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Abstract: Applications of the Atangana-Baleanu fractional integral were considered in recent studies
related to geometric function theory to obtain interesting differential subordinations. Additionally,
the multiplier transformation was used in many studies, providing elegant results. In this paper, a
new operator is defined by combining those two prolific functions. The newly defined operator is
applied for introducing a new subclass of analytic functions, which is investigated concerning certain
properties, such as coefficient estimates, distortion theorems, closure theorems, neighborhoods and
radii of starlikeness, convexity and close-to-convexity. This class may have symmetric or asymmetric
properties. The results could prove interesting due to the new applications of the Atangana—-Baleanu
fractional integral and of the multiplier transformation. Additionally, the univalence properties of
the new subclass of functions could inspire researchers to conduct further investigations related to
this newly defined class.

Keywords: analytic functions; univalent functions; radii of starlikeness and convexity; neighborhood
property; multiplier transformation; Atangana—-Baleanu fractional integral

MSC: 30C45; 30A20; 34A40

1. Introduction

Fractional calculus has many applications in diverse fields of research. The papers [1,2]
discuss the history of fractional calculus and provide references to its many applications in
science and engineering.

Owa [3] and Owa and Srivastava [4] applied a fractional integral for a function which
gave new possibilities for studying properties of functions and for defining new operators.
A fractional integral was considered on a confluent hypergeometric function in recently
published papers (see [5]) and on Ruscheweyh and Sildgean operators in [6]. Applications
of fractional derivatives with Mittag—Leffler kernels were considered in [7,8] and with
non-local and non-singular kernels in [9].

Atangana and Baleanu [10] used the Riemann-Liouville fractional integral for in-
troducing a new fractional integral studied by many researchers in recent years. The
Atangana—Baleanu fractional integral of Bessel functions was used in studies [11,12]. Nice
results were recently obtained regarding Ostrowski-type integral inequalities [13] and
Hermite-Hadamard-type inequalities [14] involving an Atangana—Baleanu fractional in-
tegral operator. The definition given by Atangana—Baleanu can be extended to complex
values of the order of differentiation v by using analytic continuation.

Multiplier transformation has also been used for recent studies, as can be seen in [15,16].

Inspired by the nice results seen in the papers published considering the Atangana—
Baleanu fractional integral and multiplier transformation separately, we have decided to
merge them and to define a new operator, which will be given below. This operator is
used to introduce a new subclass of analytic functions, since introducing and studying new
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classes of univalent functions generates very interesting results, and we can remind only
a few very recent results, such as new subclasses for bi-univalent functions [17,18] and
classes of functions introduced using operators [19,20].

The class of analytic function is denoted by H(U) in U = {z € C: |z| < 1}. The open
unit disc of the complex plane is denoted by # (4, n). The subclass of H(U) of functions is
denoted with the form f(z) = a + a,z" + a, 12" +... and A, = {f € H(U) : f(z) =
z+ay 12"+ ..., z € U}, where A = A;.

The special class of starlike functions of order « is defined as

S*(w) = {fEA:ReZ]{;S) >vc,0§oc<1}

and the class of convex functions of order « is defined as

K(a) = {f cA: Re(zj:,”(g) +1) >a,0<a< 1}.

For introducing the new operator, the following previously known results are necessary.
Definition 1 ([21]). For f € A, m € NU{0}, a,] > 0, the multiplier transformation I(m, «,1) f(z)
is defined by the following infinite series:

T+ak—1)+1\"
(1+z)) oz

I(m,a,1)f(z) ==z + i(
k=2

We recall that the Riemann-Liouville fractional integral ([22]) is defined by the follow-
ing relationship:

BIf(@) = 7 [ 2= 0)' 7 (), Re (1) >0,

which is used in the Atangana—Baleanu fractional integral.

In paper [23], symmetric and anti-symmetric derivatives of the Riemann-Liouville
and Caputo type were defined, and the reflection symmetry properties of fractional differ-
entiation were studied.

