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Abstract: This paper addresses the two-stage hybrid flow shop scheduling problem with a batch
processor in the first stage and a discrete processor in the second stage. Incompatible job families
and limited buffer size are considered. This hybrid flow shop configuration commonly appears
in manufacturing operations and the batch processor is always the bottleneck which breaks the
symmetry of processing time. Since making a real-time high-quality schedule is challenging, we
focus on the automatic design of efficient heuristics for this two-stage problem based on the genetic
programming method. We develop a hyper-heuristic approach to automate the tedious trial-and-
error design process of heuristics. The goal is to generate efficient dispatching rules for identifying
complete schedules to minimize the total completion time. A genetic programming with cooperative
co-evolution approach is proposed to evolve the schedule policy automatically. Numerical results
demonstrate that the proposed approach outperforms both the constructive heuristic and meta-
heuristic algorithms, and is capable of producing high-quality schedules within seconds.

Keywords: batch processor; cooperative co-evolution; dispatching rules; genetic programming;
hybrid flow shop scheduling

1. Introduction

Most studies on job scheduling problems have addressed manufacturing systems that
only consist of various discrete processors. However, there are many existing manufactur-
ing systems that are comprised of both a discrete processor and a batch processor, where the
batch processor can process several jobs simultaneously. This can be seen in many indus-
tries, such as the semiconductor industry, the aerospace industry, the auto-mobile industry,
the steel industry, and the ceramics industry. For example, semiconductor manufacturing
involves numerous batch processing operations such as diffusion, etching and burn-in
operation of devices, followed by many non-batching operations such as planarization and
ion implantation.

In these manufacturing systems, the batch processor is always the bottleneck due to
its expensive and time-consuming characteristics [1], which break the processing time sym-
metry of successive operations of a flow shop. Identifying effective production schedules
can be quite beneficial for such systems.

However, owing to the distinguishing characteristic of the batch processor and the
cooperation with the discrete processor, making a production schedule of this system
should address at least three aspects, namely, the batch formation, batch sequencing and
job sequencing of the discrete processor. Multiple decision points significantly increase
the complexity of the decision-making logic. Hence, an efficient and effective scheduling
algorithm is urged to help with better decision-making.

In this paper, we investigate a two-stage hybrid flow shop scheduling problem with
a batch processor and a uni-capacity discrete processor in the first and second stage,
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respectively. This configuration is derived from an aerospace equipment manufacturer, but
is a general production unit of many complex manufacturing environments.

A size-limited buffer (LB) is considered between two processors; this is more practical
because many factories have limited space in their manufacturing room and minimal
storage space. We also consider the incompatible job families (IF), which disallow jobs
from the different job families to be formed into a batch because of different chemical or
temperature requirements or other technique parameters. The objective is to minimize
the total completion time. We denote this problem as β → δ|LB, IF|∑ Ci based on the
three-field notation of [2], where β and δ denote a batch processor and a discrete processor,
respectively, and → represents the sequence of processors. This paper studies exactly
the same problem as [3], but proposes a more effective and efficient algorithm which
solves the original problem better and is capable of solving large scale problems for real-
time scheduling.

Since the β → δ|LB, IF|∑ Ci problem reduces to the β → δ|∑ Ci problem, which is
shown to be NP-complete [4], the problem studied in this paper is also NP-complete and
exact methods are hardly able to solve the problem with large instances in a reasonable
time. This usually leads to the development of heuristics, which can provide not necessarily
optimal but practical acceptable solutions in a short time. However, the design of a heuristic
could be a tedious trial-and-error process and the manually designed heuristic may become
no longer efficient when a problem changes, e.g., the shortest processing time (SPT) rule is
efficient for the criterion of Cmax but less efficient for Tmax. Fortunately, this process can be
automated by a hyper-heuristic which is an optimization method searching on the space
of heuristic.

Genetic Programming (GP) is one of the most prevalent approaches in the domain of
evolutionary computing. Although it was initially proposed for searching optimal small
computer programs, many recent studies have demonstrated that GP is highly suitable for
automatically evolving heuristics in the form of the dispatching rule [5].

Motivated by these, this paper aims to develop a GP-based hyper-heuristic to automate
the process of designing reusable dispatching rules, which can be applied for solving new
problem instances once they are generated, for solving the problem of β→ δ|LB, IF|∑ Ci.

The main contributions of this paper are summarized as follows:

• We formally formulate and decompose the β → δ|LB, IF|∑ Ci problem into three
parts, and design an efficient greedy dealing dispatching rules (GDDR) heuristic of
which the time complexity is O(n2).

• On the basis of GDDR, we firstly design a cooperative co-evolutionary genetic pro-
gramming (GDDR-CCGP) to characterize different decision points of the problem
with three sub-populations, and generate dispatching rules for each decision point
while simultaneously exploring the synergistic relationship between dispatching rules
by adopting the proposed two-trial evaluation scheme.

• Numerical results demonstrate that the proposed GDDR-CCGP algorithm significantly
outperforms the state-of-the-art meta-heuristic algorithms in terms of both solution
quality and efficiency.

• We also discuss the importance of three decision points of the two-stage hybrid flow
shop scheduling problem, which provides new insights for the design of dispatch-
ing rules.

The problem studied in this paper originated from an aerospace equipment manu-
facturer, where heat-treatment is one of the most important bottleneck operations. Our
proposed algorithm can be applied to manufacturers suffering from the bottleneck of batch
processing operations such as gear manufacture and semiconductor manufacture. The
complete scheduling policy generated by the proposed GDDR-CCGP algorithm can be
embedded into the ERP or APS system of manufacturing enterprises to directly guide
production. High-quality dispatching rule based scheduling policies can quickly respond
to complex dynamic changes of production environment by enabling real-time online
decision-making. Moreover, managers can learn useful knowledge from the dispatching
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rules generated by our algorithm and incorporate the knowledge into manually designed
heuristics, i.e., learn from machine learning.

The rest of this paper is organized as follows. A literature review is conducted in
Section 2. Section 3 introduces the description and mathematics model of the problem.
In Section 4, the greedy dealing dispatching rules (GDDR) heuristic scheme is proposed.
In Section 5, we develop a cooperative co-evolution genetic programming based hyper-
heuristic to generate dispatching rule combinations which are utilized by the GDDR
heuristic. Computational experiments are conducted in Section 6. Variants of the pro-
posed hyper-heuristic are compared and discussed in Section 7. Finally, we provide our
conclusions and future works in Section 8.

2. Literature Review

In this section, we conduct a literature review from two perspectives. One perspective
is the existing research on the two-stage hybrid flow-shop scheduling problem. The other
perspective is the related works about applying GP to generate a production schedule
policy.

Ahmadi et al. [4] studied two-stage hybrid flow-shop scheduling problems with
variants of configurations including β → δ, δ → β and β1 → β2, where both objectives
of Cmax and ∑ Ci were considered. In the context of β → δ|∑ Ci, they proposed a Full
Batch-Dealing-SPT Policy to find near optimal schedules. However, their research assumed
an identical family and an infinite buffer size. In addition, Su et al. [6] considered the
size-limited buffer into the β→ δ problem, and proposed a heuristic to solve the problem
of β → δ|Cmax, thus, a branch-and-bound algorithm was developed as a benchmark.
Computational results showed that the heuristic can provide high quality solutions for
large instances up to 400 jobs. In their research, processing times of the batching operations
were considered as identical. Afterwards, Fu et al. [7] considered both incompatible
families and size-limited buffer in the problem of β→ δ|C, where buffer size h was equal
to the physical capacity of batch processor b. They proposed a differential evolution-based
algorithm for the batch sequencing phase, the full batch dealing policy of [4] and the
first-in-first-out rule were applied in the batch formation phase and job sequencing phase,
respectively. In addition, two heuristic algorithms and a lower bound were developed for
performance evaluation. Shi et al. [8] considered the same problem with a larger buffer and
proposed a greedy shortest processing time heuristic algorithm. Zhang et al. [3] extended
the work of [8] and developed a recycled differential evolution approach (RDE) for the
batch sequencing phase. A composite lower bound was proposed to evaluate the efficiency
of RDE, and results showed that, in almost all instances, RDE performs significantly better
than the differential evolution-based algorithm proposed by [7]. However, RDE requires
much more time for large-scale problem instances. Mauluddin [9] addressed a three-stage
flow shop scheduling problem of δ→ β→ δ|∑ Ci, they developed a mixed integer linear
programming model with analysis, but algorithms were not yet proposed.

