum if the system is
in the tricritical point [11].

Since then, the values of η/s began to be intensively estimated. Hydrodynamic
models are macroscopic ones; therefore, a dissipative term such as shear viscosity en-
ters the equations of viscous hydrodynamics as an external parameter, which should be
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obtained somehow. One way to do so is fitting the calculations performed within the
viscous hydrodynamic model, or hybrid model, to the experimental data [12–18]. For
the sake of simplicity, these calculations imply the constant ratio of η/s, although several
works have tried to take the temperature dependence of this ratio into account [19,20].
The computation of transport coefficients of hadronic systems, consisting of mixture of
hadron species, is possible within the microscopic kinetic theory. However, this is a non-
trivial task from an analytic point of view [21,22] because one has to know cross-sections
of various hadronic collisions and mean fields. Therefore, lattice QCD calculations of
η/s are usually done for gluons at zero net baryon density and at temperatures around
160 MeV [23,24]. Microscopic transport models are better suited for such study. In the
past, the shear viscosity and its ratio over entropy density were studied in, e.g., the ultra-
relativistic quantum molecular dynamics (UrQMD) model [25–29], the parton-hadron-
string dynamics (PHSD) model [30], the simulating many accelerated strongly interacting
hadrons (SMASH) model [31] and the parton cascade (PC) models to solve various types
of Boltzmann collision processes [32–35]. Many of these calculations were performed at
conditions corresponding to those of heavy-ion collisions at energies of RHIC and LHC. In
this domain, the transition between QGP and hadronic matter is just a smooth crossover.

The modern trend in high-energy physics nowadays is to search for the critical point,
at which the deconfinement first-order phase transition becomes a second-order one, at
much lower collision energies accessible to the Beam Energy Scan (BES) program at RHIC
and at soon-to-open facilities NICA at JINR and FAIR at GSI. Our study is devoted to the
beam energies between Elab = 10 AGeV and Elab = 40 AGeV. In this energy range, the
temperature of deconfinement phase transition is expected to be lower compared to that
at higher energies, but the baryon chemical potential is quite significant and cannot be
neglected. The transition from meson-dominated to baryon-dominated hadronic matter
with decreasing beam energy takes place here as well. The main aim of the present paper
is to the evolution of partial shear viscosities of the most abundant hadronic species in
an expanding and cooling hadronic mixture formed in a symmetric system of centrally
colliding gold nuclei. We used the UrQMD model [36,37] and employed the technique
developed in [28,29,38]. Section 2 describes the Green–Kubo formalism for determination
of the shear viscosity. Within this approach, one has to know the correlator, the relaxation
time and the temperature of the system. Determination of these parameters, and baryon
chemical potential and strangeness chemical potential, is explained in Section 3. Section 4
presents the calculations of evolution of partial shear viscosity and its ratio over entropy
density for nucleons, pions, kaons and Λ + Σ in the central area of central Au+Au collisions
at four different beam energies, Elab = 10, 20, 30 and 40 AGeV. Finally, conclusions are
drawn in Section 5.

2. Calculation of Shear Viscosity within Green–Kubo Formalism

In classical thermodynamics, one can determine the shear viscosity by means of
Chapman–Enskog method [39]. Microscopic transport models, however, allow calculation
of the shear viscosity by using the Green–Kubo formalism [40,41] during the study of
relaxation process in the disturbed system. Note that the formalism relies on assumption
of existence of the equilibrated state. Therefore, one has to study the relaxation of the
system to equilibrium before calculation of shear viscosity. The whole formalism is quite
straightforward. It is convenient to use Planck, or natural, units: h̄ = kB = c = 1. The shear
viscosity in these units is

η(t0) =
V
T

∫ ∞

t0

〈π(t)π(t0)〉tdt (1)

containing the volume V and temperature T of the system, and initial (t0) and final (t) time
of the calculation. The correlator in the integrand reads

〈π(t)π(t0)〉t = lim
tmax→∞

1
tmax − t0

∫ tmax

t0

πij(t + t′
)
πij(t′)dt′ (2)
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where πij(t) is the non-diagonal part of the energy-momentum tensor Tij.