Definition 2 ([24]). Let c be a fixed complex number and f be a complex function which is analytic
on an open star-domain D centered at c. The extended Atangana—Baleanu integral, denoted by
ABLY £(2), is defined for any v € C and any z € D\{c} by:

1-v vV RL

?Blgf(z) = B(l/) f(Z) + B(I/)C Igf(Z)

Proposition 1 ([24]). The extended Atangana—Baleanu integral from Definition 2 is an analytic
function of both z € D\{c} and v € C, provided f and B are analytic and B is nonzero. This is
identical to the original formula in the real case when 0 < v < landc < zin R.

Therefore, it provides the analytic continuation of the original Atangana—Baleanu integral to
complex values of z and v.

Applying the Atangana-Baleanu fractional integral for ¢ = 0 to multiplier transforma-
tion, we define a new operator:

Definition 3. Let f € A, m € NU{0}, o, > 0, v € C, and any z € D\{0}. The Atangana—
Baleanu fractional integral associated with the multiplier transformation I(m, «,1) f is defined by:

1%

B(v)

0PI (L(m, o, 1)f (2)) = 2 1(m, 0, 1) f (2) + oGP 1T (m, 0, 1) f (2).
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After a simple calculation, the following form is obtained for this operator:

) B 1—v 1% v
0" (Im e Df () = 332t gore Tyt T

1—-v & (14+ak—1)+! S 14ak—1)+I\"T(k+1) 4y,
B(v),{%( I+1 ) g +B(u)k_22< I+1 vk 10k

for the function f(z) =z + Y5°, ;2" € A.
The new class is defined using the new operator.

7

Definition 4. A function f € A is said to be in the class (’)“BZ(m, a,1,v,7,d,B) if it satisfies the
following criterion:

1( 2B L (1m0, D) (2)) + 92 @EP L (Lm0, D f(2)))" 1)
(= V)G (1m0, 1)) + v2(P 1 (1,0, D f (=)

d
where m € NU{0}, a,1 >0,v€C,de C—{0},0<B<1,0<y<1,zeU\{0}.

< B,

In this section, a new subclass of analytic functions was introduced in Definition 4 after
we presented the notations and definitions used during our investigation. The properties
regarding the coefficient inequalities for the functions contained in the newly introduced
class are obtained in Section 2 of the paper. Distortion bounds for functions from the class
and for their derivative are given in Section 3, and properties regarding closure of the class
are proven in Section 4, considering partial sums of functions from the class, with extreme
points of the class being also provided. In Section 5, inclusion relations are obtained for
certain values of the parameters involved, and neighborhood properties are discussed,
while radii of starlikeness, convexity and close-to-convexity of the class are obtained in
Section 6 of the paper.

1+a(k—1)+1

To shorten the formulas, we have to make the notation A = ( =)

) " throughout
the paper.

2. Coefficient Inequality
Theorem 1. The function f € A belongs to the class §8Z(m,a,1,v,7,d, B) if and only if

e}

Y Al =v)[y(k=1)+1)(k— 1+ Bld|)+

k=2

viy(k+v—1) +1](k+v —1+ Bld)T(k +1)

T(v+k+1) e =
Blal(1 ) — P, )

wherem € NU{0}, 2,1 >0,ve C,dec C—{0},0<Bp<1,0<v9<1,zeU\{0}.

Proof. Let f € A. Consider the inequality (1). After making an easy calculus, we get:

2(§P L (1(m, 0, 1) f(2))) + 722 (P (1(m, 0, 1) f(2)))"

(=GB (I0m, @, 1)f (2)) +v2(GP L (1(m, 0, D) f(2))) 1~

2
;mg 214 LT ) A1)y (k—1)+ 1)+ gl T #ﬂ)(kw D) [(k+v—1)+ a2k

() +B<<;YVJ]+>2)ZV+1+1(V'S Yo Aly(k— 1)+l]akzk+ 7 Lisa 7”“1 [y (k4+v—1)-+1]azk+v

and applying properties of modulus function, we obtain:
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— k —
PRI oy Loty A )y (k1) + a2+ {V zk 2 Aty (kv =) [y (krv—1) + a2
_ 1) T'(k+1
Mm(é?ﬁtﬂ 21" — 455 T2 Al (k—1)+ a2 = 5 T2 A gy (7 (kHv—1)+1]ag |z
< ld|.