Hyper-heuristic is essentially a search methodology upon the space of heuristic, it
selects or generates a heuristic for computational search problems rather than solving
problems directly. In this sense, a hyper-heuristic usually incorporates a meta-heuristic
or learning strategy to enhance the generation or selection efficiency during the searching
process. For example, genetic algorithm [10,11] and tabu search [12] have been applied
for searching a heuristic. A well-designed hyper-heuristic can yield more reusable and
generally applicable heuristics than many meta-heuristics, such hyper-heuristics have been
successfully applied to many problem domains, such as production scheduling, cutting and
packing [13], vehicle routing [14] and timetabling [15]. The most recent and comprehensive
review related to hyper-heuristics can be found in [5]. In this paper, we employ the
genetic programming as a hyper-heuristic to generate dispatching rules for production
scheduling problems.

In the context of GP, most work discussed in this paper was based on [16] and em-
ployed the expression tree representation. Miyashita et al. [17] employed GP to evolve
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dispatching rules for the first time, they evolved dispatching rules for two predetermined
classes (bottlenecks and non-bottlenecks) of machines separately. Then, Dimopoulos and
Zalzala [18] investigated a single machine total tardiness problem and experiment results
showed that the GP-generated heuristic is superior to three manually designed heuristics.
In addition, Geiger et al. [19] developed a scheduling rule discovery and parallel learning
system to evolve dispatching rules for a variety of single machine problems. It has been
shown that the proposed approach can evolve competitive or better dispatching rules
than benchmark rules. They also extended their work to a two-machine flow shop prob-
lem, where they simultaneously evolved dispatching rules for each machine. As a result,
two separate dispatching rules composed a scheduling policy. By employing the same
approach, Geiger and Uzsoy [20] evolved dispatching rules for the single batch processor
problem with incompatible job families. Instead of evolving dispatching rules for the batch
formation phase and batch sequencing phase separately, they dealt with the two phases
with a single dispatching rule. Hildebrandt et al. [21] studied a complex dynamic job shop
scheduling problem with the objective function of minimizing cycle time. They evolved a
unique sequencing rule to use on every machine and results showed that the rule evolved
by GP outperformed the manually designed rules. However, the batch formation rule
was not considered. Most recently, Shi et al. [22] proposed a ranking-and-selection-based
genetic programming for the dynamic job shop scheduling problem. They formulated the
evaluation problem as a ranking and selection problem and proposed a novel evaluation
strategy to enhance the search efficiency of GP. A comprehensive review of GP can be found
in [23].

In terms of applying GP to problems with multiple decision points, related works are
rare. Park et al. [24] studied the order acceptance and scheduling problem, they proposed
five GPs, in which dual genetic programming was included. The dual genetic program-
ming consists of two specialized GPs to handle the order acceptance decision and the job
sequencing decision separately. However, it performs the worst among the five GPs, which
suggests that there is neither significant advantage nor necessity to separate the training of
the two decision points. Nguyen et al. [25] proposed a diversified multi-objective coopera-
tive co-evolution (DMOCC) to evolve scheduling policies for the dynamic multi-objective
job shop scheduling problem. The DMOCC comprises two GPs, one for evolving due date
assignment rules and the other evolves job sequencing rules. They showed that DMOCC
performs better than other search strategies in their research. Yska et al. [26] investigated
the dynamic flexible job shop scheduling problem by adopting the genetic programming
with cooperative co-evolution. They co-evolved the routing rule and sequencing rule
simultaneously. Experiment results showed that the proposed algorithm could evolve
promising schedule policies that performed much better than the GP only sequencing rule
with a fixed routing rule.

To the best of our knowledge, there is no existing research simultaneously evolving
heuristics for both the batch processor and single capacity processor, as well as the problem
of β→ δ|LB, IF|∑ Ci.

3. Problem Description

In this section, some notations are introduced and the two-stage hybrid flow shop
scheduling problem of β→ δ|LB, IF|∑ Ci is described.

Figure 1 describes the manufacturing configuration of the problem we studied. In
our problem, there are n jobs belonging to m job families. All jobs are of the same size and
each job only occupies one capacity unit of the batch or the buffer. Each batch of family
k can only contain up to b jobs from the same family k and has a family dependent batch
processing time qk. Following the full batch property proposed by [27], we assume that
the number of jobs of each family, as well as the buffer size, is an integral multiple of batch
capacity. This assumption is also based on the reality that, as the batch processor is always
the bottleneck, there are enough jobs for full batches of a family and schedulers are trying
to make full batches as possible as they can. Whenever a job needs to be processed, it goes
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through the batch and discrete processors sequentially. Before a job is processed by the
batch processor, it has to be formed into a batch, then the batch is processed by the batch
processor. After that, if the empty space of the buffer is greater than batch capacity b, the
batch is released to the buffer; otherwise, the batch is blocked in the batch processor until
there is enough buffer space for it. The job can be processed by the discrete processor in
arbitrary sequence without preemption. The goal is to find a complete schedule which
consists of batch formation, batch sequencing and job sequencing decisions, to minimize
the total completion time of all jobs. Based on the description, the decision variables and
problem formulation are given below.

Constraint (1) defines the objective function of minimizing total completion time.
Constraints (2) and (3) guarantee a job can be assigned to only one batch and a batch
can handle up to b jobs. Constraints (4) and (5) ensure a batch belongs to only one job
family and the number of jobs of a family is an integral multiple of the batch capacity. The
constraint of incompatible job family is captured by Constraint (6). Constraints (7) and (8)
restrict the start time and release time of a batch to ensure that it is reasonable. Constraint
(9) denotes the batch processing time. Constraints (10)–(13) disallow a batch to be released
from the batch processor until there are at least b spaces in the buffer. Constraints (14)
and (15) ensure that jobs can be processed by the discrete processor only when it has been
released from the batch processor and all jobs in front of it are completed. Constraints
(16)–(19) define the range of decision variables. During our preliminary experiments, only
small instances of this model can be solved by the CPLEX 12.6.3 within one hour, we do
not report these results in this paper. In the rest of this paper, we aim to propose a genetic
programming-based hyper-heuristic for automatically generating a heuristic to solve this
problem efficiently.

min ∑j∈N Cj (1)

s.t. ∑l∈B xil = 1, ∀i ∈ N, (2)

∑i∈N xil = b, ∀l ∈ B, (3)

∑k∈F ykl = 1, ∀l ∈ B, (4)

∑l∈B ykl =
nk
b , ∀k ∈ F, (5)

xil ≤ ykl , ∀k ∈ F, i ∈ Fk, l ∈ B, (6)

rl − tl ≥ 0, ∀l ∈ B, (7)

rl+1 − tl+1 ≥ rl , ∀l ∈ B, l 6= a, (8)

tl ≥ qkykl , ∀k ∈ F, l ∈ B, (9)

uij + uji = 1, ∀i, j ∈ N, i < j, (10)

∑j∈N,j 6=i uji + 1 ≤ β + M1(1− zli), ∀l ∈ B, l ≥ h + 1, i ∈ N, (11)

∑j∈N,j 6=i uji + 1 ≥ β + ε + [1− β− ε]zli, ∀l ∈ B, l > h, i ∈ N, (12)

rl ≥ Ci − pi −M2(1− zli), l ∈ B, l > h, i ∈ N (13)

Ci − pi ≥ Cj −M2uij, ∀i, j ∈ N, i 6= j, (14)

Ci − pi ≥ rl −M3(1− xil), ∀i ∈ N, l ∈ B, (15)

uij ∈ {0, 1}, ∀i, j ∈ N, i 6= j, (16)

ykl ∈ {0, 1}, ∀k ∈ F, l ∈ B, (17)

xil ∈ {0, 1}, ∀i ∈ N, l ∈ B, (18)

zli ∈ {0, 1}, ∀i ∈ N, l ∈ B. (19)
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Figure 1. An illustration of the two-stage hybrid flow shop with incompatible job families and size
limited buffer constraints.

