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Abstract: Benefiting from the rapid development of computer hardware and big data, deep neural
networks (DNNs) have been widely applied in commercial speaker recognition systems, achieving a
kind of symmetry between “machine-learning-as-a-service” providers and consumers. However, this
symmetry is threatened by attackers whose goal is to illegally steal and use the service. It is necessary
to protect these DNN models from symmetry breaking, i.e., intellectual property (IP) infringement,
which motivated the authors to present a black-box watermarking method for IP protection of the
speaker recognition model in this paper. The proposed method enables verification of the ownership
of the target marked model by querying the model with a set of carefully crafted trigger audio samples,
without knowing the internal details of the model. To achieve this goal, the proposed method marks
the host model by training it with normal audio samples and carefully crafted trigger audio samples.
The trigger audio samples are constructed by adding a trigger signal in the frequency domain of
normal audio samples, which enables the trigger audio samples to not only resist against malicious
attack but also avoid introducing noticeable distortion. In order to not impair the performance of the
speaker recognition model on its original task, a new label is assigned to all the trigger audio samples.
The experimental results show that the proposed black-box DNN watermarking method can not
only reliably protect the intellectual property of the speaker recognition model but also maintain the
performance of the speaker recognition model on its original task, which verifies the superiority and
maintains the symmetry between “machine-learning-as-a-service” providers and consumers.

Keywords: DNN watermarking; black-box; speaker recognition; artificial intelligence security

1. Introduction

In recent years, deep neural networks (DNNs) have achieved great success in many
tasks, such as computer vision [1,2], speech recognition [3,4] and natural language process-
ing [5], which prompts machine learning as a service to build a convenient bridge between
service providers and service consumers. However, training a powerful DNN model is
very expensive and requires: (1) a large amount of available data; (2) sufficient computing
resources; and (3) experienced domain experts.

This implies that, as the key factor to achieve a kind of symmetry between “machine-
learning-as-a-service” providers and consumers, a high-performance DNN model should
be regarded as the intellectual property (IP) of the owner and be protected accordingly.
Fortunately, increasing methods [6–12] have been proposed to protect DNN models by
watermarking. Watermarking DNN models (also called DNN watermarking) is a technique
that allows DNN model owners to embed ownership information in DNN models for IP
protection.

A basic requirement is that the watermarking procedure should not impair the perfor-
mance of the host DNN on its original task. Many DNN watermarking methods have been
proposed along this line. DNN watermarking can be roughly divided into two categories,
i.e., white-box DNN watermarking and black-box DNN watermarking.
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White-box DNN watermarking [6–8] embeds the watermark information into the
internal parameters or structures of the DNN model. As a result, in order to reconstruct
the embedded watermark, the watermark extractor should be able to access the internal
details of the target DNN model. A simple idea is to modify the network parameters
for watermark embedding. However, simply modifying the network parameters is not
desirable in practice as it may significantly impair the functionality of the DNN model.
To this end, Uchida et al. [6] embedded watermark bits by optimizing a combined loss
consisting of a task loss and a watermark loss.

During model training, by optimizing the combined loss, the watermark can be
embedded into the network parameters while well maintaining the functionality of the
DNN. A drawback is that the method imposes a statistical bias on certain model parameters,
reducing the statistical imperceptibility of the watermark. Wang et al. [13] used those
earlier-converged network parameters to carry a watermark, which can preserve the
statistical characteristics better. Moreover, Wang et al. used an independent neural network
for automatically watermark embedding and extraction, which skips complex manual
operations and is more suitable for applications.

Different from the aforementioned methods that directly modify the network parame-
ters by optimizing a loss, Rouhani et al. [7] proposed a watermarking method to embed
secret bits into the probability density functions of different network layers, which shows
better robustness against parametric attack. Wang et al. [8] proposed a watermarking
method based on adversarial training. The watermarked model serves as the generator,
whereas a watermark detector that detects changes in the statistical distribution of the
model parameters serves as a discriminator.