Taking values of z on a real axis and for z — 17, we find:

[e9)

k;A[(l —v)[y(k=1) +1j(k =1+ pld|)+
v['y(k+v—1)+1}(k+v—1+ﬁd|)1"(k+1)]a _
T(v+k+1) k=

g - ) - L Dl )

Conversely, consider f € 6‘3 Z(m,wa,l,v,7,d,B). Then, we obtain the inequality

201 (1(m,, 1) (2)) + 922 (L (L, D))"\
Re{(l—’r)é‘Blv( 1(m,a,1)f(2)) + v2(@B 1 (I(m, 0, 1) f () 1}> pldl,

written as

2
Re { By 21 T T A=)y (k—1)+1]a 2+ gt z;:°2A%(k+v—1>[w(k+v—1>+1]akzk+v

1(3“% v Lol e ) Aly(k—1)+ a2+ gl TR, Arpis [y (ktv—1)+ a2+

+Bld|} >0
and equivalently with:

B(v) BT (v+2) e
1 00
é(v)z—i_ B(<)7V(T+)2) Zl+1+1 1 Z;k ZA[ (k= 1)+1]akzk+3 Zk 2 T%[Y(k"rv 1)4-1]11](2’(+1L

Re{ (Bl 5y VAT vt Lty ) A(k—1+d]) [y (k—1)+1]ag 2t

Zk ZA%(kﬂ/flﬁB\dDh(kﬂ/ 1)+1]axz*t
B(‘Sz-ﬁ-%z”“—&-l EEE, Aly(k—1)+1]azk+ gl TRy Appipy [y (kHv—1)+ a2kt

19|:

> 0.

Considering that Re(—e'?) > —|e —1, the inequality becomes:

(opglal_ vl 1 Zi"zA(k 1+BJd]) [y (k—1)+ Lagrk~1

é;vv)fs(vé)wrﬁfz) *7& 5 Aly(k=1)+1]aprk =1 By Lke2 7V$:Jlr1 [y (k+v—1)+1]aprktv— 1
(k+1)

B Zk ) m(k+v71+ﬁ\d\)['y(k+v 1)+1]aprktv—1

- 1 - (35
zlsiuv)_B(lf)WrLJJT)z)rv—uzsz[ (k=1)+1aprk 1 — 5t Y2, A 1+J,§+1 [y(k+v—1)+1]aprk+v—1

> 0.

Applying the mean value theorem when r — 1~ we get the inequality (1), and the
proof is complete. [J

Corollary 1. Coefficients of the function f €318 I(m,a,1,v,,d, B) have the property:

Bld| (1 — ) — LvEpla)
a < F(v+2)
- v (k+v— k+v d)T(k 4
Al =v)lr(k—1) +1](k —1+ﬁld|) ol o BT )
fork > 2.

3. Distortion Theorems
Theorem 2. Thefunction f €8 I(m,a,1,v,7,d,B), for |z| = r < 1, has the property:

Bld|(1— ) — v(yv+1) (v+Bld])

r— G 2 < |f(2)]

(H2)" [ = v)(y + 1) (Bld| + 1) + 2L UG A
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pld|(1— ) — P .

