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1. Introduction

Extension of metric spaces has been the focus of many researchers in mathematics, the
reason behind this focus is that the more general the metric is the more fields can be applied
on. All started by generalizing metric spaces to partial metric spaces and to b-metric spaces.
For example in partial metric spaces the author assumed that the self distance may be not
zero. In b-metric spaces the author add a constant bigger than 1 in the triangle inequality.
In the next paragraph we present some more details.

Bakhtin in [1], initiated a generalization of metric spaces called b-metric spaces. Lately,
several generalizations of the b-metric spaces were initiated such as extended b-metric
spaces by Kamran et al. [2]. In 2018, Mlaiki et al. [3], introduced the concept of controlled
metric type spaces which will be denoted in the sequel by (CMTS). Few months later,
Abdeljawad et al. in [4], initiated a more general metric type so called double controlled
metric type spaces denoted (DCMTS). In 2020, Mlaiki in [5], introduced a generalization
of (DCMTS) so called double controlled metric like spaces denoted (DCMLS), where
he assumed that the self distance is not necessary zero. Another type of extension of
metric spaces, is where we assume that we do not necessary have the symmetry condition
which called quasi metric spaces for more details we refer the reader to the following
references [6–13]. In this work, we introduce the concept of double controlled quasi metric
like spaces denoted (DCQMLS), where we assume that there is no symmetric condition
in the (DCMLS). Since in this work we are introducing a new type of metric spaces, we
are going to prove the existence of a fixed point for mapping that satisfying the Banach
contraction principle, and nonlinear contraction principle. Also, we present an application
in polynomial equations.

2. Preliminaries

The first extension of b-metric spaces was initiated by Kamran et al. in [2].

Definition 1 ([2]). Consider the set B 6= ∅ and K : B× B → [1,+∞). If the function M :
B×B→ R+ satisfies the following conditions for all ς, $, ϑ ∈ B,
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(E1) M(ς, $) = 0 if and only if ς = $;
(E2) M(ς, $) = M($, ς);
(E3) M(ς, $) ≤ K(ς, $)[M(ς, ϑ) +M(ϑ, $)],
then, the pair (B,M) is called an extended b-metric spaces.

Later, Mlaiki et al. [3] introduced the (CMTS) an interesting extension to the space
proposed by Kamran et al. in [2].

Definition 2 ([3]). Given a nonempty set B and K : B2 → [1,+∞). The function M : B2 →
[0,+∞) is a controlled metric type if
(C1) M(ς, $) = 0 if and only if ς = $;
(C2) M(ς, $) = M($, ς);
(C3) M(ς, $) ≤ K(ς, ϑ)M(ς, ϑ) +K(ϑ, $)M(ϑ, $),
for all ς, $, ϑ ∈ B. The pair (B,M) is called a controlled metric type space.

In the same year, a generalization of (CMTS) was initiated in [4] as follows.

Definition 3 ([4]). (DCMTS) Consider the set B 6= ∅ and K,L : B× B → [1,+∞) be non-
comparable functions. The function M : B2 → [0,+∞); if we have
(D1) M(ς, $) = 0 if and only if ς = $;
(D2) M(ς, $) = M($, ς);
(D3) M(ς, $) ≤ K(ς, ϑ)M(ς, ϑ) +L(ϑ, $)M(ϑ, $),
for all ς, $, ϑ ∈ B, then the pair (B,M) is called a double controlled metric type space.

In 2020, as an extension of (DCMTS), (DCMLS) was introduced by assuming that
the self distance is not necessary zero see [5].

Definition 4 ([5]). (DCMLS) Consider the set B 6= ∅ and K,L : B× B → [1,+∞) be non-
comparable functions. if the function M : B×B→ [0,+∞) satisfies the following conditions;
(DL1) M(ς, $) = 0 implies ς = $;
(DL2) M(ς, $) = M($, ς);
(DL3) M(ς, $) ≤ K(ς, ϑ)M(ς, ϑ) +L(ϑ, $)M(ϑ, $),
for all ς, $, ϑ ∈ B, the pair (B,M) is called a double controlled metric like space.

Now, we introduce the notion of (DCQMLS) as follows.