During training, the generator is encouraged to generate non-detectable watermarks,
whereas the detector tries to distinguish watermarked models from non-watermarked ones.
Thus, the marked model tends to carry a watermark in a way that its parameter distribution
stays similar to the non-marked one. Recently, Zhao et al. [14] proposed a method to embed
watermark bits into the network structure. Compared with previous methods, this method
can resist against all parameter-based attacks and thus has good potential in applications.

In contrast to white-box DNN watermarking, black-box DNN watermarking [9–12]
enables verification of the ownership of the target DNN model without knowing the
internal details of the model. It is often the case that the watermark extraction depends
on the output results of the target model on a set of input samples. For example, Adi
et al. [9] proposed a black-box DNN watermarking scheme by using backdoor technology.
They use abstract images unrelated to the host DNN model as the trigger samples (also
called backdoor samples) and train the host DNN model with normal samples and trigger
samples.

As a result, the marked model not only performs very well on its original task but also
enables the watermark to be verified by inputting the trigger samples. Clearly, there are
different ways to construct the trigger samples, e.g., Zhang et al. [10] used text markers,
noise samples and irrelevant samples as the trigger samples to verify the ownership.

The aforementioned methods can be regarded as zero-bit watermarking [15]. In order
to realize multi-bit watermarking, Chen et al. [11] proposed a model-dependent encoding
scheme that takes into account the owner’s binary signature for watermarking. Guo
et al. [12] proposed a watermarking method to protect the ownership of the DNN model de-
ployed in embedded systems and designed a backdoor watermark with specific information
generated by the bit array as a trigger.

Unlike the aforementioned methods that are originally designed for convolutional
neural networks (CNNs), Zhao et al. [16] presented an efficient watermarking scheme for
graph neural networks (GNNs), whose core is to train a GNN with a random graph as the
trigger controlled by a secret key. In addition, apart from mainstream works that are focused
on watermarking classification-based models, watermarking generative models have also
been studied, e.g., [17]. For more black-box methods, we refer the reader to [15,18].
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There is no doubt that mainstream methods have moved DNN watermarking ahead
rapidly. However, most of these works are designed for image-related DNN models, and
there is little study on speaker recognition model protection. As a research direction of
speech signal processing, speaker recognition has been widely applied in many fields, such
as speaker verification, judicial identification, speech retrieval, medical applications and
military fields.

In particular, increasing speaker recognition models are based on DNNs. It is necessary
to protect the IP of these DNN models. How to design a watermarking scheme for DNN
based speaker recognition models is therefore crucial. Moreover, it is more desirable to
design a black-box DNN watermarking scheme for speaker recognition models since in
practical application scenarios, these models are easily stolen by attackers and packaged
into application programming interfaces (APIs) for profits.

At this point, we can only interact by querying the APIs as the internal details of the
speaker-recognition-related DNN model deployed in a commercial product is unavailable
to us. Therefore, this motivates us to study black-box watermarking for speaker recognition
models, which is more in line with a realistic application scenario.

In this paper, we designed a zero-bit black-box watermarking method. This method
mainly uses the constructed trigger samples to query the target model and authenticate the
ownership of the target model by comparing the predicted results with the pre-specified
labels. This kind of method has been successfully applied in the field of computer vi-
sion [9,10]. Since the goal of this paper is to protect the IP of audio-based DNN, it is very
difficult to directly migrate the existing method.

In addition, the trigger signals designed by many existing methods are perceptible,
which are removable and easy to be attacked. When we use the trigger samples constructed
on the basis of these trigger signals to query the API, it is easy to arouse the alert of
the attacker and prevent us from querying, leading to the failure of model ownership
authentication. To solve this problem, this paper proposes a construction method for an
imperceptible trigger signal.

More specifically, there are two important problems to be addressed under the zero-bit
black-box watermarking condition. One is how to craft the trigger samples, and the other
is how to highly preserve the performance of the DNN model on the speaker recognition
task. For the first problem, simply adding a noticeable pattern, such as predefined marker
and meaningful content, will not only impair the imperceptibility of the watermark (which
leads the watermark to be easily removed or attacked) but also gives the attacker a chance
to forge fake trigger samples to confuse the ownership of the model.