S r+ m v 14 v r
(42" [ =) (y + 1) (Bld| + 1) + 2GR

The eql/lality hOldeOr thefunction

(L) " [(1 = v)(r + 1) (Bld] + 1) + 220D

2, zel (2

flz)=z+

Proof. Let f 6643 Z(m,a,l,v,7,d,B). Then, considering the relation (1) and that the se-
quence

ZA[(l ) lrlk— 1)+ 1(k— 14 Bld]) +

viy(k+v—1)+1)(k+v—1+ Bld)T(k + 1)}
k=2

F'(v+k+1)

is increasing and positive for k > 2, we obtain the inequality

e e Lous

kiA[(l —V)[y(k—1) +1)(k— 1+ Bld|)+
=2

v['y(k—Irv—l)+1}(k+v—1+/3d|)1"(k+1)]a _
T(v+k+1) k=

(yv +1) (v + Bld])

1%
Bld|(1—) - T +2) ,

equivalently with
+1)(v+pBld
,B‘d|(1 ,),) V(WF(B(VZ)M 1)

mm .
1Jlr_icftl> |:(1 _ 1/) ('Y + 1)(‘B|d| + 1) + 21/[7(1/+1%Z/1i(;)+1+/3\d|)}

®)

o0
Y a <
= (

Using the properties of modulus function for

flz)=z+ i a2k,
k=2

we get

0o 0 00
r=r Y o <r— Y o <|z| = Y alzf < [f(2)]
k=2 k=2 k=2

o0 [0 (o)
<lzl+ Y awlzf <r+ Y apk <r+2 Y a,
k=2 k=2 k=2

and considering relation (3), we obtain

Bld|(1— ) — v(yv+1) (v+pld])

r 2
T 1t )" (U+2)1/[7(v+1)+1](v+1+13|d\) < f(2)]
(L) " [ = v) (o + 1)(Bld] + 1) + 2 TIG 1P
+1)(v+Bld
. Bld| (1 — ) — “r Bl ,
(S5 [ = v) (r + 1) (Bl + 1) + 2Ll

completing the proof. [
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Theorem 3. The function f € éBI(m, a,l,v,7,d,B), for |z| = r <1, has the property:

2[ﬁ|d|(l —y) - V(W+1)(V+l3\d|)]

T'(v+2) ,
. " T r<|f)
(17451”) [<1 —v) (7 +1)(Bld| + 1) + 201 +1gﬁ<3)+1+md|>}
1y 2[Bld| (1 — ) — Htaldl |
- m r.
(1%‘1”) [(1 —v)(y+1)(Bld] +1) + ZV[W<V+1%(+V{(3V)+1+1%MD]

The equality holds for the function given by relation (2).

Proof. Using the properties of the modulus function for
fl(z) =1+ ka1,
k=2

we obtain:

1— Y kaplz] < 1= Y kaglz|P < |f/(2)| <1+ Y kagz/F 1 <1+ Y kaglz].
k=2 k=2 k=2 k=2

Applying relation (3), we get

2[ﬁ|d|(1 —9) - V(7V+1)(V+/5\d|)}

I'(v+2) /
1- . g RS RETY r<If(2)
() [ =) (7 + 1) (Bld] + 1) + 220G Pl |
+1)(v+B|d
14 2[,3|d|(1—')/)_1/(wr(3$/2)ﬁ‘ l)} .
(L) ™[ (1= v) (o + 1) (Bl + 1) + 20 EC AN

and the proof is complete. [

4. Closure Theorems
Theorem 4. The functions f €8 I(m,a,1,v,7,d, B) of the following form

fr(z) =z+ Z uk,pzk, axpy > 0,z€ U, 4)
k=2
p=1,2,...,q, define the function h by relation
q
h(z) =) mpfp(z), mp=20z€U,
p=1
which belongs to the class 6431 (m,a,1,v,7,d,B), when
q

Yoy =1

p=1
Proof. The function & has the following form:

q g o © 4
h(z) =) ppz+ Y Y ypak,pzk =z+) ) ypak,pzk-
p=1 p=1k=2 k=2 p=1
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Regarding the functions fp, p = 12,...,9, being contained in the class
6“31 (m,a,1,v,7,d,B), by applying Theorem 1 we obtain:

(o)

Y Al =v)[y(k=1) +1)(k— 1+ Bld|)+

k=2
viy(e+v—1) +1(k+v—1+pd)T(k+ D]
T(v+k+1) Tep =
Bld|(1—7) — v(yv le(i)f;)rﬁldl)'