4. Heuristic Design
4.1. Problem Decomposition

The dispatching rule is a simple heuristic whereby, whenever a machine is idle or a
decision needs to be made, it calculates a priority for each queueing job and selects the
job with the highest priority for processing. To take advantage of the dispatching rules,
we decompose the problem into three sub-parts by the nature of the problem, namely, the
batch formation, batch sequencing and job sequencing of the discrete processor. Thus, three
dispatching rules are required for each decision point.

Specifically, the batch formation dispatching rule (BFDR) is applied to form jobs into
batches, then a batch sequencing dispatching rule (BSDR) is utilized whenever the batch
processor is idle, to decide the next batch to be processed on the batch processor. After that,
whenever the discrete processor is idle, the job sequencing dispatching rule (JSDR) takes
the responsibility of deciding the next job to be processed on the discrete processor.

For the sake of convenience, a schedule policy of our problem can be written as the
combination of BFDR-BSDR-JSDR to represent the separate dispatching rules of three
decision points clearly. For instance, FB-BSDR-SPT is a schedule policy that employs the
full batch policy (FB) for batch formation, a dispatching rule (BSDR) for batch sequencing
and the shortest processing time (SPT) rule for job sequencing.

4.2. Greedy Dealing Dispatching Rules Heuristic

In this section, we propose the greedy dealing dispatching rules (GDDR) heuristic
for the problem of β→ δ|LB, IF|∑ Ci, in which, three dispatching rules are required for a
decision point. The GDDR algorithm essentially provides the heuristic structure for solving
the two-stage hybrid flow shop problems and illustrates the utilization of each dispatching
rule. The detailed procedure of the GDDR heuristic is described as follows:

The time complexity of GDDR is O(n2) and it generates a set of batches, a schedule
of these batches on the batch processor and a schedule (with the completion time) of jobs
processed on the discrete processor. Then we can calculate the objective (in this study, the
total completion time) of the schedule.

Since the three dispatching rules in the GDDR can be any suitable existing dispatching
rules, which dispatching rules should be used and how they cooperate with each other
become difficult problems. In the next section, we deal with these problems by proposing a
genetic programming-based hyper-heuristic to automatically generate dispatching rules
for the GDDR algorithm.
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Greedy Dealing Dispatching Rules (GDDR)

Step 0. Input three dispatching rules (BFDR, BSDR and JSDR) for each decision point; set
job family index k = 1.
Step 1. For job family k, sort jobs j ∈ Fk in the non-decreasing order of processing time on
the discrete machine pj, i.e., p[1] ≤ p[2] ≤ . . . ≤ p[nk ]

. Denote this job sequence as πk and
initialize ak empty batches. Set job index i = 1 and batch index b = 1, where i = 1, 2, . . . , nk
and b = 1, 2, . . . , ak.
Step 2. Greedily try to assign the ith job of πk to each of ak, batches that still have space
remain, and calculate a priority for each possible batch assignment by applying BFDR;
Step 3. Assign the ith job of πk to the batch with the highest priority, break ties arbitrarily.
If i < nk, set i = i + 1 and go to Step 2; otherwise, go to Step 4.
Step 4. If k < m, set k = k + 1 and go to Step 1; otherwise, go to Step 5;
Step 5. Whenever the batch processor is idle, calculate priorities for all batches queueing in
front of the batch processor by applying BSDR;
Step 6. Select the batch with the highest priority to process on the batch processor and
remove this batch from the queue.
Step 7. Whenever the discrete processor is idle, calculate priorities for all queueing jobs in
the buffer by applying JSDR.
Step 8. Select the job with the highest priority to process on the discrete processor and
remove this job from the buffer.
Step 9. Repeat Steps 5–8 until all jobs are finished

5. Genetic Programming-Based Hyper-Heuristic

The three dispatching rules of GDDR can be generated by any problem-independent
hyper-heuristic, such as GP, gene expression programming or neural network. Owing
to the variable length encoding of expression tree representation, manually designed
heuristics and domain knowledge can be easily expressed by GP [28], indicating that
experts’ existing years of experience are available for GP. In this section, we propose a
GP-based hyper-heuristic, where dispatching rules are utilized according to the GDDR
algorithm and evaluated by a cooperative co-evolution strategy. Intuitively, the proposed
algorithm is named as the GDDR-based cooperative co-evolutionary genetic programming
(GDDR-CCGP). We first briefly introduce the basic GP used in the GDDR-CCGP, and then
propose the GDDR-CCGP algorithm.

5.1. Genetic Programming

Genetic programming is an evolutionary computing method based on population
evolution. A population of GP consists of a number of individuals, each individual is
represented as an expression tree. As a hyper-heuristic, each individual corresponds to
a dispatching rule. The leaf nodes of the expression tree are filled up with job attributes
(terminals), e.g., job processing time, whereas other non-leaf nodes are filled up with
functions including, but not limited to, arithmetic operators. As a simple example, the SPT
rule can be represented as an expression tree with a negative operator in the root node and
the processing time (PT) in the leaf node, resulting in an expression of 0− PT.

Individuals of GP are evolved by employing genetic operators, which include the
sub-tree crossover, point mutation and ramped-half-and-half tree builder [16]. The sub-tree
crossover generates new individuals by randomly selecting two nodes from two parents,
then swapping the sub-trees of these two nodes while guaranteeing the maximum depth
constraint is not violated; otherwise, it tries other nodes. Figure 2 presents an illustration
of the sub-tree crossover operator, where the SPT rule and the minimum slack rule are
selected as parents. As for point mutation, similar to sub-tree crossover, two random nodes
are selected from parents, but replace the sub-tree of these two nodes with new generated
trees by performing the ramped-half-and-half tree builder. Similarly, the maximum depth
constraint cannot be violated; otherwise, it will try to generate another sub-tree. The parent
individuals are randomly selected by applying the tournament selection.
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Figure 2. An illustration of the sub-tree crossover operator.

5.2. GDDR-CCGP Algorithm

In order to deal with the multiple decision points of the studied problem, the proposed
GDDR-CCGP adopts the cooperative co-evolution strategy, which is an efficient approach
for solving problems with co-adapted sub-parts and strives to search for individuals that
perform well together. It breaks a high-dimensional optimization space into several much
simpler sub-spaces for sub-populations to search [29].

In the GDDR-CCGP algorithm, we divide the heuristic space into three sub-spaces
each of which corresponds to a heuristic space of a decision point described previously.
Then, three independent GPs are employed for each search on a sub-space. The cooperative
co-evolution of the three GPs is realized during individual evaluation.

In the GDDR-CCGP algorithm, we employ three basic GPs to evolve the corresponding
three dispatching rules required by the GDDR algorithm. Each GP has its own sub-population
and thus, results in three sub-populations; P1 = {p1,1, p1,2, . . .}, P2 = {p2,1, p2,2, . . .}, and
P3 = {p3,1, p3,2, . . .} represent the sub-populations of BFDR, BSDR, and JSDR, respectively.
Thus, a schedule policy s consists of three rules from each sub-population.