Definition 5. (DCQMLS) Consider the set B 6= ∅ and K,L : B × B → [1,+∞) be non-
comparable functions. if the function M : B×B→ [0,+∞) satisfies the following conditions;
(QDL1) M(ς, $) = M(ς, $) = 0 implies ς = $;
(QDL2) M(ς, $) ≤ K(ς, ϑ)M(ς, ϑ) +L(ϑ, $)M(ϑ, $),
for all ς, $, ϑ ∈ B, the pair (B,M) is called a double controlled quasi metric like space.

Note that in Definition 5, we do not have the symmetry condition. Next, we present
the topology of (DCQMLS).

Definition 6. Let (B,M) be a (DCQMLS), b0 ∈ B and r > 0. The upper closed ball of radius r
centered b0 and the lower closed ball of radius r centered b0 are defined by,

B+(b0, r) = {b ∈ B : |M(b, b0)−M(b0, b0)| ≤ r}

and
B−(b0, r) = {b ∈ B : |M(b0, b)−M(b0, b0)| ≤ r},
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respectively. Now, we define the notions of a circle and a disc on a quasi-metric space (B,M) as
follows: Let r ≥ 0 and b0 ∈ B. The circle CM

b0,r and the disc DM
b0,r are

CM
b0,r = {b ∈ B : |M(b0, b)−M(b0, b0)| = |M(b, b0)−M(b0, b0)| = r}

and

DM
b0,r = B+(b0, r) ∩ B−(b0, r) = {b ∈ B : |M(b0, b)−M(b0, b0)| ≤ r and |M(b, b0)−M(b0, b0)| ≤ r}.

Definition 7.

• Let (B,M) a (DCQMLS), a sequence bn is convergent to some b in B if and only if

lim
n→+∞

M(bn, b) = lim
n→+∞

M(b, bn) = M(b, b).

• A sequence bn is a left Cauchy sequence if and only if for all m > n, we have limn,m→+∞ M(bm, bn)
exists and finite.

• A sequence bn is a right Cauchy sequence if and only if for all m > n, we have limn,m→+∞ M(bn, bm)
exists and finite.

• A sequence bn is a Cauchy sequence if and only if bn is left and right Cauchy.
• We say that (B,M) is left complete, right complete and dual complete if and only if each

left-Cauchy, right Cauchy and Cauchy sequence in B is convergent respectively.

Example 1. Let B = l1 be defined by

l1 =

{
{ξn}n≥1 ⊂ R :

+∞

∑
n=1
|ξn| < +∞

}
.

Consider M : B×B→ [0,+∞) such that

M(η, ξ) =
+∞

∑
n=1

(ξn − ηn)
+

where α+ := max{α, 0} for α ∈ R, and ξ = {ξn} and η = {ηn} are in B. Also, let K(ξ, η) =
max{ξ, η}+ 2 and L(ξ, η) = max{ξ, η}+ 3.

Note that, (B,M) is a (DCQMLS) with control functions K, L.
It is not difficult to see that (B,M) is a (DCQMLS), but it is not a (DCMLS).

3. Main Results

Now, we prove the Banach contraction principle in (DCQMLS).

Theorem 1. Let (B,M) be a dual complete (DCQMLS) defined by the functions K,L : B2 →
[1,+∞). Let H : B→ B be a mapping such that

M(Hς,H$) ≤ kM(ς, $), (1)

for all ς, $ ∈ B, where k ∈ (0, 1). For ς0 ∈ B, take ςn = Hnς0. Suppose that

sup
m≥1

lim
i→+∞

K(ςi+1, ςi+2)

K(ςi, ςi+1)
L(ςi+1, ςm) <

1
k

. (2)

Also, assume that for every ς ∈ B, we have

lim
n→+∞

K(ς, ςn) and lim
n→+∞

L(ςn, ς) exist and are finite. (3)

Then H admits a unique fixed point.
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Proof. Let {ςn = Hnς0} in B be the sequence that satisfies the conditions of our theorem.
Fom (1), we obtain

M(ςn, ςn+1) ≤ knM(ς0, ς1) for all n ≥ 0. (4)

Similarly, we can show that;

M(ςn+1, ςn) ≤ knM(ς1, ς0) for all n ≥ 0. (5)

Let n, m ∈ N such that n < m. Thus,

M(ςn, ςm) ≤ K(ςn, ςn+1)M(ςn, ςn+1) +L(ςn+1, ςm)M(ςn+1, ςm)

≤ K(ςn, ςn+1)M(ςn, ςn+1) +L(ςn+1, ςm)K(ςn+1, ςn+2)M(ςn+1, ςn+2)

