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Abstract: In this paper, multi-channel active noise control systems subjected to narrowband distur-
bances with close frequencies are investigated. Instead of controlling each frequency separately, a
mixed-reference signal is assumed and thus a transversal controller is utilized. First, the convergent
behaviors of a generalized FxXLMS-based algorithm are theoretically analyzed in the mean sense,
from which the influence of the controller structure on the convergence rate is revealed. A novel
narrowband algorithm is then proposed, in which a decimated transversal controller is used to
alleviate the computational burden. Simulations based on a 4 x 8 active-noise-control system are
carried out to verify the proposed method. The results show that a good convergence rate can be
obtained, and the computational complexity can also be greatly reduced.

Keywords: active noise control; active vibration control; filtered-x least-mean-square algorithm;
narrowband disturbance

1. Introduction

Active noise control (ANC) [1,2] is an effective method to attenuate noise in low-
frequency bands where traditional passive strategies are generally considered to be bulky
and inefficient. The basic principle of an ANC system is the superposition, where an
unwanted primary noise could be cancelled by a secondary noise with the same amplitude
but the opposite phase. In many industrial applications, the rotating machine is one of
the most common sources of the unwanted noise or vibration. The disturbance generated
by such machines generally consists of multiple sinusoidal components, and thus are
narrowband in nature. Although adaptive algorithms such as the filtered-x least-mean-
square (FXLMS) algorithm can be directly used to deal with such narrowband disturbances,
the ANC system would exhibit characteristics that are different from the general case with
the broadband inputs [3]. As a result, a variety of FxXLMS-based narrowband algorithms
have been proposed and well analyzed [4-23], which can also be used in the area of active
vibration control (AVC) of the narrowband disturbances, such as in the case of vibration
isolation (VI) [9,10].

Vicente et al. [4] presented a detailed convergence analysis of the FXLMS algorithm
with the narrowband inputs. It has been shown that the global behavior of the ANC system
is linear and time-invariant (LTI), provided that the controller length is sufficiently long, in
which case the time-varying terms become negligible. Haarnoja et al. [5] presented an exact
linear time-periodic (LTP) state-space representation of the multi-channel FXLMS algorithm.
It has been confirmed that the ANC system has an LTI behavior if the controller length is
suitably chosen. In order to get rid of the influence of the time-varying terms corresponding
to the controller length, Xiao et al. [6,7] proposed FxLMS-based narrowband algorithms in
which two orthogonal reference signals (sine and cosine) are used for the control of each
disturbance frequency. Compared with the original FXLMS algorithm, the computational
load is reduced since each controller only has two taps. With such a controller structure,
the computational complexity could be further reduced since the control for the different
disturbance frequencies is separated and hence low-order local secondary path models
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could be used [8]. Based on this two-tapped controller with the orthogonal references,
Li et al. [9,10] further proposed the FxNewton algorithms, in which the inverse of the
frequency response matrix of the secondary path model is used so that the multi-channel
control system can be completely decoupled, and an optimal convergence rate can then be
obtained. In addition, variable stepsize algorithms [11,12], filtered-x weighted accumulated
LMS algorithms [13,14] as well as decentralized control algorithms [15,16] have also been
proposed with similar controller structures.

Although Xiao’s methods have the advantages of a lowered complexity and an ac-
celerated convergence rate, an external synchronization signal is generally necessary for
the synthetization of the orthogonal reference signals. If this signal is not available, then
frequency estimation algorithms should be used. Since the noise reduction performance is
rather sensitive to the frequency estimation error [17], different algorithms [18-23] have
been proposed to provide an accurate disturbance frequency. This frequency can not
only be adaptively adjusted according to the error signal [18,19], but it can also be es-
timated using a reconstructed disturbance signal (with the help of the internal model
control) [20-22] or even a reference signal [23]. If a reference signal is available for the sys-
tem, another approach to generate the orthogonal references is to use an extra reference
filter corresponding to the Hilbert transformation [9,10]. However, with this method,
the computational complexity is enhanced, and an extra delay is also imposed on the
reference signals.

In the ANC/AVC applications where multiple primary sources exist, some harmonic
components from different devices might have very close disturbance frequencies, such
as the case for the VI system, where different machines operate with rather close rotating
speeds [10]. In these cases, the design of the narrowband ANC/AVC systems would
become more challenging. A multi-reference algorithm is proposed in [10], in which
different reference signals could be obtained directly from the primary sources and the
control of the different disturbance frequencies could then be separated. However, the
references corresponding to the different frequencies might not be able to be obtained in
some practical implementations, such as when designing a general-purpose VI system
without any knowledge of its loading equipment. In this situation, how to generate the
reference signals remains a problem since the frequency estimation methods mentioned
above would lose their efficiency if the disturbance frequencies were rather close.