In this condition, we have to prove that:

e}

Y Al = v)[y(k—1) +1](k — 1+ pld|)+

V= V— 9
vly(k+v—1)+1](k+ Hﬁ'd')r(kH)KZypak,p)s

Frv+k+1) |

q (¢S]
Yomp Y Al =v)[y(k=1) +1(k— 1+ Bld|)+

1/'y(k+v—1)+l](k+v—1+ﬁd|)r(k+1)]a .
T(v+k+1) kp =

q vl D Bl _
Xl 1 -~ MO A )

(v + 1) (v + pld))

v

Hence the proof is complete. [

Corollary 2. Let the functions f,, p = 1,2, as defined by relation (4) from the class
6431' (m,a,1,v,7,d,B). Then, the function h given by

h(z) =(1-0)fi(2) +fa(z), 0<$<1 zel,

belongs to the class éBI(m, a,l,v,7,d,B), as well.

Theorem 5. Let

fi(z) = z+
Bl (1 — ) — “E .

z,

A[(1 =)y (k = 1) + 1]k — 1+ pld]) + R AT

k>2,zeU,and
fi(z) =z

The function f belongs to the class I (m,a,1,v,7,d, B) if and only if it can be written as

ﬂa=ﬁmmmzew
=1

with pe >0,k > Land Y32 4w = 1.
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Proof. Consider the function

i Hifr(z

k=1
Bld|(1— ) — v(yv+1) (v+pld])

1"(1/+2) k
2+ Z v— v— Hiz's
A[(1 =)k = 1) + 1] (k= 1+ pld]) + TR AT |
we get:
o, A[(1=v)[r(k = 1) +1](k = 14 pld]) 4 “DERDYIR IO
= Bld|(1 =) — iﬁ”ﬁgi“gﬁ‘d“
Bld|(1 — ) — gty Pl .
v v— vV— k
A1 =)k = 1) + 1) (k — 1+ pla]) + IR AT |

=) m=1-m<1
k=2

Therefore, f GAB Z(m,a,l,v,7,d,pB).
Conversely, con31der1ng f 66“3 Z(m,a,l,v,7,d,B) and the setting

A|:(1_V)[’)/(k—1)+1]( _1+ﬁ|d|) V[’y (k+v— 1)+1](k+1/ 1+ﬁ|d‘) (k+1)i|

= T(v+k+1) 0
— y ,
Bldl(1 — ) — *ri

and -
p=1-Y
k=2
we obtain

=) mefi(2)
k=1
Hence, the proof is complete. [J

Corollary 3. The class (?BI (m,a,1,v,7,d, B) has as the extreme points the functions

filz) =z,
and
fi(z) = 2+
Bld|(1 — ) — "Rl I
A|(1 =)k = 1) + 1)k~ 1+ pld]) + TR ARG
k>2,ze U.

5. Inclusion and Neighborhood Results
The J- neighborhood for a function f € A is given by

Ns(f)={g€A:g(z) =z+ Y bz* and Y klay — by| < 63, (5)
k=2 k=2
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and for e(z) = z, we obtain

Ns(e) ={gec A:g(z) =z+ i biz* and i k|be| < 6} (6)
k=2 k=2

A function f € A belongs to the class (’?Blg(m, a,1,v,7,d, B) if there exists a function
h 6643 Z(m,w,l,v,7,d,B) such that

f(z)
‘h(z)—l‘<1—§,zeu,0§§<1. @)

Theorem 6. We have the inclusion

0" (m,a,1,v,7,d,B) C Ns(e)

for
v(yv+1)(v+Bld
5 2[.3|d|(1_7)_ b r(jiz)m D}
- .
(L) ™[ (1= w) (o + 1) (Bld] + 1) + 2O UCHBED