The pseudo-code of the GDDR-CCGP algorithm is given in Algorithm 1. The GDDR-
CCGP starts with the initialization of sub-populations by implementing the ramped-half-
and-half tree builder. Then in each generation, every individual (dispatching rule) in the
three sub-populations is evaluated in the form of schedule policy to obtain a fitness value
(see next sub-section), which in turn governs the search behavior of the GDDR-CCGP. With
the guidance of fitness values, the elites of each sub-population are selected to enter the
next generation directly. Then, each sub-population is evolved independently by applying
genetic operators from the sub-tree crossover and point mutation to generate the new
sub-population of the next generation. The GDDR-CCGP moves to the next generation
when there are sufficient number (popsize) of individuals for each sub-population. During
the evaluation of individuals, each evaluated schedule policy s is recorded in a set S, and
the best schedule policy is returned after the GDDR-CCGP is terminated. Figure 3 also
graphically illustrates the procedure of the GDDR-CCGP algorithm.
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Algorithm 1: GDDR-CCGP

1 T ← a set of training instances Tt, t = 1, 2, . . . , |T|;
2 S← a set of evaluated schedule policy;
3 Initialize P1, P2, and P3 with the ramped-half-and-half tree builder;
4 dr1 ← p1,1, dr2 ← p2,1, dr3 ← p3,1;
5 while maxGeneration is not reached do

// evaluate batch formation rules
6 for i from 1 to popsize do
7 r2 ← random individual from P2;
8 r3 ← random individual from P3;
9 s← (p1,i, dr2, dr3), s′ ← (p1,i, r2, r3);

10 fit(p1,i)← min{eval(s, T), eval(s′, T)};
11 Add s and s′ to S;
12 end
13 dr1 ← arg minp1,i∈P1

fit(p1,i);

// evaluate batch sequencing rules
14 for i from 1 to popsize do
15 r1 ← random individual from P1;
16 r3 ← random individual from P3;
17 s← (dr1, p2,i, dr3), s′ ← (r1, p2,i, r3);
18 fit(p2,i)← min{eval(s, T), eval(s′, T)};
19 Add s and s′ to S;
20 end
21 dr2 ← arg minp2,i∈P2

fit(p2,i);

// evaluate job sequencing rules
22 for i from 1 to popsize do
23 r1 ← random individual from P1;
24 r2 ← random individual from P2;
25 s← (dr1, dr2, p3,i), s′ ← (r1, r2, p3,i);
26 fit(p3,i)← min{eval(s, T), eval(s′, T)};
27 Add s and s′ to S;
28 end
29 dr3 ← arg minp3,i∈P3

fit(p3,i);

// breed sub-populations
30 for r from 1 to 3 do
31 Pr ← generated offspring by applying the genetic operators of

reproduction, sub-tree crossover, and point mutation;
32 end
33 end
34 return s = arg mins∈S fit(s);
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Figure 3. Procedure of the GDDR-CCGP algorithm. An individual from the sub-population for BFDR
is being evaluated.

5.3. Fitness Evaluation

Unlike conventional GP, the GDDR-CCGP evaluates individuals in groups, i.e., the
fitness of an individual is decided by its performance in the context of individuals from
other sub-populations. As a result, an individual is usually evaluated multiple times, each
time with a different group of cooperative individuals. We denote each cooperation as a
trial and the final fitness is calculated based on these multiple trials.

More specifically, for each trial an individual undertakes, the GDDR-CCGP combines
the candidate individual of a certain sub-population with two cooperators selected from
the other two sub-populations to form a schedule policy. Figure 3 presents an example of
individual evaluation, where an individual of sub-population for BSDR is being evaluated.

Moreover, the selection of cooperators must address the problems of selection pressure,
number of trials and trial credit assignment [30]. In this paper, we propose a two-trial
evaluation scheme as described in Algorithm 1 (line 5–28). For the first trial, a candidate
individual is cooperated with the best individuals of each other sub-population to form
a schedule policy s. In the second trial, candidate individual is placed with two random
individuals selected from each sub-population to form a schedule policy s′. Then, the
fitness of the candidate individual is defined as the best fitness values reached by s and s′.
In this way, we prevent the GDDR-CCGP algorithm from being too greedy while sustaining
the ability of exploration.

Whenever a schedule policy is ready for evaluation, it is applied to the training
instance set T to obtain a fitness. Algorithm 2 describes the procedure of fitness evaluation.
For each instance Tt ∈ T, we build a simulation based on the configuration of the instance.
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At the beginning of the simulation, all processors are idle and jobs are initialized according
to instance Tt. Then dispatching rules of the schedule policy are applied according to the
procedure of the GDDR to make online decisions in the simulation. An objective value
Ot(s) is obtained when the simulation is finished. After all simulations of the training set T
are finished, the fitness of the schedule policy is calculated by

f it(s) =
1
|T|

|T|

∑
t=1

Ot(s)−Ot(re f )
Ot(re f )

× 100,

where Ot(re f ) is the objective value reached by applying a benchmark algorithm or calcu-
lated by a lower bound. f it(s) is essentially the average gap between evaluated schedule
policy and benchmark algorithm. Thus, a lower f it(s) indicates a better performance of the
evaluated schedule policy.

Algorithm 2: eval(s, T)
Input: a schedule policy s and the training set T
Output: the objective value reached by applying s

1 f it(s)← 0;
2 for t from 1 to |T| do
3 Ot(s)← apply schedule policy s in one replication run of simulation based on

instance Tt;
4 Ot(re f )← apply the reference algorithm in one replication run of simulation

based on instance Tt;

5 f it(s)← f it(s) + Ot(S)−Ot(re f )
Ot(re f ) × 100;

6 end
7 return f it(s)/|T|

6. Computational Experiments

In this section, computational experiments are conducted to evaluate the performance
of the proposed GDDR-CCGP algorithm. The problem specified terminal sets and param-
eter settings are designed, and then the GDDR-CCGP algorithm is compared with the
state-of-the-art algorithms of this two-stage hybrid flow shop scheduling problem.

6.1. Terminal Sets and Parameter Settings

The GPs’ terminals consist of basic attributes about the current job or batch and the
“less-myopic” terminals which take into account information regarding environmental
attributes associated with the current job or batch [31]. In order to solve the problem of
β→ δ|LB, IF|∑ Ci efficiently, we customize the terminal sets of GPs based on the utilization
of dispatching rules in the GDDR algorithm. Tables 1 and 2 present the problem-specified
terminals and the parameter settings of each GP. To provide more environment information
for BFDR to assign a job to a correct batch, we involve MinBWL and MaxBWL terminals
to provide information about other batches. As for the terminal sets of GPs for BSDR and
JSDR, the “less-myopic” terminals are utilized, which provides information on the other
processor associated with the state of current processor. These “less-myopic” terminals
consist of PTQB, NJQB, and BBT. By involving these three terminals, the generation
of dispatching rules are allowed to adapt to the changing conditions of the upstream or
downstream processor.

The function sets include four basic arithmetic operators, namely, +,−,×, protected
division ÷ which returns 1 when divided by 0, and a max operator which takes two
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arguments and returns the maximum value of them. Moreover, a ternary if-less-then-else
(IfLT) is included and defined as follows:

I f LT(x1, x2, x3) =

{
x2, x1 < 0
x3, otherwise

,

where x1, x2, x3 are sub-expressions evolved by GP.
Function sets of the three GPs are of the same, except we extend the function set of

GP for JSDR by adding the operator Neg (0− x1), which returns the negative value of its
argument. Since the scheduling problem of the job sequencing phase is a single machine
total completion time minimization problem with a job release time, the SPT rule has been
shown to be near optimal in most cases [32]. Thus, the addition of the Neg operation is
based on the hope of providing opportunities for GP to evolve a dispatching rule that
performs at least as good as the SPT rule (0− PT) by combining operator Neg with the
terminal PT.

Table 1. Terminals of GDDR-CCGP for the problem of β→ δ|LB, IF|∑ Ci.

Notation Description

PT The processing time of a job on the discrete processor
BPT The processing time of a batch on the batch processor
BWL Work load of a batch, calculated by sum of PTs of all jobs in a batch
MinBWL When a job is assigned to a batch, the minimum BWL of the remain-

ing batches
MaxBWL When a job is assigned to a batch, the maximum BWL of the remain-

ing batches
BSR The number of space units remaining for a batch
BBT The time of batch blocking in the batch processor
FPTR Sum of PTs remaining for a job family
PTQB Sum of PTs queueing in the buffer
NJQB Number of jobs queueing in the buffer
ERC A random constant from −1 to 1

Furthermore, as given in Table 2, the evolution parameter settings of three GPs are the
same, where a high crossover rate is adopted with the hope of exploring more individuals.
These evolution parameter settings are commonly used without paying much effort to
parameter tuning, so that the contribution of the GDDR-CCGP algorithm is mainly owed
to the well-designed heuristic structure, evaluation scheme, terminal set and function set.

Table 2. Parameter settings of GDDR-CCGP for the problem of β→ δ|LB, IF|∑ Ci.

