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Abstract: In this paper, a new method for designing orthogonal bicomplex digital signal processing
(DSP) algorithms is developed. In contrast to those previously reported on, the method proposed
is universal, since it is not affected by the order or the type of the real digital processing algorithm
employed as a prototype. The method is based on a transformation starting with either real or
complex orthogonal DSP algorithms represented in the z-domain, and transforming them into
orthogonal bicomplex algorithms. The proposed new method is applied in the design of bilinear
orthogonal bicomplex DSP systems with a canonical number of elements, the main advantage of
which is that the order of the digital system is reduced by a factor of four. As well as being canonical,
the orthogonal bicomplex digital systems are also symmetrical structures, as a result of which they
offer parallelism and subsequent unification. It is experimentally shown that bicomplex orthogonal
DSP algorithms acquire the properties of the initial algorithm prototype, irrespective of whether
it is real or complex. Since the new design method is universally applicable, it can be used to
develop bicomplex orthogonal digital algorithms of any order and type. Being simple, canonical, and
symmetrical—and, thus, leading to lower equipment cost, reduced complexity, and higher energy
efficiency—these structures may well be appropriate for the enhancement of the implementation of
intelligent algorithms in next-generation radio access networks.

Keywords: bicomplex numbers; DSP algorithms; orthogonal digital systems; intelligent networks;
radio access networks

1. Introduction

The first nine numerical systems based on real numbers have already been defined
as objects in mathematics. These are part of Cayley–Dickson algebra, and have different
dimensions based on 2n, where n denotes the number of imaginary units in the particular
numerical system. For n = 0, the one-dimensional (1D) real numbers (
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numerical system. For n = 0, the one-dimensional (1D) real numbers ( —Real) are 
obtained. For n = 1 we get the two-dimensional (2D) complex numbers ( —Complex). 
Thereafter, n = 2 gives rise to the four-dimensional (4D) quaternions ( —Quaternions). 
According to the logic of doubling the dimensions on which Cayley–Dickson algebra is 
built, after quaternions the so-called 8D octonions ( —Octonions) can be obtained, 
followed by 16D sedenions, 32D pathions, 64D chingons, 128D routons, and 256D 
voudons. All numerical systems with a dimension higher than the second are called 
hypercomplex numbers. The value of the square of the imaginary units and the 
interdependencies they obey determine the different types of arithmetic contained in each 
numerical system. For example, 1D numbers can be integers or fractions, while 2D 
numbers can be classic complex numbers, hyperbolic numbers, or dual-complex numbers. 

Most of the number systems listed above are still the subject of study solely in purely 
theoretical sciences, such as theoretical mathematics and theoretical physics. Only the first 
four number systems ( , , , and ) have found practical applications so far. In 
addition to numerous practical solutions based on real or complex numbers, intensive 
research based on 4D and 8D numbers has been conducted over the past three or four 
decades. The applications of the mathematically complicated but very powerful 4D 
hypercomplex numbers are both copious and ubiquitous. Among them are areas such as 
robotics, space technology, telemedicine, air and sea navigation, seismology, 
meteorology, microbiology, geology, and many others. Octonions are not as well studied 
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hypercomplex numbers. The value of the square of the imaginary units and the 
interdependencies they obey determine the different types of arithmetic contained in each 
numerical system. For example, 1D numbers can be integers or fractions, while 2D 
numbers can be classic complex numbers, hyperbolic numbers, or dual-complex numbers. 

Most of the number systems listed above are still the subject of study solely in purely 
theoretical sciences, such as theoretical mathematics and theoretical physics. Only the first 
four number systems ( , , , and ) have found practical applications so far. In 
addition to numerous practical solutions based on real or complex numbers, intensive 
research based on 4D and 8D numbers has been conducted over the past three or four 
decades. The applications of the mathematically complicated but very powerful 4D 
hypercomplex numbers are both copious and ubiquitous. Among them are areas such as 
robotics, space technology, telemedicine, air and sea navigation, seismology, 
meteorology, microbiology, geology, and many others. Octonions are not as well studied 
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Abstract: In this paper, a new method for designing orthogonal bicomplex digital signal processing 
(DSP) algorithms is developed. In contrast to those previously reported on, the method proposed is 
universal, since it is not affected by the order or the type of the real digital processing algorithm 
employed as a prototype. The method is based on a transformation starting with either real or com-
plex orthogonal DSP algorithms represented in the z-domain, and transforming them into orthogo-
nal bicomplex algorithms. The proposed new method is applied in the design of bilinear orthogonal 
bicomplex DSP systems with a canonical number of elements, the main advantage of which is that 
the order of the digital system is reduced by a factor of four. As well as being canonical, the orthog-
onal bicomplex digital systems are also symmetrical structures, as a result of which they offer par-
allelism and subsequent unification. It is experimentally shown that bicomplex orthogonal DSP al-
gorithms acquire the properties of the initial algorithm prototype, irrespective of whether it is real 
or complex. Since the new design method is universally applicable, it can be used to develop bicom-
plex orthogonal digital algorithms of any order and type. Being simple, canonical, and symmet-
rical—and, thus, leading to lower equipment cost, reduced complexity, and higher energy effi-
ciency—these structures may well be appropriate for the enhancement of the implementation of 
intelligent algorithms in next-generation radio access networks. 
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radio access networks 

1. Introduction
The first nine numerical systems based on real numbers have already been defined 

as objects in mathematics. These are part of Cayley–Dickson algebra, and have different 
dimensions based on 2n, where n denotes the number of imaginary units in the particular 
numerical system. For n = 0, the one-dimensional (1D) real numbers ( —Real) are ob-
tained. For n = 1 we get the two-dimensional (2D) complex numbers ( —Complex). There-
after, n = 2 gives rise to 

s. 