Proof. Consider f Ef)qB Z(m,a,l,v,7v,d,B). Using Theorem 1 and using the fact that
the sequence

viy(k+v—1) +1](k+v—1+/3|d|)1‘(k+1)}

ZA[(I—V)[’Y(k—l)+1](k—1+l3|d|)+ Oy

k=2

is increasing and positive for k > 2, as we say in Theorem 2, we obtain

T+a+I\"T . yw+1)+1v+1+8d])] &
(SE) -+ (i + 1+ s Yo
Y Al =v)[y(k=1)+1)(k— 1+ Bld|)+

k=2
viy(k+v—1)+1](k+v—1+pld|)T(k+1) o <
T(v+k+1) k=
oy v+ (v +Bld])
pla|(1 ) - TP,
which implies
1)(v+B|d
£ < Bld|(1 - y) — Ml e
F T () [ =)+ 1) (Bl + 1) + 2G|
Applying Theorem 1 in conjunction with (8), we get
o0 — ) — YD) Apl])
v 2[Bld] (1 - ) — Ml Bl ] »
- " v[y(v v )
T () [a - vy + 1Bl + 1) + 2D

By virtue of (5), we obtain f € Nj(e), which completes the proof. 0O
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Theorem 7. Ifh €8 T(m,a,1,v,7,d, B) and
é

g =1- (B-1D)A+A-Mpu)  ByB(v)  A+(I+v—>A)u 4 (9)
201 (B+1)v B+ (A-v)v  A-nTv+2)
( 14+l )m [AHZ*/\)V + 2(/\+(2+V*A)ll)}
I+1 v (1-v)T'(v+3)
then
Ns(h) B 78(m,a,1,v,7,4d, B).
Proof. Consider f € Ny(h). Relation (5)
[e9)
Y klag =B <6
k=2
implies
> 1)
Z |{Ilk — bkl S E (10)
k=2

Using relation (8) for 66‘13 Z(m,a,l,v,7v,d,B), we get:

o dl(1 — _ v+ (v+Bld])
Y be < z il r(V+zz)[ (v+1)+1] (v+1+pld]) ] (i
S ()" (@ - )+ 1) (Bld] + 1) + 2R

Using (10) and (11), we have:

() ’ I lm—b _
h(z) Tl T
1)
V(1) (rBld]) =1-¢
21— _ ﬁ|d‘(1_7)—w _
()" [ (1) (1) (Bl 1)+ 2 D |

By relation (7), we obtain f 6643 Ié(m, a,l,v,7,d,B), where { is given by (9). [

6. Radii of Starlikeness, Convexity and Close-to-Convexity

Theorem 8. The function f 66‘3 Z(m,a,l,v,7,d,B) is univalent starlike of order 5,0 < 6 < 1,

in|z| < ry, with

1
_ _ _ - v[y(k+v—=1)+1](k+v—1+p|d|)T (k+1) k-1

- infk{ (1-0) A (1=v) [y (k=1)+1] (k=14 Bld]) + i ] }

(k=8) [Bld| (1)~ A |

For the function of the form
fi(z) = z+

pldl(1— ) — *r P .

v v— v— Z (12)
A[( = )lr(k = 1) + 1] (k — 1+ pla]) + T RS PR

k > 2, the result is sharp.

Proof. For the function f to be univalent starlike of order J, we have to show that

@ s e
f(Z) 1‘§1 0, ||< 1.
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For f € A, we can write

2f2) |
@) 1‘ =

and it remains to be seen that

Yo (k= Daglz[*!

< Liza(k — Dagz[!
1-Y2 2ak|Z|k r

Yoo (k— 1)akz
1+ Zliozz aka 1

<1-9¢
1=y Roalz[Ft —
equivalently to
Y (k= &)alz|F T <1-4.
k=2

Applying Theorem 1, we get

(1-6) A (1) [y (k=1)+1] (k—1-+ pld] - L=y AN

e \d\<1_7>-i<w;gggv2;ﬁwl>] '

|Z|k71 <

or

1
Ll < {(1(S)A[(lV)[W(k1)+1](kl+ﬁd|) ey BT | }“_

(k=) |Bld| (1—y)— {1 Pl |

Hence, the proof is complete. [J

Theorem 9. The function f GAB Z(m,a,l,v,7,d,B) is univalent convex of order 6,0 < 6 <1,

in |z| < rp, with
1

{(1—5)A[(1—V)['Y(k—1) 1) (k= 1]+ b =D AN }“

(k=) [ pla|(1—y) - L2l B

rp = infk

For the function of the form

(1) VDBl
Bld|(1—7) T(v+2) Zk, k 2 2,

A1)y (k1) 1] (k=144 2 P |

filz) =2+

the result is sharp.