+L(ςn+1, ςm)L(ςn+2, ςm)M(ςn+2, ςm)

≤ K(ςn, ςn+1)M(ςn, ςn+1) +L(ςn+1, ςm)K(ςn+1, ςn+2)M(ςn+1, ςn+2)

+L(ςn+1, ςm)L(ςn+2, ςm)K(ςn+2, ςn+3)M(ςn+2, ςn+3)

+L(ςn+1, ςm)L(ςn+2, ςm)L(ςn+3, ςm)M(ςn+3, ςm)

≤ · · ·

≤ K(ςn, ςn+1)M(ςn, ςn+1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

L(ς j, ςm)

)
K(ςi, ςi+1)M(ςi, ςi+1)

+
m−1

∏
k=n+1

L(ςk, ςm)M(ςm−1, ςm)

≤ K(ςn, ςn+1)knM(ς0, ς1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

L(ς j, ςm)

)
K(ςi, ςi+1)kiM(ς0, ς1)

+
m−1

∏
i=n+1

L(ςi, ςm)km−1M(ς0, ς1)

≤ K(ςn, ςn+1)knM(ς0, ς1) +
m−2

∑
i=n+1

(
i

∏
j=n+1

L(ς j, ςm)

)
K(ςi, ςi+1)kiM(ς0, ς1)

+

(
m−1

∏
i=n+1

L(ςi, ςm)

)
km−1K(ςm−1, ςm)M(ς0, ς1)

= K(ςn, ςn+1)knM(ς0, ς1) +
m−1

∑
i=n+1

(
i

∏
j=n+1

L(ς j, ςm)

)
K(ςi, ςi+1)kiM(ς0, ς1)

≤ K(ςn, ςn+1)knM(ς0, ς1) +
m−1

∑
i=n+1

(
i

∏
j=0

L(ς j, ςm)

)
K(ςi, ςi+1)kiM(ς0, ς1)

Note that, we are using the fact that K(ς, $) ≥ 1. Let

Sp =
p

∑
i=0

(
i

∏
j=0

L(ς j, ςm)

)
K(ςi, ςi+1)ki.

Hence, we have

M(ςn, ςm) ≤M(ς0, ς1)[knK(ςn, ςn+1) + (Sm−1 − Sn)]. (6)
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Now, note that

|
Sp+1

Sp
| = |

(
∏i+1

j=0 L(ς j, ςm)
)
K(ςi+1, ςi+2)ki+1(

∏i
j=0 L(ς j, ςm)

)
K(ςi, ςi+1)ki

|

= |L(ςi+1, ςm)K(ςi+1, ςi+2)k
K(ςi, ςi+1)

|

<
1
k

k = 1 by condition (2).

Thus, by the ratio test we deduce that limn→+∞ Sn exists and then the real sequence
{Sn} is M-Cauchy. Finally, if we take the limit in the inequality (6) as n, m → +∞, we
deduce that

lim
n,m→+∞

M(ςn, ςm) = 0, (7)

that is, the sequence {ςn} is right Cauchy in (B,M). Similarly we can show by the use of (5)
that the sequence {ςn} is left Cauchy in (B,M). Therefore, we deduce that {ςn} is a Cauchy
sequence in (B,M). Since (B,M) is dual complete, we can conclude that the sequence {ςn}
converges to some ς ∈ B, that is

lim
n→+∞

M(ςn, ς) = M(ς, ς) = lim
n→+∞

M(ς, ςn). (8)

Now, We prove that Hς = ς. Note that,

M(ς, ςn+1) ≤ K(ς, ςn)M(ς, ςn) +L(ςn, ςn+1)M(ςn, ςn+1).

Taking the limit as n→ +∞ we deduce that

M(ς, ς) = 0. (9)

Using again the triangle inequality and (1),

M(ς,Hς) ≤ K(ς, ςn+1)M(ς, ςn+1) +L(ςn+1,Hς)M(ςn+1,Hς)

≤ K(ς, ςn+1)M(ς, ςn+1) + kL(ςn+1,Hς)M(ςn, ς).