Parameter Value

Terminal set of GP for BFDR PT, BPT, BWL, MinBWL, MaxBWL, FPTR, BSR, 0, 1
Terminal set of GP for BSDR BPT, BWL, PTQB, NJQB,0, 1
Terminal set of GP for JSDR PT, PTQB, NJQB, BBT, ERC
Function set +, −, ×, ÷, Max, IfLT, (Neg)
Initialization Ramped-half-and-half tree builder
Population size 500
Generation 50
Crossover rate 95%
Mutation rate 5%
Elitism 20
Max. tree depth 17
Individual selection Tournament selection (size 7)
Cooperators 1 elite of last generation, 1 random
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6.2. Problem Instances Generation

Problem instances were generated randomly by adopting the idea of [3,7], and we
extended their instances with additional large-scale instances. As a result, three instance
sets were generated, namely, Ts, Tm, and Tl , to test the performance of algorithms in
small-scale, medium-scale and large-scale instances. A configuration of the problem is
represented by the combination n−m− b− h, which describes the total number of jobs and
job families, batch capacity and buffer size of a problem configuration. For each problem
configuration n−m− b− h, we randomly generated 50 instances by applying the following
parameters:

• job processing time of job i: pi ∼ U[1, 10];

• batch processing time of job family k: qk ∼ U
(

b
n ∑n

i=1 pi − 10, b
n ∑n

i=1 pi + 10
)

;

• total number of jobs in job family k: nk = b n
mb c, k = 1, 2, . . . , m − 1, and nm =

n−∑m−1
k−1 nk.

The parameters of each instance set are listed as below:

• Ts: n = {40, 60, 80}, m = {2, 4}, b = {5, 10}, h = {2, 3};
• Tm: n = {100, 200, 300, 400}, m = {2, 4, 10}, b = {10, 20}, h = {2, 3};
• Tl : n = {600, 900, 1200}, m = {10, 20}, b = {10, 20}, h = 2.

Tl is mainly distinguished by its larger number of jobs and job families. Furthermore,
the buffer size is restricted to two as a smaller buffer size generally leads to a more complex
problem. Tl was designed with the aim of testing the effectiveness and robustness of the
evolved schedule policy in unseen and more complex problem configurations. Moreover,
an additional filter of n

mb < 1 is applied to get rid of simple configurations and results in 82
configurations (24, 46 and 12 configurations for Ts, Tm, and Tl , respectively) consisting of
4100 instances.

6.3. Comparison Results

In order to evaluate the performance of the proposed GDDR-CCGP problem, three
algorithms proposed by [3] were selected as benchmarks, namely, a greedy dealing shortest
processing time (GDSPT) heuristic, a recycled differential evolution (RDE) algorithm, and
the RDE with only one iteration, which is denoted by IDE. GDDR-CCGP was coded in Java
on the basis of the ECJ library (https://cs.gmu.edu/~eclab/projects/ecj/ (accessed on 1
October 2021)) and the benchmark algorithms were coded in C++. All algorithms were run
on an Inter Xeon CPU 2.4 GHz computer with 16.0 GB of RAM.

The GDSPT heuristic forms batches by using a modified full batch policy (FB), then
sorts batches in non-decreasing order of the batch processing time BPT and total processing
time BPT + BWL, which results in two batch sequencing solutions. After that, jobs are
processed on the discrete processor according to the SPT rule. Finally, the solution is
returned with the better objective value of the two solutions. Thus, the GDSPT heuristic
can be written as FB-GDSPT-SPT.

The RDE algorithm extends the differential evolution with a recycle technique, which
allows the solution of a differential evolution iteration to be used in the population of the
next iteration for improving the solution quality. The RDE (IDE) was proposed to make
batch sequencing decisions and is cooperated with the FB and the SPT for batch formation
and job sequencing, respectively. Thus, the RDE (IDE) algorithm is essentially a schedule
policy of FB-RDE (IDE)-SPT. In our experiments, the RDE algorithm was terminated after
sustaining the same best solution after 40 iterations.

Since the GDDR-CCGP is stochastic, we preliminarily ran the GDDR-CCGP 50 times
independently with different seeds, then the best schedule policy, denoted by GDDR, was
selected for comparison in the following experiments.

For the sake of simplicity, some new notations are introduced as follows:

Obj: the objective value reached by applying an algorithm on an instance;
Hh: any algorithm h;

https://cs.gmu.edu/~eclab/projects/ecj/
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LB: the composite lower bound developed by [3];
Di f : the difference in percentage between an algorithm and the lower bound;
≺: H1 ≺ H2 indicates H2 outperforms H1.

In this section, the total completion time difference relative to the objective value
reached by the LB is reported, which is calculated by

Di f (H) =
Obj(H)−Obj(LB)

Obj(LB)
× 100.

It is obvious that, Di f (H) is greater than zero and Di f (H2) < Di f (H1) indicates that
H1 ≺ H2.

Tables 3 and 4 report the differences between the corresponding algorithm and LB
when tested on instance sets Ts and Tm. The Time(s), Avg(%), and Max(%) represent the
average run time, average differences, and maximum differences among 50 instances of
each problem configuration. All average performance values were tested for statistically
significant differences using the paired t-test. The values marked with letters indicate the
GDDR significantly outperforms different benchmark algorithms at 5% significant level
with regard to corresponding problem configuration, where “a”, “b”, and “c” represent the
GDSPT, IDE, and RDE algorithms, respectively. The run times of GDSPT are not reported
because the time costs for all instances are less than 0.01 s.

As observed from Table 3, in terms of Avg values, GDDR dominates GDSPT, IDE, and
RDE on 23 (95.83%), 22 (91.67%), and 22 (83.33%) configurations out of all 24 configura-
tions. As for the Max values, GDDR dominates all the other algorithms with 21 (87.50%)
configurations. Statistically, GDDR significantly outperforms GDSPT, IDE, and RDE on 21
(87.50%), 18 (75.00%), and 18 (75.00%) configurations, respectively. In terms of average run
time, GDDR obtains results within 0.01 s for all configurations.

Table 3. Numerical results of the small-scale instance set Ts, relative to the lower bound. The values
marked with letters indicate the GDDR significantly outperforms different benchmark algorithms
at 5% significant level, where “a”, “b”, and “c” represent the GDSPT, IDE, and RDE algorithms,
respectively. Run time of GDSPT is omitted because it finishes all instances within a second.

GDSPT IDE RDE GDDR

n-m-b-h Avg (%) Max (%) Time (s) Avg (%) Max (%) Time (s) Avg (%) Max (%) Time (s) Avg (%) Max (%)