πij(t) =
1
V

particles

∑
k=1

pi
k(t)pj

k(t)
Ek(t)

. (3)

Here pi(j)
k is the i(j)th components of momentum of particle k and Ek is its energy, respec-

tively. The correlator (2) can be approximated by [40,41]

〈π(t)π(t0)〉t ≈ 〈π(t0)π(t0)〉 exp
(
− t− t0

τ

)
, (4)

where τ is the effective relaxation time. By combining Equation (4) with Equation (1), we
get the final expression to calculate the shear viscosity:

η(t0) =
Vτ

T
〈π(t0)π(t0)〉 . (5)

By looking at Equation (5), it becomes clear that, besides of calculation of the correlator, one
has to determine simultaneously temperature of the substance T and the relaxation time
τ. Since the procedure to define unambiguously temperature of out-of-equilibrium media
is absent, it is necessary to check that the hot and dense nuclear matter in an expanding
fireball is in the vicinity of the local equilibrium. After that, temperature, relaxation time
and the correlator itself should be determined somehow. The algorithm describing all steps
in detail is presented in next section.

3. The Three-Component Method

First of all, one has to choose one of the event generators designed for description of
nucleus–nucleus interactions in the investigated energy range. For this purpose, we employ
the UrQMD model [36,37]. Some very useful data for our study came from a rich table of
particles, antiparticles and resonances from the Particle Data Group (PDG) [42] with masses
up to 2.25 GeV/c. The UrQMD describes both hadronic and nuclear collisions at energies
ranging from one hundred MeV (Bevalac) to several hundred GeV (RHIC) [36,37] and a few
TeV (LHC) [43]. Compared to energies of RHIC and LHC, the energy range selected for the
present study is rather modest. We studied very central gold–gold collisions, with impact
parameter b = 0 fm, within the energy interval from Elab = 10 to 40 AGeV. This energy
range is accessible for the Beam Energy Scan (BES) at RHIC and for planned facilities,
such as FAIR and NICA. As was shown in previous studies within the UrQMD [44–47],
there is no global equilibrium within the whole volume of the fireball, even in very central
heavy-ion collisions because, for instance, the net baryon charge and net strangeness are
not uniformly distributed. A local equilibrium, however, is very likely [46,48–51] at least
in the central zone of a rapidly expanding fireball. The investigations revealed that the
central cubic cell with volume V = 5× 5× 5 = 125 fm3 is appropriate for investigating the
process of relaxation to equilibrium of hot and dense nuclear matter produced in relativistic
heavy-ion collisions. It is worth mentioning that the picked-up volume should be neither
too large to provide uniform distribution of energy density and conserved charges nor too
small to contain enough particles. However, the cell is an open system, and hadrons can
leave it freely, thereby decreasing its energy density and particle densities. Therefore, to
prove that the matter in the cell is in the vicinity of equilibrium, the following procedure
was developed; see, e.g., [44,46,49]. Three main parameters characterizing the cell—namely,
the energy density, εmic; the net baryon density, ρmic

B ; and the net strangeness density, ρmic
S —

were extracted from the microscopic calculations of the fireball evolution. The time step
was just ∆t = 1 fm/c. These parameters were inserted into the statistical model (SM) of an
ideal hadron gas containing precisely the same set of degrees of freedom as the microscopic
model. The set of nonlinear equations reads
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εmic = ∑
i

εSM
i (6)

ρmic
B = ∑

i
Bi nSM

i (7)

ρmic
S = ∑

i
Si nSM

i , (8)

containing partial energy density εSM
i and partial number density nSM

i of hadron specie “i,”
and its baryon Bi and strangeness Si content. Both nSM

i and εSM
i are just first and second

moments of the distribution function

f (p, mi) =

{
exp

(
εi − µi

T

)
± 1
}−1

, (9)

namely,

nSM
i =

gi
(2π)3

∞∫
0

f (p, mi)d3 p (10)

εSM
i =

gi
(2π)3

∞∫
0

εi f (p, mi)d3 p (11)

where mi is particle mass and p is its momentum, and gi is the spin-isospin degeneracy
factor. Sign “−” in Equation (9) stands for bosons and sign “+” stands for fermions. The
total chemical potential of the hadron is a linear combination of chemical potentials, related
to conserved charges in strong interactions, µB and µS, respectively. It depends on particle’s
baryon Bi and strangeness Si content:

µi = BiµB + SiµS . (12)

As follows in Equations (9)–(12), the ideal gas of hadrons in the statistical model is fully
determined by three parameters, temperature, baryon chemical potential and strangeness
chemical potential. If partial particle abundances and energy spectra given by the SM are
close (within 10% accuracy) to those of the cell in microscopic model’s calculations, one
can conclude that the matter in the cell is in the vicinity of local equilibrium. Then, we are
able to determine temperature of the system which enters the expression for calculation of
shear viscosity.