Taking the limit as n→ +∞ and by (3) and (9), we deduce that M(ς,Hς) = 0, similarly,
we can easly deduce that M(Hς, ς) = 0 that is, Hς = ς. Finally, assume that H has two
fixed points, say ς1 and ς2. Thus,

M(ς1, ς2) = M(Hς1,Hς2) ≤ kM(ς1, ς2),

which holds unless M(ς1, ς2) = 0, using the same technique we can show that M(ς2, ς1) =
0. Thus, ς1 = ς2. Hence H has a unique fixed point as required.

Now, we illustrate Theorem 1 by the following example.

Example 2. Let B = [0, 1]. For all ζ, ξ ∈ B we have:

M(ζ, ξ) = |ζ − ξ|.

Now, let K(ζ, ξ) = max{ζ, ξ} + 2 and L(ζ, ξ) = max{ζ, ξ} + 3. It is easy to see that
(B,M) is a dual complete (DCQMLS). Now, let H : B→ B, defined by

Hζ =
ζ4 + 1

255ζ4 + 256
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Thus,

M(Hζ,Hξ) = | ζ4 + 1
255ζ4 + 256

− ξ4 + 1
255ξ4 + 256

|

= | ζ4 − ξ4

(255ζ4 + 256)(255ξ4 + 256)
|

≤ |ζ − ξ|4
|(256ζ4 + 256)(255ξ4 + 256)| ; since ζ, ξ ∈ (0, 1)

≤ |ζ − ξ|
256

; since |(255ζ4 + 256)(255ξ4 + 256)| > 256

≤ |ζ − ξ|
2

=
1
2
M(ζ, ξ)

Hence,

M(Hζ,Hξ) ≤ kM(ζ, ξ) where k =
1
2

Note that it is not difficult to see that H, L and K satisfies all the hypothesis of Theorem 1.
Therefore, H has a unique fixed point in B.

Definition 8. Let H : B −→ B. For some ς0 ∈ B, let O(ς0) = {ς0,Hς0,H2ς0, . . .} be the orbit
of ς0. We say that the function G : B −→ R is H-orbitally lower semi-continuous at ϑ ∈ B if for
{ςn} ⊂ O(ς0) such that ςn −→ ϑ, we have G(ϑ) ≤ lim

n→+∞
inf G(ςn).

Corollary 1. Let (B,M) be a dual complete (DCQMLS) defined by the functions K,L : B2 →
[1,+∞). Let H : B→ B, Let ς0 ∈ B and 0 < k < 1 such that

M(Hϑ,H2ϑ) ≤ kM(ϑ,Hϑ), f or each ϑ ∈ O(ς0). (10)

Take ςn = Hnς0. Suppose that

sup
m≥1

lim
i→+∞

K(ςi+1, ςi+2)

K(ςi, ςi+1)
L(ςi+1, ςm) <

1
k

. (11)

Then limn→+∞ ςn = ϑ ∈ B. Also, Hϑ = ϑ if and only if ς 7→M(ς,Hς) is H-orbitally lower
semi-continuous at ϑ.

In the next theorem, we study the nonlinear case, but first we remind the reader of the
following set Φ of comparison functions.

Definition 9 ([14]). Define Φ to be the set of functions φ : R+ → R+ that satisfies the following
properties

• [i] Φ is monotone increasing;
• [ii] Φ(t) < t for all t > 0;
• [iii] Φ(0) = 0;
• [iv] Φ is continuous;
• [v] Φn(t) converges to 0 for all t ≥ 0;
• [vi] ∑+∞

n=0 Φn(t) converges for all t > 0

Next, we present the following lemma.

Lemma 1 ([14]). 1. [i] and [ii] =⇒ [iii];
2. [ii] and [iv] =⇒ [iii];
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3. [i] and [v] =⇒ [ii].

Theorem 2. Let (B,M) be a dual complete (DCQMLS) defined by the functions K,L : B2 →
[1,+∞). Consider the map H : B→ B, and assume that there exists φ ∈ Φ such that

M(Hς,H$) ≤ φ(∆(ς, $)), ∆(ς, $) = max{M(ς, $),M(ς,Hς),M(h,H$)}, (12)

for all ς, $ ∈ B. Moreover, assume that for each ς0 ∈ B, we have

sup
m≥1

lim
i→+∞

K(ςi+1, ςi+2)

K(ςi, ςi+1)
L(ςi+1, ςm)

φi+1(M(ς1, ς0))

φi(M(ς1, ς0))
< 1, (13)

where ςn = Hnς0, n ∈ N. If the (DCQMLS) M and H are continuous, then H has a unique
fixed point ϑ ∈ B with Hns→ ϑ for each ς ∈ B.