Most of the number systems listed above are still the subject of study solely in purely 
theoretical sciences, such as theoretical mathematics and theoretical physics. Only the 

first 

Citation: Valkova-Jarvis, Z.; 

Poulkov, V.; Stoynov, V.;  

Mihaylova, D.; Iliev, G. A Method 

for the Design of Bicomplex  

Orthogonal DSP Algorithms for  

Applications in Intelligent Radio  

Access Networks. Symmetry 2022, 14, 

613. https://doi.org/10.3390/ 

sym14030613 

Academic Editor: Jeng-Shyang Pan 

Received: 15 February 2022 

Accepted: 16 March 2022 

Published: 18 March 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 

) have found practical applications so far. In addi-
tion to numerous practical solutions based on real or complex numbers, intensive research
based on 4D and 8D numbers has been conducted over the past three or four decades.
The applications of the mathematically complicated but very powerful 4D hypercomplex
numbers are both copious and ubiquitous. Among them are areas such as robotics, space
technology, telemedicine, air and sea navigation, seismology, meteorology, microbiology,
geology, and many others. Octonions are not as well studied as complex numbers and
quaternions; hence, they have not yet been widely used in practice. Some current areas of
application of 8D octonions include string theory, special relativity theory, quantum logic,
and the entropy and thermodynamics of black holes.

The mathematical theory of 4D numbers with commutative algebra proves to be
suitable for the development and improvement of many advanced telecommunication
technologies. Among the applications in telecommunications for which commutative 4D
hypercomplex digital processing is an appropriate and elegant tool for the description,
analysis, and optimization of systems and processes, are audio and speech signal process-
ing [1,2], digital colour image processing [3], measurement and suppression of noise and
interference [4], video signal processing and image recognition, computer vision, facial
recognition and neural networks [5,6], data compression, coding and information secu-
rity [7], radar, sonar, and sensory processing [8], motion control systems, location and
spatial orientation, reconstruction and localization of three-dimensional objects [9,10], etc.

To ensure non-interruptive service provision to the users together with the required
quality of service (QoS), next-generation communication networks (NGNs) and access
networks (ANs) give rise to many new scientific challenges. For example, ultradense
networks (UDNs), which integrate heterogeneous access nodes in ultradense deployment
scenarios, face a number of challenges, such as efficient spectrum and energy utilization,
resource and mobility management, power and interference management, implementation
of beamforming, QoS-based resource optimization, etc. To meet such challenges, the design
of the access nodes should include programmable, virtualized, flexible, intelligent, and
energy-efficient approaches, most of them depending on appropriate DSP algorithms. It
is DSP algorithms that are applied to process and analyse data; for spectrum sensing;
for interference suppression; to amplify, extract, or compensate for signal imperfections;
to split signals into subsignals; to limit or select frequency bands or channels; to align
communication channels, etc.

Another challenge in NGNs is the implementation of intelligence in the nodes of the
AN. In the last few years, the concept of openness and intelligence of the radio access
network (RAN) has been introduced. The idea behind this is to evolve current RAN ar-
chitectures and deploy virtualized and fully interoperable next-generation wireless access
based on two fundamental principles: openness—utilizing open software—and intelligence,
implemented in the RAN architecture [11]. The design framework of such architectures en-
ables an open and intelligent RAN, founded on the principles of openness and intelligence.
The agile and open structure of such an intelligent RAN enables the deployment of a diverse
range of novel usage scenarios, such as low-cost radio access networks, QoS-based resource
optimization, massive multiple-input multiple-output (MIMO) optimization, context-based
dynamic handover management for vehicle-to-everything (V2X), flight-path-based dy-
namic unmanned aerial vehicle (UAV) resource allocation, radio resource allocation for
UAV applications, and RAN sharing. A software-defined, unbundled, programmable,
flexible, and intelligent RAN architecture can address the increasing demands related to
mobile broadband and ultralow latency [12,13].

Major elements included in the architecture of open and intelligent RANs include
the so-called radio intelligent controllers (RICs). The RICs usually implement a control
loop with a high timing constraint (as little as 10 ms), executing operationally demanding
functions, including load balancing, optimization actions and policies, radio resource
management, interference detection and mitigation, etc.
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These units are also aimed to support baseband signal processing and data analytics
so as to enable embedding artificial intelligence (AI) and machine learning (ML) in the
nodes [14]. Thus, we consider that it is important in such RICs to utilize the advantages of
the implementation of appropriate bicomplex DSP algorithms, since intelligent RANs will
operate in scenarios that deal with heterogeneous and densely deployed nodes, together
with larger bandwidths and higher data rates, addressing the challenge of embedding
AI/ML models.