However, this is not a full story yet, because we have to determine both the correlator
〈π(t0)π(t0)〉 and the effective relaxation time τ. This study cannot be done within the
analysis of an open system, such as our cell, because of permanently changing conditions
in the cell. These conditions must be fixed somehow. Therefore, the third component of
the scheme is the box with periodic boundary conditions [52–54] preserving both the total
energy and the net baryon and net strangeness composition. Namely, the particles are free
to leave the box; however, other particles with the same characteristics (masses, momenta,
quantum numbers) enter the box immediately. Elastic and inelastic interactions of hadrons
in the box proceed similarly to those in model generated hadronic or nuclear collisions.

The volume of the box can be Vbox = 5 × 5 × 5 = 125 fm3, similar to that of the
central cell, or larger—e.g., Vbox = 10× 10× 10 = 1000 fm3—to reduce the fluctuation
effects. The box is initialized with the values of energy density, net baryon density and
net strangeness density, which are extracted from the cell at a certain moment. Its initial
hadron composition consists usually of protons and neutrons with the admixture (in case
of nonzero strangeness density) of kaons or Lambdas. It is worth noting that the relaxation
process to a stationary state in the box is quite long; see [52,53]. The typical time scale for
the box calculations is about 1000–2000 fm/c. One can study the relaxation process and
determine both the correlator(s) and relaxation time τ.
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The method developed for determination of shear viscosity in microscopic calculations
consists of three steps. The first step includes the generation of heavy ion collisions within
the microscopic transport model; determination of volume, in which the occurrence of a
local equilibrium is expected; and extraction of three key parameters, i.e., energy density,
net baryon density and net strangeness density, out of it. These three parameters are used
as an input for the statistical model of ideal hadron gas. This is the second step of the
proposed scheme. If the partial yields of hadrons and their energy spectra in the selected
volume are close to those given by the SM, one can conclude that the matter is in the
vicinity of a local equilibrium. The SM provides us with the values of thermodynamic
characteristics, such as temperature, baryon chemical potential and strangeness chemical
potential. At the third step we use the extracted values of ε, ρB and ρS to initialize the box
with periodic boundary conditions. The correlators and the relaxation times are determined
during the study of the matter evolution in the box towards equilibrium.

4. Results: Total and Partial Shear Viscosity of Hadrons

Version 3.4 of the UrQMD model in default cascade mode was employed. Calculations
were performed for central gold–gold collisions at four beam energies, Elab = 10, 20, 30
and 40 AGeV. At each energy, ca. 50 thousand collisions were generated. Figure 1 displays
the evolution of energy density (a), net baryon density (b) and net strangeness density (c)
in the central cubic cell of the collision with volume V = 125 fm3.
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Figure 1. Distributions of (a) energy density, ε; (b) net baryon density, ρB; and (c) net strangeness
density, ρS, of central Au+Au collisions generated within UrQMD model at Elab = 10 AGeV (black
circles), 20 AGeV (blue triangles), 30 AGeV (green squares) and 40 AGeV (red diamonds) in the
central cell, 125 fm3 in size. The values of (d) temperature, T; (e) baryochemical potential, µB; and
(f) strangeness chemical potential, µS were calculated from the fit to SM of ideal hadron gas. Lines
were drawn to guide the eye (From [29]).