To deal with this problem, in this paper, we carefully design the trigger audio samples
in the frequency domain, which achieves good performance in both imperceptibility and
robustness. For the second problem, we add a new label based on the existing labels and
designate the trigger audio samples as the new label category to maintain the performance
of the original task as unaffected as possible. The experimental results show that the pro-
posed black-box DNN watermarking method can not only reliably protect the intellectual
property of the speaker recognition model but also maintain the performance of the speaker
recognition model on its original task well, which verifies the superiority and applicability
of the proposed work.

The remainder of this paper is organized as follows. We first introduce the proposed
work in Section 2. Then, we conduct convinced experiments and analysis in Section 3.
Finally, we conclude this paper in Section 4.

2. Proposed Method

The proposed method includes three phases, i.e., trigger sample generation, watermark
embedding and watermark verification. The goal of trigger sample generation is to design
a universal method for constructing two sets of trigger audio samples that will be used for
subsequent watermark embedding and watermark verification respectively. Notice that
the two sets do not intersect with each other.
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For watermark embedding, it is realized by training the speaker recognition model
with a set of normal audio samples and a set of trigger audio samples. During training,
the normal audio samples are associated with normal labels; however, all the trigger audio
samples are associated with a new label that does not appear in the normal label set.
After training, the resultant model is treated as marked and can be used. For watermark
verification, by inputting a new set of trigger audio samples into the target model, we can
verify the ownership by analyzing the outputted results of the target model. Figure 1 shows
the general framework of the proposed method. In the following, we provide the technical
details for each phase.

Transform
Normal audio 

samples
Trigger insertion Inverse transform

Trigger audio 

samplesNormal data in 

frequency domain

Trigger data in 

frequency domain

Label assignmentModel training
Trigger dataset

(for training)

Normal dataset

Marked DNN model

Host DNNLeaked

Label assignment
Trigger dataset

(for verification)

(Newly generated)

Model predictionModel verification
Predictions 

and labels

Verification result

Trigger signal
Phase 1: Trigger sample generation

Phase 2: Watermark embedding

Phase 3: Watermark verification

Figure 1. The general framework for the proposed method.

2.1. Trigger Sample Generation

LetM be the speaker recognition model to be marked.M accepts an audio sample
x ∈ RL as the input and outputs the classification resultM(x) ∈ C = {0, 1, . . . , c− 1},
c ≥ 1. In order to produce the marked modelM∗ ≈ M, we need to construct a set of
trigger audio samples. Most of the previous works construct trigger samples by adding a
noticeable pattern (treated as a trigger signal) in the spatial domain of normal samples (also
called clean samples), which has at least two drawbacks.

First, the noticeable pattern may arouse suspicion from the attacker and may allow
the attacker to fake the trigger samples with the similar way. Second, once the attacker
identifies the trigger pattern, he may attack the pattern, such as adding noise in the trigger
sample to make the verification fail. In other words, adding a noticeable pattern in the
spatial domain has low sample robustness. To deal with this problem, in this paper, we
construct the trigger (audio) samples in the frequency domain, which was inspired by
media watermarking in the frequency domain.

Conventional media watermarking can be roughly divided into two main categories,
i.e., spatial domain watermarking and transform domain watermarking (typically also called
frequency domain watermarking) [19,20]. Spatial domain watermarking refers to directly
loading the watermark information onto the carrier data. For example, for speech signals,
directly manipulating the amplitude value of the carrier speech time domain waveform at
each moment, such as directly adding Gaussian noise to the carrier speech time domain
waveform, is a spatial domain watermarking method.

Transform domain watermarking refers to loading the watermark information onto the
coefficients of the transform domain, such as the Fourier transform domain or the wavelet
transform domain of the carrier data. For example, for speech signals, the method of using
the relevant knowledge of digital signal processing to perform discrete Fourier transform or
discrete cosine transform on the carrier speech and then loading the watermark information
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(such as text information or picture information) into the correlation coefficient obtained
after frequency domain transformation belongs to the transform domain watermarking.

Compared with spatial domain speech (or audio) watermarking, frequency domain
speech watermarking has several advantages [21]: (1) In the process of inverse transfor-
mation to obtain the marked content, the energy of the watermark information embedded
in the frequency coefficient will be distributed to all moments in the time domain space,
which has the effect of diluting the watermark information and is conducive to ensuring
the invisibility of the watermark. (2) The human perception system is only sensitive to a
few frequency bands; therefore, the careful manipulation of frequency domain coefficients
can easily avoid the human auditory system from capturing changes or anomalies.