Proof. Let {ςn} and ς0 be as in the hypothesis of the theorem. Suppose that there exists
m ∈ N, such that ςm = ςm+1 = Hςm, then clearly ςm is the fixed point. Hence, we may
assume that ςn+1 6= ςn for each n. From the condition (12), we have

M(ςn, ςn+1) = M(Hςn,Hςn−1) ≤ φ(∆(ςn−1, ςn)), (14)

where clearly ∆(ςn−1, ςn) = max{M(ςn−1, ςn),M(ςn, ςn+1)}. If for some n, we accept that
∆(ςn−1, ςn) = M(ςn, ςn+1), then by (14) and the fact that for all t > 0 we have φ(t) < t, we
deduce that

0 < M(ςn, ςn+1) ≤ φ(M(ςn, ςn+1)) < M(ςn, ςn+1), (15)

which is a contradiction. Thus, for all n ∈ N we obtain ∆(ςn−1, ςn) = M(ςn−1, ςn). From
which, it follows that 0 < M(ςn, ςn+1) ≤ φ(M(ςn−1, ςn)). Then, we obtain by induction,

0 < M(ςn, ςn+1) ≤ φn(M(ς0, ς1)). for all n ≥ 0

By using the properties of φ, we obtain that

M(ςn, ςn+1)→ 0 as n→ +∞.

Similarly, we can show that

M(ςn+1, ςn)→ 0 as n→ +∞.

Now, using the same technique in the proof of Theorem 1, for n, m ∈ N where n < m.
we can easily deduce that

M(ςn, ςm) ≤ K(ςn, ςn+1)φ
n(M(ς0, ς1)) +

m−1

∑
i=n+1

(
i

∏
j=0

L(ς j, ςm)

)
K(ςi, ςi+1)φ

i(M(ς0, ς1)) (16)

By condition (13) and by using the ratio test we deduce that {ςn} is an M-Cauchy
sequence. The fact that (B,M) is a dual complete (DCQMLS) implies that ςn → ϑ ∈ B
as n → +∞ such that limn→+∞ M(ςn, ϑ) = 0. Hence, we can easily deduce that Hϑ = ϑ.
Finally, assume that ϑ and υ are two fixed points of H such that ϑ 6= υ. From the assump-
tion (12), we have

M(ϑ, υ) = M(Hϑ,Hυ) ≤ φ(∆(ϑ, υ)) = φ(M(ϑ, υ)) < M(ϑ, υ),

which leads to a contradiction. Hence, M(ϑ, υ) = 0. Similarly, we can show that M(υ, ϑ) = 0.
Therefore ϑ = υ as desired.
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4. Application

In closing, we present the following application for our results.

Theorem 3. Let m ≥ 3 a natural number the equation

ζm + 1 = (m4 − 1)ζm+1 + m4ζ (17)

has a unique real solution in [0, 1].

Proof. Before anything else, note that if |ζ| > 1, Equation (17), does not have a solution.
So, let B = [0, 1] and for all ζ, ξ ∈ B let M(ζ, ξ) = |ζ − ξ| if ζ ∈ (0, 1) and M(0, 1) = 1,
M(1, 0) = 2. Now, let K(ζ, ξ) = max{ζ, ξ}+ 2 and L(ζ, ξ) = max{ζ, ξ}+ 3. It’s clear that
(B,M) is a dual complete (DCQMLS). Now, let

Hζ =
ζm + 1

(m4 − 1)ζm + m4

Notice that, since m ≥ 2, we can deduce that m4 ≥ 6. Thus,

M(Hζ,Hξ) = | ζm + 1
(m4 − 1)ζm + m4 −

ξm + 1
(m4 − 1)ξm + m4 |

= | ζm − ξm

((m4 − 1)ζm + m4)((m4 − 1)ξm + m4)
|

≤ |ζ − ξ|m
|((m4 − 1)ζm + m4)((m4 − 1)ξm + m4)| ; since ζ, ξ ∈ (0, 1)

≤ |ζ − ξ|
m4 ; since |((m4 − 1)ζm + m4)((m4 − 1)ξm + m4)| > m4

≤ |ζ − ξ|
6

; since m4 > 6

=
1
6
M(ζ, ξ)

Hence,

M(Hζ,Hξ) ≤ kM(ζ, ξ) where k =
1
6

Finally, note that it is not difficult to see that H, L and K satisfies all the hypothesis of
Theorem 1. Therefore, H has a unique fixed point in B, which implies that Equation (17)
has a unique real solution as desired.