We can see that at early times, t ≤ 5 fm/c, the energy density in the cell is larger for
collisions with larger bombarding energies. However, both remnants of colliding nuclei
and very energetic particles leave the central area quickly. After t ≈ 6 fm/c, the drop of
energy density proceeds with similar rates for all four energies. Net baryon density drops
with time also, but here one can observe the clear energy dependence: the lower the beam
energy, the higher the net baryon density. The net strangeness density in the cell is small,
though negative, at 1 ≤ t ≤ 20 fm/c, as shown in Figure 1c, in line with the previous results;
see, e.g., [38,46,49]. This fact can be explained by different cross-sections of positive and
negative kaons in baryon-dominated medium. After that, we acquired the temperatures
(Figure 1d), baryon chemical potential (Figure 1e) and strangeness chemical potential
(Figure 1f) of an ideal hadron gas by inserting the extracted values of ε, ρB and ρS into the
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SM equations. Note that matter in the cell reaches chemical and thermal equilibrium in
the investigated energy range not earlier than after t = 6–8 fm/c. Therefore, parameters
T, µB, µS obtained at earlier times should be treated with great care. It is interesting that at
t ≥ 7 fm/c and until t = 20 fm/c, temperatures in the cell shown in Figure 1d coincide for
the studied beam energies. Baryon chemical potentials, shown in Figure 1e, increase with
time, whereas chemical potentials of strangeness decrease, as displayed in Figure 1f.

As was shown in [28], shear viscosity in the box calculations reveals a remarkable
plateau for initial times (see Equation (2), 200 fm/c ≤ t0 ≤ 800 fm/c. The extracted values
of η averaged over the plateau are shown in Figure 2. It is worth mentioning that, because
of the high number of events used for the box generation at each timestep and averaging
over the plateau, the statistical errors in this figure and in the subsequent ones are less than
the symbol sizes. Data points corresponding to early times in the cell, τcell ≤ 6 fm/c, are
connected by the dashed lines. At these times the energy density in the cell is not distributed
evenly throughout the cell volume, and hadron abundances and energy spectra, compared
to these of the SM of ideal hadron gas, indicate that the matter in the cell is still out of
equilibrium [46,49]. Determination of shear viscosity in the cell at t ≤ 6 fm/c is, therefore,
ambiguous. However, when remnants of colliding nuclei and most energetic particles leave
the cell, the chemical and thermal equilibrium sets in quickly. One can see that all four
distributions η(tcell) sit practically on the top of each other at 7 fm/c ≤ t ≤ 20 fm/c, fully
resembling the temperature drop shown in Figure 1d. The explanation of the decrease
in η is as follows. After t = 6 fm/c, inelastic collisions in the cell rapidly cease, and
(quasi)elastic interactions start to dominate. The soft scattering modes quickly redistribute
the energy and momentum of hadrons, which leads to a decrease in the relaxation time τ,
and consequently, the shear viscosity in the cell.

0 5 10 15 20
tcell (fm/c)

0

2

4

6

η 
(f

m
−

3
)

t0 ∈ [200,800]
10 AGeV

20 AGeV

30 AGeV

40 AGeV

Figure 2. Shear viscosity of hadrons in the UrQMD box with initial conditions corresponding to those
of the central cell of UrQMD-generated central Au+Au collisions at Elab = 40 AGeV (red diamonds),
30 AGeV (green squares), 20 AGeV (blue triangles) and 10 AGeV (black circles). Dashed lines indicate
the out-of-equilibrium stage, whereas solid lines correspond to the (nearly) equilibrium stage. See
text for details.

In what follows, we study the partial shear viscosities of the main hadron species in
the central cell, namely, nucleons, pions, kaons and Λ + Σ, and the combined viscosities
of baryons and mesons. This means that only the correlators for the appropriate type of
hadrons, e.g., 〈πNπN〉, are considered. The analysis of the thermodynamic conditions in the
cell starts from time t = 8 fm/c when the hadronic matter is close to thermal and chemical
equilibrium. Shear viscosity of nucleons in Au+Au collisions at all four beam energies is
shown in Figure 3. It smoothly decreases with time, and therefore, with temperature for all
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reactions. Additionally, the lower the energy of nuclear collision, the higher the nucleon’s
shear viscosity. Since temperatures in the cell after t = 8 fm/c are practically the same at
different timesteps for all four beam energies, the difference in η values can be attributed to
different values of baryon chemical potential and to dominance of baryon fraction in the
particle spectrum.