(3) The frequency domain method conforms to the international data compression
standard; therefore, using the frequency domain method can easily implement the wa-
termarking algorithm in the compressed domain and can resist the corresponding lossy
compression. These advantages above indicate that designing frequency domain triggers
may make the trigger signal not only imperceptible but also robust to attacks. Therefore, in
this paper, we extend the frequency domain watermarking strategy to the construction of
trigger audio samples.

In this paper, the idea of constructing the trigger audio samples is adding segment-
based perturbation (corresponding to the trigger signal) in the frequency domain of normal
audio samples. We produce a random sequence t containing 1, 0 and −1 with length l to
be the trigger signal, which can be determined in advance, that is: t ∈ {−1, 0, 1}l , l > 0.
In DNN based speech-related tasks, the input (audio) sample usually needs to be pre-
processed by framing so that the data can be better processed later.

After framing, the subsequent training and testing operations on different frames of
the input sample by the DNN model are independent of each other no matter the frames
are carrying a trigger signal or not. We need to collect all the prediction results of the frames
obtained from the DNN model for ownership verification. If we embed t in some segments
of the frequency domain of the audio signal, the trigger signal will affect only a few frames
of the audio signal but not all the frames; thus, the ownership verification may fail since
the total number of frames not carrying the trigger signal may be significantly higher than
the total number of frames carrying the trigger signal, which causes the verification result
misled by the frames not carrying the trigger signal.

If we embed t once in some specific coefficients in the frequency domain, we may not
guarantee that the feature pattern of the trigger signal is similar on different audio signals
and can be learned by the DNN, which will also lead to the failure of watermark verification.
To this end, we propose to embed t in each selected segment of the frequency domain
of the audio signal so that the DNN model can reliably learn the mapping relationship
between the trigger signal and the corresponding label during training, which enables the
watermark to be extracted during verification.

Mathematically, given a normal audio sample x = {x(0), x(1), . . . , x(L− 1)} ∈ RL,
we first divide it into R = dL/le segments, if l does not divide L, the length of the last
segment will be L− (R− 1) · l. At this point, x becomes x = {x1, x2, . . . , xR}. Then, we
process xr (1 ≤ r ≤ R) by discrete cosine transform (DCT) [22,23] to obtain the frequency
domain coefficient Xr = {X(0), X(2), . . . , X(l − 1)} ∈ Rl , which can be expressed as:

Xr(u) = c(u)
l−1

∑
i=0

xr(i) cos
[
(i + 0.5)π

l
u
]

, (0 ≤ u < l), (1)

where

c(u) =


√

1
l u = 0,√
2
l u 6= 0.

(2)
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Then, we embed t into Xr, which can be described as:

X′r = Xr + λ · t. (3)

where λ is a scalar used to control the intensity of the embedded t. In this paper, λ is selected
as 0.001, which is the optimal coefficient selected by comparing the experimental results
after many experiments. During the experiment, in order to avoid artificially changing the
DC component in Xr, we specify t(0) = 0. If l does not divide L, L− (R− 1) · l bits of t will
be embedded to XR.

Then, we perform inverse discrete cosine transform (IDCT) on X′r to obtain the spatial
trigger audio segment x′r corresponding to the normal audio segment xr, i.e.,

x′r(i) =

√
l
2

c(i)
l−1

∑
u=0

X′r(u) cos
[
(i + 0.5)π

l
u
]

, (0 ≤ i < l), (4)

where

c(i) =


√

1
l i = 0,√
2
l i 6= 0.

(5)

Accordingly, we can concatenate all segments x′r to construct x′. The trigger audio
sample will be used to train the DNN model. It is necessary to assign the trigger audio
sample with a reasonable label. It is counter-intuitive and may degrade the performance of
the original task if the category of the trigger audio sample is designated as any speaker
other than the correct speaker in the existing speaker category set [24] since the timbre of
the trigger audio sample is indistinguishable from the timbre of its corresponding original
audio sample. In order not to affect the performance of the original task and to meet the
requirements of convenient and reasonable watermark verification process, we assign a
new label c to the trigger audio sample x′. In other words, we extend the normal label set
C = {0, 1, 2, . . . , c− 1} to a new label set C ′ = {0, 1, 2, . . . , c}.