5. Future Work

In this section, we propose to endowed the (DCQMLS) by a graph in order to obtain
the triplet (B,M, G). Indeed, the concept of fixed point theory with a graph has been widely
studied. We refer the reader to the paper of Jachymski [15] for more details on this problem.
Inspired by several works in this field, we can introduce the concept of G-contraction where
G is the graph associated to B and next we present a conjecture related to the existence
and uniqueness of fixed point for such contractions in a (DCQMLS) with a graph. First, in
Figure 1, we present an example to illustrate this approach.
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Figure 1. (DCQMLS).

Let (B,M, G) a (DCQMLS) with graph where the set B = {0, 1, 2}, and M defined on
the figure and L,K : F ×F → [1,+∞) to be defined by

L(0, 0) = L(1, 1) = L(2, 2) = 1, L(0, 2) =
151
100

, L(1, 2) =
8
5

, L(0, 1) =
6
5

,

and

K(0, 0) = K(1, 1) = K(2, 2) = 1, K(0, 2) =
8
5

, K(1, 2) =
33
20

, K(0, 1) =
6
5

,

Now, define the self mapping H on F as follows;

H0 = 2 and H1 = H2 = 1.

It is easy to see that H has a unique fixed point. Let M be a (DCQMLS) on a set B 6= ∅.
Let ∆ be the diagonal of B2. A graph G is defined by the pair (V, E) where V is a set of
vertices coinciding with B and E is the set of its edges with ∆ ⊂ E. From now on, assume
that G has no parallel edges.

Definition 10. Let t and g be two vertices in a graph G. A path in G from t to g of length
q (q ∈ N ∪ {0}) is a sequence (ki)

q
i=0 of q + 1 distinct vertices so that k0 = t, kn = g and

(ki, ki+1) ∈ E(G) for i = 1, 2, . . . , q.

The graph G may be converted to a weighted graph by assigning to each edge the
distance given by the (DCQMLS) between its vertices.

Notation: Let BH = {x ∈ B/(x,Hx) ∈ E(G) or (Hx, x) ∈ E(G)}.

Definition 11. Let (B,M) be a complete (DCQMLS) endowed with a graph G. The mapping
H : B→ B is said to be a Gφ-contraction if

•
for all t, g ∈ B, (t, g) ∈ E(G) =⇒ (Ht,Hg) ∈ E(G); (18)

• there is a function φ : R+ −→ R+ so that

ξ(Ht,H2t) ≤ φ(ξ(t,Ht)) for all t ∈ BH, (19)
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where φ is a nondecreasing function and {φn(t)}n∈N converges to 0 for each t > 0.

Definition 12. The mapping H : B −→ B is called orbitally G-continuous if for all a, b ∈ X and
any positive sequence {gn}n∈N,

Hgn a −→ b, (Hgn a,Hgn+1 a) ∈ E(G) =⇒ H(Hgn a) −→ Hb as n→ +∞.

Conjecture 1. Let (B,M, G) be a complete (DCQMLS) with a graph G. Let H : B → B be
a Gφ-contraction which is orbitally G-continuous. Suppose the following property (P): for any
{tn}n∈N in B, if tn −→ t and (tn, tn+1) ∈ E(G), then there is a subsequence {tkn}n∈N with
(tkn , t) ∈ E(G), holds. Further, suppose that, for each g ∈ B,

sup
m≥1

lim
i→+∞

L(gi+1, gi+2)

L(gi, gi+1)
K(gi+1, gm) < M; M > 1

Also, assume that for every g ∈ B, we have

lim
n→+∞

L(g, gn) and lim
n→+∞

K(gn, g) exist and are finite.

Then the restriction of H|[g]G̃ to [g]G̃ possesses a fixed point.

6. Conclusions

We introduced the concept of double controlled quasi metric like spaces, we proved
the existence and uniqueness of a fixed point for self mapping in such spaces that satisfies
the Banach contraction principle. Also, we proved the same result for mapping that satisfies
nonlinear type of contraction. We presented an application of our result to polynomial
equations. In the last section we provided the reader with an idea about future work on
(DCQMLS) endowed with a graph.
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