40-2-5-2 6.62 22.94 0.07 6.38 22.94 1.13 6.26 22.76 0.01 4.50 a,b,c 15.90
40-2-5-3 6.72 30.60 0.07 6.53 30.17 1.06 6.39 30.17 0.00 5.16 a,b,c 25.31
40-2-10-2 2.08 6.07 0.04 2.08 6.07 0.04 2.08 6.07 0.00 1.59 a,b,c 5.57
40-2-10-3 1.96 7.45 0.04 1.96 7.45 0.03 1.96 7.45 0.00 1.60 a,b,c 6.65
40-4-5-2 5.45 13.50 0.06 5.03 13.50 0.95 4.76 13.50 0.00 4.93 a 16.31
40-4-5-3 4.13 17.59 0.06 3.79 15.75 0.96 3.59 15.44 0.00 4.06 b,c 13.88
40-4-10-2 1.34 5.00 0.01 1.34 5.00 0.01 1.34 5.00 0.00 1.24 5.09
40-4-10-3 1.36 6.42 0.01 1.36 6.42 0.01 1.36 6.42 0.00 1.41 8.49
60-2-5-2 7.93 31.27 0.11 7.60 29.18 2.50 7.49 28.62 0.00 5.12 a,b,c 21.22
60-2-5-3 5.17 29.18 0.12 4.97 28.29 2.45 4.88 27.66 0.00 3.94 a,b,c 22.32
60-2-10-2 2.11 8.94 0.09 2.05 8.19 1.11 2.02 7.85 0.00 1.67 a,b,c 4.90
60-2-10-3 2.32 7.68 0.10 2.14 7.32 1.30 2.11 7.32 0.00 1.91 a 5.29
60-4-5-2 5.70 18.92 0.11 5.32 18.21 2.93 5.10 16.81 0.00 4.12 a,b,c 11.57
60-4-5-3 6.51 23.06 0.10 6.30 22.77 2.43 6.10 22.64 0.00 5.22 a,b,c 18.83
60-4-10-2 2.40 9.21 0.07 2.11 7.32 1.09 1.99 6.64 0.00 1.96 a 5.22
60-4-10-3 2.11 6.53 0.08 1.79 6.27 1.10 1.67 6.19 0.00 1.69 a 4.70
80-2-5-2 7.19 28.80 0.19 6.93 28.51 5.26 6.77 27.30 0.00 4.35 a,b,c 19.18
80-2-5-3 6.33 21.19 0.22 6.23 21.19 4.81 6.13 20.88 0.00 4.46 a,b,c 18.04
80-2-10-2 2.52 9.49 0.11 2.42 8.83 2.19 2.39 8.58 0.00 1.69 a,b,c 4.52
80-2-10-3 2.07 9.06 0.12 1.94 8.89 2.18 1.91 8.89 0.00 1.50 a,b,c 4.26
80-4-5-2 6.97 22.85 0.18 6.46 21.58 5.45 6.19 20.70 0.00 4.43 a,b,c 12.62
80-4-5-3 6.60 17.39 0.18 6.40 17.34 5.15 6.11 17.20 0.00 4.31 a,b,c 11.02
80-4-10-2 2.12 6.99 0.13 1.84 6.58 2.28 1.70 6.43 0.00 1.66 a 5.84
80-4-10-3 2.48 8.53 0.13 2.09 7.45 2.21 1.92 7.45 0.00 1.72 a,b,c 5.34
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Table 4. Numerical results of the medium-scale instance set Tm, relative to the lower bound. The
values marked with letters indicate the GDDR significantly outperforms different benchmark algo-
rithms at 5% significant level, where “a”, “b”, and “c” represent the GDSPT, IDE, and RDE algorithms,
respectively. Run time of GDSPT is omitted because it finishes all instances within a second.

GDSPT IDE RDE GDDR

n-m-b-h Avg (%) Max (%) Time (s) Avg (%) Max (%) Time (s) Avg (%) Max (%) Time (s) Avg (%) Max (%)

100-2-10-2 2.28 9.65 0.39 2.21 9.45 4.14 2.16 9.27 0.01 1.63 a,b,c 4.58
100-2-10-3 2.42 8.37 0.16 2.32 8.25 3.91 2.28 8.19 0.01 1.64 a,b,c 5.04
100-2-20-2 1.07 4.13 0.12 0.97 3.37 1.93 0.95 3.25 0.00 0.75 a,b,c 2.81
100-2-20-3 1.02 3.19 0.12 0.93 3.02 1.95 0.91 3.02 0.00 0.71 a,b,c 2.31
100-4-10-2 2.28 8.37 0.16 2.03 7.88 4.37 1.89 7.70 0.00 1.68 a,b,c 5.67
100-4-10-3 2.91 8.32 0.16 2.63 7.17 4.29 2.46 6.91 0.00 1.97 a,b,c 4.58
100-4-20-2 0.93 2.81 0.09 0.73 2.37 1.81 0.69 2.27 0.00 0.74 a 2.65
100-4-20-3 0.82 3.75 0.08 0.65 2.09 1.79 0.58 1.83 0.00 0.65 a 2.87
100-10-10-2 3.29 8.24 0.11 2.53 5.59 4.32 1.99 4.70 0.00 2.32 a,b 5.50
100-10-10-3 2.89 8.64 0.11 2.18 6.11 4.37 1.72 5.30 0.00 2.04 a,b 5.34
200-2-10-2 3.27 12.24 0.71 3.22 12.18 27.22 3.16 11.77 0.01 1.67 a,b,c 6.87
200-2-10-3 3.05 8.62 0.69 3.03 8.59 26.08 2.98 8.53 0.01 1.67 a,b,c 4.80
200-2-20-2 1.40 3.79 0.40 1.28 3.69 12.20 1.25 3.64 0.01 0.84 a,b,c 2.14
200-2-20-3 1.54 3.93 0.41 1.40 3.93 12.94 1.37 3.93 0.01 0.94 a,b,c 2.30
200-4-10-2 2.71 12.44 0.69 2.61 12.25 27.42 2.47 11.91 0.00 1.65 a,b,c 6.70
200-4-10-3 3.44 9.54 0.66 3.33 9.52 28.24 3.18 9.21 0.01 1.75 a,b,c 4.36
200-4-20-2 1.41 4.06 0.41 1.20 3.38 12.19 1.07 2.98 0.01 1.00 a,b 2.63
200-4-20-3 1.46 4.06 0.41 1.19 3.08 12.26 1.08 2.94 0.00 1.02 a,b 2.44
200-10-10-2 2.90 6.51 0.67 2.65 5.84 28.64 2.13 5.74 0.00 1.82 a,b,c 4.34
200-10-10-3 2.93 6.98 0.66 2.69 6.90 28.88 2.14 6.55 0.01 1.85 a,b,c 5.74
200-10-20-2 1.65 4.55 0.28 1.12 2.42 13.50 0.82 2.03 0.00 1.02 a,b 2.06
200-10-20-3 1.51 3.49 0.29 1.15 3.11 12.69 0.85 2.19 0.00 1.04 a,b 2.43
300-2-10-2 3.19 13.99 1.82 3.13 13.99 83.25 3.07 13.78 0.03 1.76 a,b,c 7.65
300-2-10-3 3.37 10.31 1.81 3.36 10.31 83.09 3.31 10.21 0.02 1.92 a,b,c 7.25
300-2-20-2 1.29 4.92 0.99 1.24 4.84 37.36 1.22 4.65 0.02 0.71 a,b,c 2.04
300-2-20-3 1.24 4.14 1.03 1.19 4.14 36.02 1.16 4.12 0.01 0.71 a,b,c 2.06
300-4-10-2 4.42 12.21 1.83 4.25 11.96 103.03 4.02 11.30 0.01 1.97 a,b,c 5.43
300-4-10-3 3.29 7.54 1.81 3.26 7.54 99.55 3.09 7.47 0.02 1.65 a,b,c 3.85
300-4-20-2 1.47 4.77 1.03 1.33 4.22 41.67 1.24 4.14 0.01 0.82 a,b,c 2.03
300-4-20-3 1.49 4.37 0.99 1.30 3.80 40.71 1.19 3.62 0.01 0.81 a,b,c 1.97
300-10-10-2 3.10 8.15 1.80 2.97 6.83 105.32 2.43 6.40 0.01 1.61 a,b,c 4.00
300-10-10-3 3.20 9.79 1.83 3.12 8.73 97.75 2.71 7.58 0.01 1.73 a,b,c 4.77
300-10-20-2 1.62 5.35 0.88 1.21 3.31 39.39 0.93 2.96 0.01 0.99 a,b 2.60
300-10-20-3 1.64 4.70 0.89 1.27 3.64 40.20 0.97 3.26 0.01 0.95 a,b 2.59
400-2-10-2 4.13 15.82 3.83 3.92 14.82 217.06 3.77 14.45 0.03 2.26 a,b,c 9.80
400-2-10-3 4.28 11.40 4.07 4.26 11.40 161.52 4.24 11.40 0.03 2.54 a,b,c 8.06
400-2-20-2 1.58 4.51 2.29 1.56 4.51 83.83 1.53 4.49 0.02 0.76 a,b,c 1.77
400-2-20-3 1.49 4.76 2.03 1.45 4.76 84.41 1.41 4.68 0.02 0.70 a,b,c 1.92
400-4-10-2 3.49 11.62 3.85 3.37 11.50 198.54 3.17 10.16 0.02 1.46 a,b,c 4.95
400-4-10-3 3.20 9.44 3.82 3.19 9.44 189.06 3.11 9.28 0.02 1.58 a,b,c 5.25
400-4-20-2 1.46 3.61 2.02 1.38 3.54 92.61 1.28 3.52 0.01 0.81 a,b,c 1.71
400-4-20-3 1.55 4.19 1.99 1.42 3.57 99.64 1.31 3.53 0.02 0.83 a,b,c 1.82
400-10-10-2 3.16 10.53 3.80 3.03 9.51 214.82 2.74 8.27 0.01 1.49 a,b,c 4.02
400-10-10-3 2.97 7.74 3.78 2.92 7.60 216.61 2.57 7.60 0.01 1.42 a,b,c 4.46
400-10-20-2 1.40 4.30 2.04 1.15 2.67 98.30 0.77 2.16 0.01 0.82 a,b 2.48
400-10-20-3 1.66 4.26 2.02 1.39 3.38 106.48 0.98 2.83 0.01 1.02 a,b 2.70