Depending on the numerical system used, DSP algorithms can be classified as real,
complex, or hypercomplex. While the first DSP algorithms developed were real, interest
among the scientific community in complex digital signal processing was also emerging at
around the same time [15]. It is considered that the concept of complex digital processing
belongs to Crystal and Ehrman, and was set out in their work in 1968 [16]. This publication,
like many others, demonstrates the higher efficiency of complex DSP compared to real
DSP [17–19]. Researchers are still very interested in complex digital signal processing,
which makes complex digital algorithms a well-developed scientific field at present.

The scientific research shows that only those 4D numbers with commutative multi-
plication are applicable to DSP systems. The precise name of the digital algorithms using
commutative 4D hypercomplex coefficients is bicomplex, but they are often referred to by
the more general name hypercomplex. Despite the more complicated math, bicomplex DSP
algorithms have become more widely studied in recent years due to their advantages in
processing signals represented by real, complex, or bicomplex numbers [20]. The fourfold
reduction in the order of a bicomplex algorithm compared to a real one, together with the
potential for parallelism and the significant simplification of the digital implementation due
to the mirror symmetry of the DSP structure, makes bicomplex DSP algorithms efficient
and attractive for various applications.

A number of methods for designing bicomplex digital algorithms have been developed,
but none of them is universally applicable. Most of these methods are related to specific
types of digital structures, narrowing the areas for their application and making them non-
universal [21,22]. Choosing the most suitable digital implementation for a given application
is very important, and is directly related to the efficiency of the digital algorithm. Logically,
the use of a limited number of elements will lead to more economical, cheaper, and faster
processing. Hence, the choice of the implementation is crucial as regards the efficiency of
digital processing. Furthermore, it is important that any designed DSP algorithm should
provide computational efficiency, low sensitivity, and reduced complexity. A number of
scientific publications deal with these complicated optimization problems [22–24].

Many 4D DSP algorithms are associated with the beneficial property of orthogonal-
ity. In order to process an orthogonal hypercomplex signal, such as an ordered pair of
analytical signals, an orthogonal hypercomplex digital algorithm is needed. Over the
past 25 years or so, numerous methods for designing such algorithms have been put for-
ward in the literature [21,25], most of which were developed for specific digital structures,
thus rendering them non-universal. In [26,27], a design procedure for orthogonal hyper-
complex DSP algorithms—based on the concept that an orthogonal algorithm with real
coefficients is expanded into one with hypercomplex coefficients through the use of an
“orthogonal polynomial expansion”—is proposed. However, this has a drawback in that
the design procedure is based on a real all-pass structure, which is not capable of processing
a pair of orthogonal complex signals. Orthogonal transforms—for example, the quaternion
polar harmonic transform (QPHT) [28] and quaternion polar linear canonical transform
(QPLCT) [29]—are employed in the improvement of image representation capability and
numerical stability.

This paper describes a new design method for orthogonal bicomplex DSP algorithms.
This method is appropriate for any digital structure of any order, and is developed in the
complex frequency z-domain. The operation of the method ise shown by a numerical
example, and the designed orthogonal bicomplex DSP algorithm is analysed.
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The rest of the paper is arranged as follows: 4D numerical systems applicable to
DSP are introduced in Section 2. Section 3 outlines the main properties of commutative
bicomplex numbers—in particular the so-called reduced biquaternions (RBQs). A new
design procedure for orthogonal bicomplex DSP algorithms is presented in Section 4. In
Section 5, a numerical example shows the applicability of the proposed method. Section 6
concludes the paper.

2. 4D Numerical Systems Applicable to DSP

In 1843, just a few years after the complete development of the algebra of complex
2D numbers, the Irish mathematician Sir William R. Hamilton defined quaternions as a
generalization of complex numbers. Named after him, the Hamilton quaternions were the
first 4D hypercomplex numbers to be discovered.

The quaternion is an ordered sequence of four real numbers a, b, c, and d—one
scalar a, and one three-dimensional vector (b, c, d). A quaternion may be represented in
hypercomplex form as follows:

Q = a + bi1 + ci2 + di3 =
= QS + QV ,

(1)

where QS = a and QV = bi1 + ci2 + di3 are called the scalar and vector parts of the quaternion,
respectively, while i1, i2, and i3 are mutually orthogonal imaginary units whose squares,
in general, can be equal to −1, +1, or 0. Depending on these numerical values, as well
as the multiplication rules that i1, i2, and i3 comply with, different types of quaternions
are defined, such as pseudo-quaternions, degenerate quaternions, and degenerate pseudo-
quaternions [30]. These and many others belong to the large family of 4D hypercomplex
numbers. The most commonly used are Hamilton’s quaternions, which are often simply
called quaternions. The three imaginary units, known as the orthogonal basis of a quaternion,
obey the following rules:

i21 = i22 = i23 = i1i2i3 = −1;
i1i2 = i3; i2i1 = −i3;
i2i3 = i1; i3i2 = −i1;
i3i1 = i2; i1i3 = −i2.