Figure 3. Upper row: Shear viscosity of nucleons, ηN , calculated in the central cell as function of time
tcell after the beginning of nuclear collision (left), and temperature T of the cell (right). Bottom row:
The same as the upper one but for baryon chemical potential, µB, (left) and for strangeness chemical
potential, µS, (right). Beam energies and labeling of the curves are the same as in Figure 1.

The partial shear viscosity of the combined spectrum of Lambdas and Sigmas, dis-
played in Figure 4, also demonstrates this tendency, although very weak. The calculated
distributions ηΛ+Σ(tcell) and ηΛ+Σ(T) are close to each other within the studied energy
range. One can see also that the values of shear viscosity of Λ + Σ hyperons are almost two
times lower compared to those of nucleons. The plausible explanation is that the yield of
hyperons in Au+Au collisions at 10 AGeV ≤ Elab ≤ 40 AGeV is relatively low. Therefore,
hyperons interact mainly with other hadrons and the genuine correlation between them is
lost quite early.

Figure 4. The same as Figure 3 but for shear viscosity of Λ + Σ.

Pions are the most abundant mesons among the produced particles. In contrast to
nucleons, the partial shear viscosity of pions drops with decreasing beam energy for the
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distributions ηπ(tcell) and ηπ(T), as shown in Figure 5. Recall that temperatures in the cell
at all four energies are almost the same within the time interval 8 ≤ tcell ≤ 20 fm/c, and
that pions are not affected by chemical potentials of the baryon charge and strangeness. The
spectrum of hadrons in heavy-ion collisions at low and intermediate energies is dominated
by baryons, and less pions are produced at lower energies. The decrease in pion shear
viscosity with time in the cell proceeds faster compared to that of the nucleon one.

Figure 5. The same as Figure 3 but for shear viscosity of pions.

The next group of mesons in particle spectrum is kaons. Figure 6 displays their
shear viscosity in the central cell. Here. one can see no difference between ηK(tcell)
and ηK(T) for beam energies between 10 and 40 AGeV despite the different strangeness
chemical potentials. It seems that chemical potentials play a minor role in the (partial) shear
viscosity of hadrons. The latter is mainly determined by temperature of the system and
particle abundances.

Figure 6. The same as Figure 3 but for shear viscosity of kaons.
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The combined shear viscosity of baryons in the central cell is presented in Figure 7,
and Figure 8 shows that of mesons. Both figures reveal the same trends observed earlier
for individual hadron distributions. Namely, the shear viscosities of both baryons and
mesons, in the central cell drop with time, and therefore, with decreasing energy density
and temperature of the cell. However, for baryons the shear viscosity increases with
decreasing beam energy, whereas shear viscosity of mesons demonstrates the opposite
tendency. When the beam energy goes down from Elab = 40 to 20 AGeV, the difference in
meson or baryon shear viscosities for neighbor beam energies is about 10% or less. Note
also that at Elab ≈ 30 AGeV the partial shear viscosities of baryons and mesons are about
the same. Significant rise of ηbaryons is observed at Elab = 10 AGeV; see Figure 7. Here the
total spectrum of hadrons is heavily dominated by baryons.

Figure 7. The same as Figure 3 but for combined shear viscosity of baryons.

Figure 8. The same as Figure 7 but for combined shear viscosity of mesons.

This energy range is very interesting. If heavy ions are colliding with the beam energies
of hundred MeV, one deals merely with hadrons and their excited states, resonances. When
the energy of nuclear collisions increases to several GeV, new objects, called strings, come
into play. Strings are not hadrons and can be considered as precursors of quark–gluon
plasma. With a further increase in bombarding energy, mesons (mainly, pions) become
the most abundant part of the hadronic spectrum, and therefore, a transition from baryon-
dominated to meson-dominated matter takes place. Thus, it is important to check the
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possible fingerprints of these transitions on the ratio of shear viscosity to entropy density.
The latter is determined in the SM for a hadronic specie “i” as

si = −
gi

2π2

∫ ∞

0
f (p, mi) [ln f (p, mi)− 1] p2dp , (13)

Bearing in mind the ratio limit η/s ≥ 1/4π [8], we plotted the ratio 4πη/s for all
hadrons as a function of tcell , T, µB and µS in Figure 9. One can see that this ratio for
all hadrons in the system decreases with decreasing beam energy of Au+Au collisions.
However, even for the collisions with Elab = 10 AGeV the minimum of 4πη/s is four
times larger than unity. It is worth mentioning that open symbols in Figure 9 indicate the
results obtained at early times for out-of-equilibrium stage. These results, therefore, are
ambiguous and should be treated with great care, and the indications on shallow minima
of η/s around tcell ∼ 5 fm/c.