Table 4 shows the comparison results on the medium-scale instance set Tm. Similarly,
GDDR dominates GDSPT on all configurations in terms of both Avg values and Max
values. When compared with IDE and RDE with regard to the Avg values, GDDR wins
on 44 (95.65%) and 37 (80.43%) configurations out of all 46 configurations. As for the Max
values, GDDR wins on 44 (95.65%) and 39 (84.78%) configurations. Statistically, GDDR
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significantly outperforms GDSPT, IDE, and RDE on 46 (100.00%), 44 (95.65%) and 34
(73.91%) configurations, respectively. Furthermore, the maximum values of Avg and Max
for GDDR are 2.87% and 6.60%, respectively. Indicating the near optimal performance of the
evolved schedule policy. In terms of overall performance, it can be calculated from Table 4
that, GDDR provides 40.55%, 33.24% and 24.55% average improvement to GDSPT, IDE,
and RDE, respectively. It is noticeable that, GDDR still costs almost no time, whereas the
average time cost of the RDE increases sharply as the complexity of the instance increases.
Specifically, the maximum average time cost of GDDR is about 0.03 s, in sharp contrast to
217.06 s for RDE.

Combing the results of Tables 3 and 4, it can be concluded that GDDR can provide
promising solutions that significantly outperform GDSPT, IDE, and RDE in most tested
configurations. Figure 4 graphically shows the Avg values of all algorithms based on the
numerical results in Tables 3 and 4. In Figure 4, the average difference of the GDDR is
always the smallest and gaps between the GDDR and other algorithms increase with the
increasing of number of jobs. This result indicates that GDDR outperforms benchmark
algorithms especially in complex problem configurations.

Figure 5 presents the box plots of all Avg values and Max values reached by the GDDR
and three benchmark algorithms in Tables 3 and 4. It can be observed that the GDDR results
in a smaller interquartile range than the benchmark rules in terms of both Avg value and
Max value, which indicates that the performance of the GDDR is stabler. Furthermore, the
slot of GDDR has a lower maximum, minimum and three quartiles values. Figure 5 shows
the same result as Figure 4 and indicates the performance of the GDDR is superior to the
three benchmark algorithms.

(a) (b)

Figure 4. Average difference analysis for different numbers of job family of numerical results from Ts

and Tm. (a) m = 2, b = 10, h = 2. (b) m = 4, b = 10, h = 2.
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Figure 5. Box-plots of average and maximum differences for each method based on numerical results
from Ts and Tm. (a) Box-plot of average differences. (b) Box-plot of maximum differences.

To verify the observed result is statistically significant, we conducted a paired t-test
with a significance level of 5% between GDDR and each of the compared algorithms, based
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on the results in Tables 3 and 4. The hypothesis and the calculated p-values are listed as
follows:

• T1 (H0 : Avg(GDDR−GDSPT) = 0 and H1 : Avg(GDDR−GDSPT) < 0), p = 2.72× 10−19;
• T2 (H0 : Avg(GDDR−IDE) = 0 and H1 : Avg(GDDR−IDE) < 0), p = 6.61× 10−15;
• T3 (H0 : Avg(GDDR−RDE) = 0 and H1 : Avg(GDDR−RDE) < 0), p = 2.08× 10−11.

Obviously, the null hypothesis H0 is rejected for all hypothesis, which indicates that
GDDR significantly outperforms GDSPT, IDE, and RDE. Consequently, based on the
dominant ratios and p-values, we can further conclude that GDSPT≺ IDE≺ RDE≺ GDDR.

In order to evaluate the robustness ability of GDDR, we further test GDDR on large-
scale instance set Tl , which contains instances that the GDDR never saw during the training
phase. Table 5 presents the computational results on large-scale instance set Tl . The run time
of RDE is limited to around 600 s, whereas other parameter settings remain unchanged.

Table 5. Numerical results on the large-scale instance set Tl , relative to the lower bound. The values
marked with letters indicate the GDDR significantly outperforms different benchmark algorithms
at 5% significant level, where “a”, “b”, and “c” represent the GDSPT, IDE, and RDE algorithms,
respectively. Run time of GDSPT is omitted because it finishes all instances within a second.

GDSPT IDE RDE GDDR

n-m-b-h Avg (%) Max (%) Time (s) Avg (%) Max (%) Time (s) Avg (%) Max Time (s) Avg (%) Max (%)

600-10-10-2 4.55 7.92 4.14 4.22 7.04 478.53 3.72 5.87 0.02 1.42 a,b,c 2.40
600-10-20-2 1.44 2.19 1.93 1.37 2.19 321.06 0.82 1.88 0.01 0.69 a,b,c 1.23
600-20-10-2 3.58 7.15 3.79 3.56 6.95 406.82 3.25 5.30 0.01 1.72 a,b,c 3.34
600-20-20-2 1.34 2.90 1.88 1.22 2.57 341.80 0.61 1.72 0.01 0.61 a,b,c 1.33
900-10-10-2 3.95 10.37 11.84 3.81 9.62 613.62 3.62 9.12 0.04 1.27 a,b,c 3.13
900-10-20-2 1.76 2.85 5.93 1.70 2.85 584.91 1.51 2.85 0.02 0.71 a,b,c 1.17
900-20-10-2 4.58 8.97 11.67 4.29 7.41 613.89 4.03 6.83 0.03 1.48 a,b,c 2.54
900-20-20-2 1.65 3.49 5.88 1.55 2.96 584.99 1.24 2.19 0.02 0.86 a,b,c 1.70
1200-10-10-2 6.14 14.10 26.79 5.43 13.16 638.08 5.08 12.33 0.06 1.90 a,b,c 6.12
1200-10-20-2 1.79 3.40 13.51 1.76 3.40 621.51 1.67 3.40 0.03 0.69 a,b,c 1.18
1200-20-10-2 5.12 10.45 26.81 4.48 8.08 643.89 4.16 7.78 0.04 1.21 a,b,c 2.49
1200-20-20-2 1.58 2.79 12.93 1.51 2.08 616.20 1.44 1.95 0.02 0.80 a,b,c 1.15

As we can observe from Table 5, GDDR significantly outperforms all benchmark
algorithms in all configurations with regard to Avg value and Max value. As for time
cost, the run time of RDE starts exceeding 600 s when n increases to 1200 and GDDR
keeps finishing calculations within a second. These results demonstrate the reusable ability
of GDDR, it sustains effective and efficient performances when being applied to unseen
complex problem instances.

7. Discussion

To investigate more insights of the studied problem and discuss the effectiveness of
the proposed GDDR-CCGP algorithm, we conducted additional experiments to compare
the GDDR-CCGP with GP’s counterpart. The dispatching rules of some decision points
are unchanged, and they only evolve the dispatching rules of the remaining decision
points. Based on the GDSPT (FB-GDSPT-SPT) algorithm, we substitute the dispatching
rule of each decision point with GP and do not change the other dispatching rules. As a
result, the counterpart GPs are denoted as BFGP (GP-GDSPT-SPT), BSGP (FB-GP-SPT) and
BatchCCGP (GP-GP-SPT, a cooperative co-evolutionary genetic programming with two co-
evolving sub-populations). For fair comparisons, the terminal sets and parameter settings
are identical to corresponding sub-parts of the GDDR-CCGP as listed in Tables 1 and 2. The
population sizes of BFGP, BSGP and BatchCCGP are set to 3000, 3000 and 750, respectively.
Therefore, all GPs get the same number of fitness evaluations per generation as GDDR-
CCGP.
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In this experiment, we ran all GPs 50 times and common random seeds were utilized
across the GPs to provide the same set of evaluation environments, and result in 50 schedule
policies for each GP. Then, each schedule policy was tested on the instance set Tm to obtain
the total objective value of all test instances as the performance criterion of the schedule
policy. After that, the average performance of the 50 schedule policies of a GP were
compared with others. Table 6 reports the absolute mean performance differences of the
GPs based on 50 runs of each GP, where a positive value indicates the GP in the column
header is better than the GP in the first column of the current row. Furthermore, in order to
provide indicators of statistical significance, we again employed the paired t-test with a
significance level of 5% and “+” indicates significant, “o” otherwise.