(2)

The theory behind Hamilton’s quaternions incorporates the concept of vectors in
space. A quaternion converts one vector into another vector by multiplication, which is
closely related to the nature of three-dimensional space. Quaternions are used both in
purely theoretical mathematics and in applied mathematics and physics, mostly for the
efficient calculation of spatial rotation.

Regrettably, Hamilton’s quaternions are not applicable to DSP systems because their
multiplication is associative rather than commutative, and no digital processing algorithms
based on noncommutative algebra have yet been developed. The need to find a solution to
this problem was the main driving force behind the discovery of the so-called commutative
bicomplex numbers and the associated theory.

A bicomplex number BC is defined as an ordered pair of complex numbers C1 and C2,
with specifically defined properties, as follows [31]:

BC = (a + bi1) + i2(c + di1) = C1 + i2C2 = (C1, C2), (3)

where i12 = {−1, 0, +1}, i22 = {−1, 0, +1} as well as i1,i2 and i1i2 are uncorrelated and
commutative (i1i2 = i2i1) imaginary units. Therefore, bicomplex numbers are complex
numbers with complex coefficients—hence, the name bicomplex.

The set {1, i1, i2, i3}, where i3 = i1i2 = i2i1, is the basis of a bicomplex number, which can
also be represented in hypercomplex form as a 4D number with real coefficients, as follows:

BC = a + bi1 + ci2 + di1i2. (4)
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Depending on the values of the squares of the imaginary units, different bicomplex
numbers are defined, and some of these are presented in Table 1.

Table 1. Different types of bicomplex numbers.

Bicomplex Numbers i1 i2 i3 = i1i2 = i2i1

Tessarines i21 = −1
i22 = +1
i2 6= ±1 i23 = +1

Reduced biquaternions i21 = −1 i22 = −1 i23 = +1

Complex hyperbolic numbers i21 = −1
i22 = +1
i2 6= ±1 i23 = −1

Hyperbolic complex numbers i21 = +1
i1 6= ±1 i22 = −1 i23 = −1

Hyperbolic dual numbers i21 = +1
i1 6= ±1

i22 = 0
i2 6= 0

i2i3 = 0
i1i3 = i2

Dual hyperbolic numbers i21 = 0
i1 6= 0

i22 = +1
i2 6= ±1

i2i3 = i1
i1i3 = 0

Hyper-dual numbers i21 = 0
i1 6= 0

i22 = 0
i2 6= 0

i23 = 0
i3 6= 0

The first bicomplex numbers, called tessarines, were proposed in 1848, at around the
same time as Hamilton’s quaternions, by James Cockle—an English mathematician and
lawyer [32], who offered a new imaginary unit whose square is equal to +1, but at the same
time the imaginary unit itself cannot be +1 or −1. Cockle analysed the algebraic properties
of tessarines and compared them with other known 4D hypercomplex numbers.

In 1892, the Italian mathematician Corrado Segre [33], while studying complex geom-
etry, proposed the concept of multicomplex numbers and the idea of an infinite number
of n-complex algebras. Among these is bicomplex algebra, which is obtained for n = 2,
dealing with the bicomplex numbers developed by Segre.

Research into commutative bicomplex numbers and their properties has also continued
in more recent times. In 1992, T. A. Ell [34] defined the so-called double-complex algebra,
with commutative multiplication and i12 = +1. A set of 4D commutative hypercomplex
algebras is also proposed in [35], for which i22 = +1.

Reduced biquaternions are the commutative 4D numbers most often used in DSP.
It is considered that the new numerical system of RBQs, commutative with respect to
multiplication, was first proposed by Hans-Dieter Schutte and Jorg Wenzel [36]. However,
a comparison of the RBQs with Segre’s bicomplex numbers shows that the properties of
the three imaginary units largely match.

In this paper, bicomplex DSP algorithms will be considered based on the RBQs. Since
the features of DSP algorithms are determined by the properties of the number system
used, it is important to clarify the properties of RBQs.

3. Properties of Commutative Bicomplex Numbers

According to Schutte and Wenzel, an RBQ is derived when the following two-step
procedure is carried out: (1) the real numbers c and d in the hypercomplex form of a
quaternion (1) are set to zero, which indeed transforms the quaternion into an ordinary
complex number; and (2) a and b are expanded to complex numbers [36]. The RBQ
derivation procedure described is equivalent to replacing each of the two real coefficients
of a complex number with a complex number. The result is an ordered pair of complex
numbers, i.e., a bicomplex number. Clearly, in essence, an RBQ is a bicomplex number—a
term that will be used henceforth in this paper.
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Thus, if the real part a and the imaginary part b of the complex number C are replaced
by two complex numbers, we will get the bicomplex number A:

C = a + ib⇒ (a0 + ja1) + i(a2 + ja3) =
= AS + iAV =
= a0 + ja1 + ia2 + ka3 = A.