Figure 9. The same as Figure 8 but for ratio of total shear viscosity of hadrons to their entropy density,
4πη/s.

A direct comparison of the obtained results with the results of other models is difficult,
since the latter were obtained at a constant (most often, zero) value of the baryon chemical
potential. The general trend, however, is qualitatively correct. The ratio of the shear
viscosity over the entropy density increases (i) with decreasing temperature and (ii) with
increasing baryon chemical potential. A more detailed comparison of the predictions of
different models can be found in [31].

The last step is to study the partial contributions of baryons and mesons to η/s ratio.
Figures 10 and 11 display the ratios 4πηbaryons/s and 4πηmesons/s, respectively. Figure 10 indi-
cates that the evolution of partial ratio η/s for baryons in the cell at 8 fm/c ≤ tcell ≤ 20 fm/c
proceeds similarly for all four beam energies. However, a very weak rise in this ratio with
dropping beam energy seems to take place. The reduction in the ratio of total shear viscosity
to entropy density in the medium is caused by the decreased contribution of mesons, as
shown in Figure 11. In stark contrast to baryons, the mesonic ratio ηmesons/s demonstrates
distinct separation in terms of temperature and chemical potentials. Note also that this
ratio varies slightly in the cell within the considered time interval.
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Figure 10. The same as Figure 9 but for shear viscosity of baryons to the entropy density ratio.

Figure 11. The same as Figure 10 but for shear viscosity of mesons to the entropy density ratio.

5. Discussion and Conclusions

We studied evolution of shear viscosity η of hot and dense nuclear matter produced in
the central area of gold–gold collisions at beam energies ranging from Elab = 10 to 40 AGeV.
The main goal was to study the partial contributions to η of main hadron species, such as
nucleons, pions, kaons and lambdas/sigmas. The general procedure for determination of
the shear viscosity in microscopic transport calculations consists of three main parts; see,
e.g., [28,29]. Firstly, a central cubic cell 125 fm3 in size was selected. Then, energy density,
net baryon density and net strangeness density in the cell were determined. Secondly, our
statistical model of ideal hadron gas employed the extracted values of ε, ρB, ρS to determine
temperature T, baryon chemical potential µB and strangeness chemical potential µS of
hadron resonance gas in thermal and chemical equilibrium. If the yields and energy spectra
of hadronic species in microscopic calculations are close to those given by the SM, the
matter in the cell can be considered to be in the vicinity of local equilibrium. Thus, one gets
T, µB and µS of the system. Third, we determined the shear viscosity of the system with
the Green–Kubo approach. To do this, one has to initialize the box with periodic boundary
conditions with essentially the same values of ε, ρB, ρS as given by the cell calculations at
each time snapshot.

The obtained physical results can be summarized as follows. Temperatures in the
central cell at each time step between t = 8 fm/c and t = 20 fm/c are similar for all four



Symmetry 2022, 14, 634 12 of 14

energies. The total shear viscosities in the central areas of the four different reactions are also
similar within this time interval. Partial shear viscosities, however, demonstrate different
tendencies. The lower the beam energy, the higher the nucleon shear viscosity. Hyperons
Λ + Σ also reveal this trend, but to a much lesser extent. In contrast, shear viscosity of
pions decreases with decreasing beam energy, whereas kaon shear viscosity is almost
independent on the beam energy within the investigated interval. The contributions of
baryons and mesons to the total shear viscosity are approximately the same at beam energy
30 AGeV. At higher and lower beam energies, this symmetry between the baryon and the
meson sectors is broken. The ratio of shear viscosity of hadrons to their entropy density
also declines with decreasing collision energy. This drop is attributed to mesons. For
baryons, the distributions of ηbaryons/s(tcell) increase slightly, though remaining very close
to each other, with dropping Elab. Our results might be useful also for the development of
sophisticated hydrodynamic models for heavy-ion collisions at intermediate energies.
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