Proof. For the function f to be univalent convex of order J, we have to prove that

z H(Z)
<1-96, |z| <.
&) |
For f € A, we can write
zf"(z) _ | Sk = Va2t Zk 2 k(k — D)ag|z[*!
() 1+ Y32, kagzk-1 — Y, kay|z|1

and it remains to be seen that

Yoo k(k — 1)ay|z|k1
1— Y0, kag|z[k1
Y k(k —8)ag|z|Ft < 1-4.
k=2

§1_5/



Symmetry 2022, 14, 630 12 of 14

Using Theorem 1, we obtain

\Z|k71 < (v+k+1)

— 1 d 7

K(k —8) [Bld|(1 — ) — Al |
or
1

|Z| _ (17(5)A[(17v)['y(k71)+1] (kilJr‘B‘dl)Jr1/[7(k+v—1)+11](5/1:r1::11)+/3\d|)F(k+l)] k1

- _ o) Y D)(v+pld]) !

k(k=0) [pld| (1—y)— Tt LA

and the proof is complete. [

Theorem 10. The function f E(‘)“B Z(m,a,l,v,7,d,B) is univalent close-to-convex of order 5,
0<6<1,in|z| < r3, with

r3 = inf
k

1

T'(v+k+1)
k v(yv+1)(v+Bld
[‘ |d|(1 ,),) o l"(llz-(i-Z)ﬂ| D}

For the function of the form

Bld|(1—y)— v(yv+1)(v+pld])

C(v+2) Zk, k > 2,

A1)y (k1) 1] (k1] P e P |

fr(z) =z +

the result is sharp.

Proof. For the function f to be univalent close-to-convex of order §, we have to prove that
fz) =11 <1-6, |z[ <rs.
For f € A, we can write
oo

<) kag|z|F1<1-96
k=2

o
Z kakzk*1
k=2

f'(z) =1 =

ify 2, % |z|F=1 < 1. Using Theorem 1, the inequality holds true if

T'(v+k+1)
v(yv+1)(v+Bld
k{ﬁ|d\(1—7) b r(13+( z)m D}

‘Z|k_1 <

or

1
2l < { (1-6)A [(1 —v)[y(k—1) +1](k— 1+ Bld|) + V[’Y(k+V*1)+l}}(1(jlz:rk1:ll)+ﬁ|d\)r(k+1)} } =

v(yv v+Bld
K[ Bld] (1 — ) — e

Hence, the proof is complete. O

7. Conclusions

In this paper, a new operator {!81Y (I(m, a, 1) f) is introduced in Definition 3, applying
the Atangana—-Baleanu fractional integral for ¢ = 0 to a multiplier transformation. A
new class of analytic functions 6431 (m,a,1,v,7,d,B) is defined in Definition 4 and follows
a study of this class regarding coefficient inequality, distortion and closure theorems,
inclusion and neighborhood results, radii of starlikeness, convexity and close-to-convexity.

The class introduced in this paper is interesting due to the operator used for introduc-
ing it, since this operator is part of the celebrated family of fractional integral operators,
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which have been much investigated in the recent years. In addition to symmetry properties,
which could be investigated related to the newly defined operator, algebraic properties
could also be added after further studies in this regard. Considering the starlikeness and
convexity properties of the newly defined class, symmetry properties could be found for
this class, having in mind the connection between convexity and symmetry. Additionally,
subordination and superordination properties could be obtained by using the means of the
theories of differential subordination and superordination on this class due to its univalence
properties. The results obtained in this paper could be adapted in view of quantum calculus
aspects as seen in [25,26].
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