(5)

The complex numbers AS and AV are called the scalar part and vector part of the
bicomplex number A, respectively, while a0, a1, a2, and a3 are real numbers. The three
imaginary units of the bicomplex number A will be denoted by j, i, and k.

j is the classic imaginary unit known from the theory of complex numbers, in which
j2 = −1 is satisfied; i is the vector unit with i2 = −1, while the square of the imaginary unit
k is equal to +1. The properties of the imaginary units of an RBQ are as follows [36]:

i2 = j2 = −1; k2 = +1 ;
ij = ji = k;

jk = kj = −i;
ik = ki = −j.

(6)

A comparison of Equations (2) and (6) shows the presence of commutativity of the
imaginary units in RBQs, in contrast to quaternions—which, as already mentioned, is their
main advantage for DSP applications. However, a disadvantage of RBQs is that, unlike
quaternions—which perfectly represent rotation in three-dimensional space—RBQs have a
complex geometric interpretation.

In a similar way to complex numbers, as well as the presence of the three uncor-
related imaginary units, three different complex–conjugate bicomplex numbers can be
defined [37]—the vector conjugate:

A+ = AS − iAV =
= (a0 + ja1)− i(a2 + ja3),

(7)

the complex conjugate:
A∗ = A∗S + iA∗V =

= (a0 − ja1) + i(a2 − ja3),
(8)

and a double conjugate:

A∗+ = A∗S − iA∗V =
= (a0 − ja1)− i(a2 − ja3).

(9)

The scalar AS and the vector AV parts of A (5) can be determined by means of the
vector-conjugated reduced biquaternion A+ (7), as follows:

AS =
A + A+

2
; AV =

A− A+

2i
. (10)

Again, similar to complex numbers, the Euclidean (canonical) norm is also defined
for RBQs:

‖A‖ = 4
√(

a2
0 + a2

1 + a2
2 + a2

3
)2 − 4(a0a3 − a2a4)

2 ≥ 0. (11)

In a similar way, the square of the Euclidean norm is the norm of an RBQ:

N(A) = ‖A‖2 = AA+ = (AS + iAV)(AS − iAV). (12)

Usually, the norm is a real number, but the norm of the reduced biquaternion (12) is
defined in the field of complex numbers.
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Reduced biquaternions can also be represented in exponential form:

A = ‖A‖ejθj eiθi ekθk . (13)

Exponential representation (13) is possible if the canonical norm (11) is not equal to
zero, and if the three polar phases θj, θi, and θk take values in the intervals:

θj ∈ (−π, π] ; θi ∈
(
−π

2
,
π

2

]
; θk ∈ R. (14)

The representation (13) is very appropriate for DSP applications, especially if the RBQ
is represented in a trigonometric form achieved via Euler and Lorentz transformations:

A = ‖A‖ejθj eiθi ekθk =
= ‖A‖

[(
cos θj cos θi

)
+ j
(
sin θj cos θi

)
+ i
(
cos θj sin θi

)
+ k
(
sin θj sin θi

)]
.

(15)

The absence of θk in (15) is explained by the impossibility of applying Euler’s formula,
since k is not the classic imaginary unit (k2 = +1) and, therefore, the hyperbolic functions
sinh and cosh and Lorentz transformation are used instead of the trigonometric sin and cos.

When the norm of an RBQ N(A) 6= 0, the so-called inverse or reciprocal RBQ can be
defined as follows:

A−1 =
A+

N(A)
=

e−jθj e−iθi e−kθk

‖A‖ . (16)

Similarly, for the two RBQs A and B:

A = (a0 + ja1) + i(a2 + ja3) = ‖A‖ ejθjA eiθiA ekθkA ;
B = (b0 + jb1) + i(b2 + jb3) = ‖B‖ ejθjB eiθiB ekθkB ,

(17)

whose norm N(A–B) is not equal to zero, the reciprocal of their subtraction will be:

(A− B)−1 =
(A− B)+

N(A− B)
. (18)

In contrast to complex numbers, the RBQs A and B—and their vector conjugates A+

and B+—perform in the following way:

(A + B)+ 6= A+ + B+. (19)

The addition and subtraction of RBQs (17) are element-by-element operations:

A± B = [(a0 ± b0) + j(a1 ± b1)] + i[(a2 ± b2) + j(a3 ± b3)], (20)

while their multiplication is as follows:

A× B = ‖A‖‖B‖ej(θjA+θjB)ei(θiA+θiB)ek(θkA+θkB) = (d0 + jd1) + i(d2 + jd3), (21)

where:
d0 = a0b0 − a1b1 − a2b2 + a3b3;
d1 = a0b1 − a1b0 − a2b3 + a3b2;
d2 = a0b2 − a1b3 − a2b0 + a3b1;
d3 = a0b3 − a1b2 − a2b1 + a3b0.

(22)

It is important to note that for RBQs, as well as for all 4D numerical systems that are
commutative in terms of multiplication, the following rule of convolution in the hypercom-
plex case in both the time domain and the z-domain is valid:

Y(z) = H(z)X(z)↔ y(n) = h(n) ∗ x(n). (23)
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A DSP algorithm is represented by its impulse response h(n) in the time domain,
and by its transfer function H(z) in the z-domain. The input data (signal) are denoted
by x(n) and X(z), respectively, and the reaction of the DSP system by y(n) and Y(z). In
addition to those already mentioned, the following designations will be used from this
point on in this paper: each input, output, or internal signal, coefficient, and function will
be encoded as real (R), complex (C) or bicomplex (BC). Real numbers will be denoted by
small Latin letters with or without numerical indices, except for i, j, and k, which will be
used to denote imaginary units. To denote 2D and 4D numbers, capital Latin letters with or
without numerical indices will be used and, specifically for the bicomplex coefficients of
DSP algorithms in the z-domain, the letters A and B will be used.