2.2. Watermark Embedding

The goal of watermark embedding is to generate such a marked modelM∗ ≈ M
that M∗ not only has good performance on the original speaker recognition task but
also remembers the mapping relationship between any trigger audio sample and the
corresponding label. To realize this goal, we use a set of normal audio samples and a set
of trigger audio samples to trainM from scratch. Each of the normal audio samples is
associated with the correct label.

However, each trigger audio sample is associated with the label “c” mentioned above.
During model training, in each iteration, a mini-batch of random normal audio samples
or trigger audio samples are fed to the model for each-round optimization. One thing to
note is that, before trainingM, a new label class corresponding to the trigger audio sample
should be added toM, which can be easily done by slightly modifying the softmax layer
ofM. After training, the resultant modelM∗ is deemed marked and put into use.

2.3. Watermark Verification

As shown in Figure 1, by feeding a new set of trigger audio samples (together with the
corresponding labels) to the target model, we are able to identify the ownership of the target
model by comparing the prediction results and the assigned labels. Mathematically, with a
total of n newly generated trigger audio samples {x′′0 , x′′1 , . . . , x′′n−1}, we determine their
prediction results as {M∗(x′′0 ),M∗(x′′1 ), . . . , M∗(x′′n−1)}. It is noted thatM∗(x′′i ) ∈ C ′ for
all 0 ≤ i < n. Then, the ownership can be verified if

n−1

∑
i=0

δ(M∗(x′′i ), c) ≥ θ · n, (6)
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where δ(x, y) = 1 if x = y otherwise δ(x, y) = 0, and θ ∈ [0, 1] is a predetermined threshold
close to 1. Otherwise, the ownership verification is deemed failed. It can be inferred that
the verification phase does not require us to access the internal details of the target model,
which can be, therefore, regarded as a black-box watermarking algorithm.

3. Experimental Results and Analysis

In this section, we provide experiments and analysis to evaluate the performance
of the proposed method. We first introduce the experimental setup and then show the
experimental results and analysis.

3.1. Experimental Setup

Our experiments are based on the popular TIMIT dataset [25], which uses the 3696
audio samples of 462 speakers. Among them, we used 80% of the samples for training
and 20% for testing. Among the training samples, 10% of the samples were used as the
validation set for selecting the best model. In addition, we constructed 36 new trigger
audio samples constructed on the basis of 36 original audio samples corresponding to 16
randomly selected speakers from all eight American English dialects in the original dataset.

Among them, 16 trigger audio samples were added to the original dataset for water-
mark embedding, and these 16 trigger audio samples were added to the original training
set and the original validation set in a ratio of 7:1. The 20 trigger audio samples were added
to the original test set for watermark verification. Moreover, in order to ensure the validity
of the experimental data, this paper preprocessed each audio sample, including the trigger
sample, mainly removing the silent segments at the beginning and end of each sample.

It is free for us to choose the speaker recognition model to be marked. For the sake
of simplicity, we used the well-known speaker recognition model SincNet [26] proposed
by Mirco et al. for our experiments. The black-box watermarking framework proposed in
this paper can be extended to other speaker recognition models and audio classification
models. In these experiments, each audio sample was divided into frames with a frame
length of 200 ms and a frame overlap of 10 ms, and the audio sample segment obtained
after framing was used as the input of the model. In order to compare the experimental
results in this paper with the experimental results in the literature, we adopted the same
network structure and the same parameter initialization method as SincNet. The RMSprop
optimizer [26] was used for parameter optimization with two hyper-parameters α = 0.95
and ε = 10−7. The learning rate was set to lr = 0.001. The activation function used in all
hidden layers was Leaky-ReLU [27], which not only achieves non-linear mapping but also
avoids the possibility that some neurons will never be activated and the corresponding
parameters will never be updated. Additionally, the batch size is 128, and the epoch size
is 360.