Table 6. Absolute mean performance differences of the GPs based on 50 runs.

BSGP BatchCCGP GDDR-CCGP

BFGP −686,434.96 (+) 453,248.68 (+) 414,854.98 (+)
BSGP 1,139,683.64 (+) 1,101,289.94 (+)
BatchCCGP −38,393.70 (o)

As observed from Table 6, BFGP significantly outperforms BSGP. In addition, in terms
of absolute mean performance difference values, BatchCCGP improves BSGP by the value
of 1,139,683.64, which is much larger than the improvement in BFGP. These results imply
that the GP for the batch formation phase can better improve the optimization of the
problem than the GP for the batch sequencing phase. Meanwhile, the GPs with cooperative
co-evolution (BatchCCGP and GDDR-CCGP) are significantly better than the GPs which
only evolve dispatching rules on a single decision point (BFGP and BSGP). This result
demonstrates the necessity of a cooperative co-evolution strategy for the studied problem.
As for the comparison between BatchCCGP and GDDR-CCGP, although the absolute mean
performance difference shows the superiority of the former, the statistical result reports
a non-significant indicator. In summary, we can at least conclude that BSGP ≺ BFGP ≺
BatchCCGP ≈ GDDR-CCGP.

In order to compare the optimization ability of BatchCCGP and GDDR-CCGP, a
comparison was conducted based on results of the 50 evolved schedule policies of each
GP. As shown in Table 7, each GP was compared with the three benchmark algorithms and
the overall improvement ratio (a negative ratio indicates the improvement provided by
GPs) and dominant ratio (number of dominant configurations divided by total number of
configurations) was obstained against each benchmark algorithm. The average and best
values are reported.

Table 7. Overall improvement ratio and dominant ratio of GPs compared with benchmark algorithms.

Improvement Ratio (%) Dominant Ratio (%)

GDSPT IDE RDE GDSPT IDE RDE

Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best

BSGP 41.45 −31.17 60.99 −23.19 79.14 −13.04 50.13 93.48 39.48 82.61 30.26 65.22
BFGP −16.43 −22.48 −4.81 −11.39 10.34 3.10 87.22 100.00 56.26 65.22 50.35 58.70
BatchCCGP −29.16 −37.90 −19.43 −29.66 −8.39 −19.68 92.17 100.00 80.30 93.48 63.26 76.09
GDDR-CCGP −27.68 −40.25 −17.89 −32.20 −6.81 −22.74 90.65 100.00 80.09 93.48 61.91 78.26

As observed from Table 7, BatchCCGP outperforms the GDDR-CCGP in all aver-
age values, this result is consistent with the statistical results of Table 6. However, in
terms of best values, GDDR-CCGP shows a better performance than BatchCCGP. Overall,
GDDR-CCGP provided additional 2–4% improvements in comparison to BatchCCGP and
dominated RDE on a larger number of configurations. As we described earlier, the SPT rule
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provides near optimal solutions for the job sequencing phase, the results in Tables 6 and 7
show that the addition of GP for job sequencing phase does not promise a better result, but
does provide opportunity for a GP to evolve better dispatching rules. Thus, we conclude
that the GDDR-CCGP is capable of generating better dispatching rules than BatchCCGP
without guaranteeing superior performance on every run.

Moreover, when comparing the results between BFGP and BSGP, the former signifi-
cantly outperforms the latter in all average values. Although the best values of BSGP are
better, in our experiments, only two runs of BSGP yield better results than BFGP among
50 runs, whereas the other 48 runs are significantly worse than BFGP. This indicates that,
the GP for the batch formation phase can contribute much more than that for the batch
sequencing phase.

Finally, as for the comparison between BSGP and RDE, since they are both optimized
on the batch sequencing phase, this is a comparison between the GP-generated heuristic
and well-designed meta-heuristic. As well-known, it is difficult for a heuristic to beat a
meta-heuristic. However, it is noticeable that, the best schedule policy evolved by BSGP
outperforms RDE with a 13.04% improvement ratio and a 65.22% dominant ratio. This
remarkable result indicates that some dispatching rules can compete with a meta-heuristic,
and again demonstrates the effectiveness of the proposed GDDR-CCGP algorithm.

8. Conclusions

In this study, we address the two-stage hybrid flow shop scheduling problem with
a batch processor followed by a discrete processor. An incompatible job family and size-
limited buffer are also considered. In order to provide an online real-time decision-making
solution, we propose the GDDR heuristic with three dispatching rules for the three cor-
responding decision points of batch formation, batch sequencing and job sequencing. In
addition, a genetic programming with cooperative co-evolution (GDDR-CCGP) is proposed
as the hyper-heuristic for evolving schedule policies.

The experimental results show that the evolved best schedule policy GDDR outper-
forms the benchmark heuristic and meta-heuristics in terms of solution quality and run
time, and that the GDDR can provide high quality solutions especially for large-scale
instances within few seconds. These results demonstrate that the proposed GDDR-CCGP
is capable of generating high-quality schedule policies for making real-time scheduling
decisions for the studied problem.

We further analyze the optimization contribution of each decision point. The numerical
results show that, optimization of the batch formation phase contributes the most, followed
by the batch sequencing phase and then the job sequencing phase. Since the SPT rule is near
optimal for the job sequencing phase, evolving dispatching rules for the job sequencing
phase provides opportunity for better schedule polices. Thus, the hyper-heuristic for the
job sequencing phase is optional but strongly recommended.

The proposed GDDR-CCGP can be easily extended to other flow shop set-ups where
cooperation between the batch processor and discrete processor exists. More importantly,
the evolved schedule policy offers a powerful schedule tool in a real dynamic manufactur-
ing environment, which provides competitive solution quality in a short time and allows
for quick reactions to the dynamic changes. Even when the production environment is
changed, a new run of the GDDR-CCGP can be implemented offline by simply updating
training data and obtaining a more suitable scheduling policy without interrupting the
production.

Future works will focus on extending the proposed GDDR-CCGP algorithm to multi-
stage hybrid flow shop scheduling problems and dealing with multi-objective functions.
Additionally, research on the scheduling problem of a more general complex dynamic job
shop where batch processors and discrete processors exist, is also a meaningful direction.
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Notations

n total number of jobs;
m total number of incompatible job families;
b batch capacity;
h the maximum number of batches the buffer can hold;
F incompatible job families set, where F = {1, 2, · · · , m};
nk total number of jobs in family k, where k = 1, 2, · · · , m;
Fk set of jobs belonging to family k, Fk = {1, 2, · · · , nk}, k ∈ F;
ak number of batches in family k, i.e., ak = d nk

b e, where k = 1, 2, · · · , m;
qk processing time on the batch processor for family k, where k = 1, 2, · · · , m;
pi processing time on the discrete processor for job i, where i = 1, 2, · · · , n;
N job set, where N = {1, 2, · · · , n};
B the batch set, where B = {1, 2, · · · , a} and a = n/b;
ε a sufficient small positive number;
Mi a sufficient large positive number, where i = 1, 2, 3.

Variables
xil xil = 1 if job i is assigned to batch l, and 0 otherwise;
ykl ykl = 1 if batch l consists of the jobs in job family k, and otherwise, ykl = 0;

zli
zli = 1 if the position of job i in the process sequence of the discrete processor is less than or
equal to (l − h)b, and otherwise, zli = 0, for all l > h, let β = (l − h)b;

uij uij = 1 if job i is processed before job j on the discrete processor, and otherwise, uij = 0;
tl the processing time of batch l;
rl the release time of batch l on the batch processor;
Ci the completion time of job i.
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