4. Outline of the Bicomplex Orthogonal DSP Algorithm Design Procedure

Many methods for the synthesis of complex DSP algorithms have been proposed over
the years, each with its own advantages and drawbacks. A preeminent one is the method of
Watanabe and Nishihara [38], who further developed the idea of Crystal and Ehrman [16],
and proposed that the complex DSP algorithm in the z-domain should be obtained from a
real one, after applying the so-called pole rotation substitution:

R→ C : z−1 → z−1(cos θ1 + j sin θ1) = z−1cisθ1; j2 = −1. (24)

A special case of orthogonality appears when θ1 = 90◦, which transforms the pole
rotation substitution into an orthogonal complex one.

An extension of the Watanabe–Nishihara idea regarding bicomplex numbers, in com-
pliance with the Cayley–Dickson principle of doubling the dimension, results in a transfor-
mation leading to bicomplex DSP algorithms, for which a special case of orthogonality can
be also defined. Unlike complex numbers, bicomplex numbers have two arguments (θ1
and θ2), and for this reason bicomplex orthogonality may be interpreted in several ways.
A possible approach to define bicomplex orthogonality is to assume that each of the two
complex numbers constituting the bicomplex number is itself orthogonal, i.e., θ1 = θ2 = 90◦.
Hence, the following substitution, denoted by R→ oBC, where “o” stands for orthogonal,
is received:

R→ oBC : z−1 → z−1 j(1 + i); j2 = −1; i2 = −1. (25)

Moreover, bicomplex orthogonality can also be considered from another point of
view—an orthogonal complex number is achieved for θ1 = 90◦, which provides a zero real
part and unity imaginary part. Expanding this logic with regard to a bicomplex number, in
order to obtain orthogonality, its scalar part (cis θ1) must be set to zero, thus reducing the
bicomplex number to its vector part (cis θ2) only. Therefore, bicomplex orthogonality will
be achieved via the following transformation:

R→ oBC : z−1 → z−1i(cos θ2 + j sin θ2) = z−1icisθ2; j2 = −1; i2 = −1. (26)

Additional clarification is required regarding the implications of the vector part, cis θ2,
of a bicomplex number being unity. Since the vector part itself is a complex number,
the requirement could be its modulus (Euclidean norm) to be equal to one, which is
accomplished for different numerical values of θ2, such as those represented in Table 2.

One possibility is the real part of cis θ2 being one, while its imaginary part is zero,
which can be achieved when θ2 = 0◦, or vice-versa (θ2 = 90◦) [24]. In this work, it is assumed
that θ2 = 45◦, resulting in the following orthogonal bicomplex transformation:

R→ oBC : z−1 → z−1
√

2
2

i(1 + j); j2 = −1; i2 = −1. (27)
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Table 2. Real—orthogonal bicomplex transformations in case cis θ1 = 0.

R→ oBC : z−1 → z−1[i(cos θ2 + j sin θ2)] θ2

z−1 → iz−1 0

z−1 → iz−1
√

2
2 (1 + j) π/4

z−1 → iz−1 j π/2

z−1 → −iz−1
√

2
2 (1 + j) 3π/4

z−1 → −iz−1 π

The transformation that leads to bicomplex orthogonal digital algorithms can be
obtained starting from either a real (R → oBC) or a complex algorithm (oC → oBC), as
shown in Figure 1. The transfer functions HR(z), HoC(z), and HoBC(z) denote real, complex,
and orthogonal in regard to the vector unit i, and bicomplex orthogonal algorithms in the
complex z-domain, respectively.
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Figure 1. Possible approaches to design a bicomplex DSP algorithm starting from a real or
complex algorithm.

Along with (27), the other two transformations in trigonometric form to design an
orthogonal bicomplex DSP algorithm (Figure 1) when θ2 = 45◦ are as follows:

R→ oC : z−1 → iz−1; i2 = −1, (28)

oC → oBC : z−1 → z−1
√

2
2

(1 + j); j2 = −1. (29)

After applying the orthogonal complex transformation R→ oC (28), the poles of the
real transfer function HR(z) rotate clockwise and counterclockwise at an angle of θ1 = 90◦,
and double in number. The rotation of the single pole of a bilinear real digital algorithm,
resulting in a pair of complex–conjugate poles on the imaginary axis of the corresponding
orthogonal complex algorithm, is shown in Figure 2.
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Figure 2. Pole rotation of a real bilinear DSP algorithm when applying the transformation R→ oC (28),
and then pole rotation of a complex bilinear DSP algorithm when applying the transformation
oC→ oBC (29).