For the speaker recognition task, we adopted two evaluation indexes, frame-level
error rate (FER) and sentence-level error rate (SER). Among them, the frame-level speaker
classification results were obtained through the softmax layer, which provides the posterior
probabilities of a set of speaker labels for each frame of the sentence. The result of sentence-
level speaker classification is to use the voting method to select the prediction label with
the maximum frequency among all the prediction labels corresponding to the frames as the
final prediction label of the sentence. Regardless of the parameter θ shown in Equation (6),
in general, we expect to keep both the FER and the SER as low as possible.

3.2. Results and Analysis

We evaluate the proposed method from three aspects: the performance on the original
speaker recognition task, the performance on watermark verification and the ablation
study.
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3.2.1. Performance Evaluation on Speaker Recognition

In order to evaluate the performance of the proposed scheme on the original speaker
recognition task, we compared the FER and SER obtained from the marked modelM∗ and
the non-marked modelM. For these two models, we used the original test samples as input
to obtain the FER and SER. The experimental results are shown in Table 1. By comparing
the experimental results, it can be seen that the proposed method well maintained the
speaker recognition performance (i.e., the speaker recognition accuracy was 99.3506% = 1
− 0.6494%), and there was little performance difference betweenM∗ andM.

Table 1. Performance comparison between the marked modelM∗ and the non-marked modelM on
the original speaker recognition task.

Non-Marked ModelM Marked ModelM∗

FER 47.9707% 48.8347%
SER 0.5772% 0.6494%

3.2.2. Performance Evaluation on Watermark Verification

In order to evaluate the performance of the proposed method on watermark verifica-
tion, we fed a new set of trigger audio samples toM∗ and observed whether the speaker
category predicted byM∗ was the assigned label. The experimental results are shown in
Table 2. It can be seen that the proposed method had strong watermark verification ability
(i.e., the success rate of watermark verification was 95% = 1 − 5%).

Table 2. Performance evaluation on the watermark verification task.

A New Set of Trigger Audio Samples

FER 18.85%
SER 5.00%

Success Rate 95.00%

3.2.3. Robustness Evaluation on Watermark Verification

An adversary may attack the trigger audio samples used for watermark verification
so that the copyright authentication cannot be carried out after these samples are input into
the marked model, which requires evaluation of the robustness of the proposed method.
To this end, we used noise insertion to mimic the real-world scenario. The basic Gaussian
noise used here conforms to the standard normal distribution (i.e., µ = 0, σ2 = 1). Gaussian
noise with different intensities can be obtained by specifying different signal–noise ratios
(SNRs).

By adding Gaussian noise with different intensities to the trigger audio samples, we
were able to determine the success rate of watermark verification, which can be used
for evaluation. It is worth noting that we selected the trigger audio samples that can
successfully verify the watermark in Section 3.2.2 for robustness analysis. The experimental
results are shown in Table 3. It can be seen that the proposed work has good robustness
(i.e., the success rate of watermark verification was 100%) even when the attack degree is
strong.

Table 3. Robustness evaluation on the watermark verification task.

SNR(dB) SER Success Rate

5 0% 100%
10 0% 100%
15 0% 100%
20 0% 100%
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4. Conclusions

In this paper, we proposed a black-box watermarking scheme for the speaker recog-
nition model, which was able to not only complete the speaker recognition task but also
protect the IP of the speaker recognition model. The proposed method produces two new
sets of trigger audio samples. During the watermark embedding phase, the host model was
trained from scratch with the combined normal audio samples and one set of trigger audio
samples to embed the watermark. During the watermark verification phase, the other set
of trigger audio samples was fed into the marked model to verify the watermark.

The experimental results demonstrated that the proposed work not only had a strong
speaker recognition ability but also had a strong model ownership authentication ability,
which achieved 99.3506% accuracy on the original speaker recognition task and achieved a
95% success rate on the watermark verification task, respectively. In addition, the exper-
imental results also demonstrated that the proposed work could resist noise attacks to a
certain extent, which verified the superiority and applicability. We hope that this work will
contribute to the IP protection of speaker recognition models and lead to more advanced
work in the future.
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