The complex–bicomplex orthogonal substitution oC → oBC (29) will again double
the poles compared to the real bilinear transfer function, so that those of the bicomplex
orthogonal bilinear transfer function will be four in total. As a type, these four poles will
be two complex–conjugate pairs (Figure 2). Here, the rotation is as follows: each pole of the
orthogonal complex DSP algorithm rotates 45◦ once clockwise and once counterclockwise.
Thus, each pole is multiplied into two new ones belonging to the orthogonal bicomplex
DSP algorithm.

The steps to be followed to design an orthogonal bicomplex digital algorithm—
represented by its transfer function HoBC(z)—when starting from a real algorithm HR(z),
which is first transformed into an orthogonal complex HoC(z) algorithm, are shown in
Figure 3.

The alternative approach directly accomplishes the transformation of an orthogonal
real DSP algorithm into an orthogonal bicomplex one. The sequence of the necessary
transformations of this alternative approach is shown in Figure 4. The designations of the
transfer functions in Figures 3 and 4 are unified.

The design approaches presented in Figures 3 and 4 show that an N-order bicomplex
orthogonal transfer function HoBC(z) can be represented by its scalar part HoS(z) and vector
part HoV(z), both of which are complex coefficient functions of the 2N-order. In accordance
with bicomplex number arithmetic, the scalar and vector parts can be derived via the
bicomplex orthogonal transfer function and its vector conjugate, as follows:

HoS(z) = 1
2
[
HoBC(z) + H+

oBC(z)
]
;

HoV(z) = 1
2i
[
HoBC(z)− H+

oBC(z)
]
.

(30)

Additionally, HoBC(z) can be also represented by the four real coefficient transfer
functions of the 4N-order Ho1(z), Ho2(z), Ho3(z), and Ho4(z), which comprise the scalar
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HoS(z) and vector HoV(z) parts, but on the other hand can also be determined via them,
as follows:

Ho1(z) = 1
2
[
HoS(z) + H∗oS(z)

]
;

Ho2(z) = 1
2j
[
HoS(z)− H∗oS(z)

]
;

Ho3(z) = 1
2
[
HoV(z) + H∗oV(z)

]
;

Ho4(z) = 1
2j
[
HoV(z)− H∗oV(z)

]
.

(31)

Either of the two approaches of the proposed new method represented in Figures 3 and 4
will lead to the same final result—the design of a bicomplex orthogonal DSP algorithm.
However, the approach that involves first deriving a complex orthogonal digital algorithm
starting from a real coefficient algorithm and then designing the corresponding bicomplex
orthogonal DSP algorithm enables issues such as the sensitivity and canonicity of the three
structures—real, complex, and bicomplex—to be compared and contrasted.
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5. Bilinear Orthogonal Bicomplex DSP Algorithm Derivation—A Numerical Example

The effect of the proposed new method will be demonstrated for a particular digital
algorithm, represented in the z-domain by the most simple bilinear recursive real transfer
function possible:

HR(z) = c
1

1− az−1 , (32)

where the coefficient c = 1 − a provides unity DC gain.
When applying the orthogonal bicomplex method shown in Figure 3 to the real bilinear

transfer function HR(z) (32), the following transfer functions describing orthogonal complex
and orthogonal bicomplex digital algorithms will be obtained:

HR(z)
z−1=iz−1
→ HoC(z) = c

1
1− iaz−1 = HoR1(z) + iHoR2(z), (33)

where:

HoR1(z) =
1− a2

1 + a2z−2 ; HoR2(z) =
(
1− a2)z−1

1 + a2z−2 . (34)

Applied on the orthogonal complex HoC(z), the transformation (29) will produce the
orthogonal bicomplex transfer function HoBC(z):

HoBC(z) = c
1

1−
(√

2/2
)

i(1 + j)az−1
= HoS(z) + iHoV(z), (35)

where the scalar and vector parts HoS(z) and HoV(z), respectively, are:

HoS(z) =
1− a

1 + ja2z−2 ; HoV(z) =

√
2

2 a(1− a)(1 + j)z−1

1 + ja2z−2 . (36)

Subsequently, the real coefficient transfer functions Ho1(z), Ho2(z), Ho3(z), and Ho4(z),
are determined as follows, respectively:

Ho1(z) = 1−a4

1+a4z−4 ;

Ho2(z) =
(1−a4)z−2

1+a4z−4 ;

Ho3(z) =
√

2
(
1− a2) z−1(1+a2z−2)

1+a4z−4 ;

Ho4(z) =
√

2
(
1− a2) z−1(1−a2z−2)

1+a4z−4 .

(37)

The alternative approach of Figure 4 will also derive the orthogonal bicomplex transfer
function HoBC(z):

HR(z)
z−1=

√
2

2 i(1+j)z−1

→ HoBC(z) = HoC1(z) + jHoC2(z), (38)

where:

HoC1(z) = c
1− i

√
2

2 az−1

1− i
√

2az−1 − a2z−2
; HoC2(z) = c

i
√

2
2 az−1

1− i
√

2az−1 − a2z−2
. (39)

The functions in (39) have complex coefficients with respect to the vector unit i,
and as complex functions can be represented by their real and imaginary parts, which
are the four transfer functions with real coefficients in (37). The real coefficient transfer
functions delivered in this section—namely, (32), (34), and (37)—will be analysed in the
frequency domain.
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Having two inputs and two outputs, the orthogonal complex scheme in Figure 5a is
able to realize four real biquadrate transfer functions at its different outputs. These are
identical within each pair, and equal to HoR1(z) and HoR2(z) (34), respectively:

HRR(z) = HI I(z) = HoR1(z),
HRI(z) = −HIR(z) = HoR2(z).

(40)

Likewise, the orthogonal bicomplex realization (Figure 5b), having 4 inputs and 4
outputs, will have 16 fourth-order real coefficient transfer functions altogether, separated
into 4 groups. The four functions in each group are identical, with a plus or a minus sign,
and are also equal to the transfer functions shown in (37):

H11(z) = H22(z) = H33(z) = H44(z) = Ho1(z);
−H12(z) = H21(z) = −H34(z) = H43(z) = Ho2(z);
−H13(z) = −H24(z) = H31(z) = H42(z) = Ho3(z);

H14(z) = −H23(z) = H32(z) = H41(z) = Ho4(z).

(41)

When HR(z) (32) is low-pass (LP), HoR1(z) and HoR2(z) (34) will both be of band-pass
(BP) type, while the four bicomplex orthogonal transfer functions—Ho1(z), Ho2(z), Ho3(z),
and Ho4(z) (37)—are also of BP type, but with two passbands each. A high-pass (HP) HR (z)
will produce both BP and band-stop (BS) transfer functions (34), and in the bicomplex case
the transfer functions (37) will again be multiband, having two passbands for the BP type
and two stopbands for the BS type.
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Figure 5. Block diagram of (a) orthogonal complex and (b) orthogonal bicomplex realization [24]. 

Narrowband frequency-selective digital signal processing is the most likely to be 
used in practice. When the numerical value of the coefficient a of the real transfer function 
HR(z) (32) is 0.99, the real bilinear digital algorithm becomes narrowband and LP; its mag-
nitude and phase responses, together with those of the corresponding orthogonal complex 
HoR1(z) (34) and the bicomplex Ho1(z) (37) constituents, are shown in Figure 6. 

Figure 5. Block diagram of (a) orthogonal complex and (b) orthogonal bicomplex realization [24].

Narrowband frequency-selective digital signal processing is the most likely to be used
in practice. When the numerical value of the coefficient a of the real transfer function HR(z)
(32) is 0.99, the real bilinear digital algorithm becomes narrowband and LP; its magnitude
and phase responses, together with those of the corresponding orthogonal complex HoR1(z)
(34) and the bicomplex Ho1(z) (37) constituents, are shown in Figure 6.
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The magnitude responses are unity for DC, achieved by scaling the examined real coef-
ficient transfer functions. The scaling factor for HR(z) is c = 1−a, for HoR1(z) it is cR1 = 1−a2,
and for Ho1(z) it is co1 = 1−a4. Since the experimental results for the other complex and
bicomplex orthogonal transfer functions—HoR2(z), Ho2(z), Ho3(z), and Ho4(z)—are similar,
they are not represented in this work.

6. Conclusions

In this paper, a method of designing orthogonal bicomplex DSP algorithms is outlined.
The proposed technique is based on the idea behind the pole rotation complex orthogonal
transformation in the z-domain, and converts real or complex algorithms into bicomplex
orthogonal ones. The new orthogonal method is universal, since it is not affected by either
the order or the type of the real algorithm used, and it guarantees the synthesis of digital
structures with a canonical number of elements. The method is related to the orthogonal
multiple access (OMA) modulation techniques based on filtering (UFMS, f-OFDM), and a
comparison to these methods can highlight its advantages.

Due to the wide implementation of narrowband orthogonal frequency-selective DSP
algorithms, this type of LP transfer function is used as a numerical example to demonstrate
the operation of the method. The resulting bicomplex orthogonal BP/BS functions doubled
the number of the passbands/stopbands compared to the complex functions, inheriting the
real and complex transfer functions’ narrowband properties.

The method proposed is also appropriate for the derivation of second- or higher order
digital algorithms, thus providing different bicomplex digital structures and realizations,
such as cascade, parallel, etc., of any order. In addition to being simple and canonical,
these structures offer parallelism and unification, which will result in a lower equipment
cost, reduced complexity, and higher energy efficiency, and could be appropriate for the
enhancement of the implementation of intelligent algorithms in next-generation RANs, en-
abling a diverse range of novel usage scenarios, addressing ultralow latency requirements,
and allowing intelligent performance of diverse functions, such as load balancing, radio
resource management, interference detection and mitigation, etc.

Different aspects of bicomplex orthogonality in the design of bicomplex DSP algo-
rithms, as outlined in the present work, have not yet been exhaustively investigated, and
more research remains to be done. Along with this, a subject of future research might be the
efficiency levels of the different types of bicomplex orthogonality for processing waveforms
of arbitrary complexity, which can be represented as real, complex, or bicomplex signals.
Effective bicomplex DSP algorithms can be a powerful tool for the advanced processing
units in modern telecommunications.
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