In this paper, the multi-channel narrowband control system with close disturbance
frequencies is discussed with the assumption that only a mixed-reference signal is available.
Instead of separating the reference signals for the different frequencies with the usage of
high-order bandpass filters, which are not efficient or even feasible for practical imple-
mentations, the mixed-reference signal is used directly as the input of a set of transversal
controllers. First, a frequency-domain convergence analysis is presented in the mean
sense. A characteristic matrix is constructed based on the symmetry of the controller’s
responses on the positive and negative disturbance frequencies, from which the influence
of the controller structure on the convergent behaviors is revealed. An insight view on the
degradation of the convergence rate with an insufficient controller length is also provided.
Based on the theoretical analyses, a narrowband FxLMS-based algorithm is then proposed,
in which a decimated FIR controller is used in order to accelerate the convergence rate
and lower the computational burden as much as possible. Simulations based on a real-
istic multi-channel (4 x 8) ANC system are carried out, and the results demonstrate the
effectiveness of the proposed algorithm.
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2. Methods
2.1. Frequency-Domain Convergence Analysis

In order to analyze the convergent behaviors with different controller structures, the
narrowband FxLMS-based algorithms can be given with the following equations:

N -1
y(n) = ‘;0 xi(n)wi(n) o)
Ls — 1
e(n) = d(n) + Y Sy(n —1) )
=0
L-1
Ri(n) = ), Cxi(n — 1) ®)
=0
wi(n + 1) = wi(n) — uR[ (n)e(n) 4)

where y(n), e(n) and d(n) are the vectors of the output, error and disturbance signals, respec-
tively. The controller has N coefficient vectors w;(n) (i =0, ... , N—1), which correspond
to the N reference signals x;(n), respectively. S;, C; are the I-th coefficient matrices of the
impulse responses of the secondary path as well as its model, and L, L are the correspond-
ing lengths. Thus, R;(n) is the matrix of the filtered reference signal which corresponds
to x;(n). In Equation (4), the controller coefficient vectors are updated with a stepsize u.
The algorithm shown by Equations (1)—(4) can be considered as a generalization of the
narrowband FxLMS-based algorithms mentioned in Section 1. For the original FXLMS
algorithm, since the controllers are the transversal FIR filters, N is the controller length and
xi(n) = x(n—1), where x(n) is the input reference signal. For Xiao’s methods [6,7], we have
N =2, and x¢(n), x1(n) are the orthogonal references cos(wn), sin(wn).

Without a loss of generality, the reference signal x(r) is assumed to consist of two close
frequencies in this paper:

x(n) = Ajcos(win + @1) + Apcos(wan + @) 5)

where wq, wy are the disturbance frequencies, A1, Ay and ¢, ¢, are the corresponding
amplitudes and initial phases, respectively. The initial phases are assumed to be uniformly
distributed within (0, 27t) and independent with respect to each other. Thus, x;(1) can be
written as:

2 2
xi(n) = Ajcos(win + @1 + 01;) + Apcos(wan + @r + 0y) = Y. x4 Y xre Mg I (6)
k=1 k=1
where xx, (k =1, 2) are the complex amplitudes and 6y; is an extra phase shift corresponding
to the controller’s structure. We have 6;; = —wjyi for the FIR controllers and 6y = 0,
01 = —0.57 for Xiao’s methods. Similarly, the disturbance vector can also be written as:

2 . 2 .
d(n) = ) dexd + Y dixge %" +z(n) 7)
k=1 k=1

where z(n) is a zero-mean additive noise vector.
Substitute Equations (6) and (7) into Equations (1)—-(3), then

2

. 2 .
y(n) = Y Wi(n)x@ " + ) Wi (n)xge 1" ®)
k=1 k=1

e(n) ~ Y, (dx + SWe(n)xxe " + Y (df +SgWi(n))xie ¥ + z(n)  (9)
k=1 k=1
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Ri(n) = Y Cuxpeie + Y Cixjpe e o (10)
k=1 k=1
where
N-1 " N -1 9
Wi(n) = ¥ wi(n)d% Wi(n) = ¥ wi(n)e % (11)
i=0 i=0
are the frequency response vectors of the controller at wy as well as at —wy, and
L — 1 _ L-1 .
Sk = ¥ Se i C= ¥ Cei (12)
I=0 I=0

are the frequency response matrices of the secondary path and its model at wy. It is noted
that Cy varies in different algorithms. With a perfect secondary path model, we have Cy = Sy
for the FXLMS algorithm and C,Ij = S;l for the FxNewton algorithm [9,10]. Ci can also
be a diagonal matrix in decentralized control whose elements should be optimized [16].

In the derivation of Equation (9), a slow convergence is assumed, i.e., Wy(1) = Wy(n — )
forall/=0,..., Ls—1. This approximation indicates that the controller would not change
significantly during the timescale of the impulse response of the secondary path. Since the
stepsize is usually small, this assumption is common in the ANC literature [1].

Next, by substituting Equation (4) into Equation (11), the update equations for the
frequency responses of the controller at +-wy can be obtained:

We(n + 1) = Wy(m) 5 Y %R (n)e(n) (13)
i=0
N-1
Wi(n + 1) = Wi(n) — ;0 3 e R (n)e(n) (14)
i=0

Define 1
Wk(i’l) + (C]Ijsk) C]dek

Vi(n) = -1
wi(n) + (cfs;) cfa;

(15)

as the error vector of the controller’s frequency responses with respect to their optimal
values, substitute Equations (9) and (10) into Equations (13) and (14) for k = 1,2 and take
the expectation on both sides, then we have
of T xqI ][ Clsy

E[Vi(n + 1)] = E[Vi(n)] = Np|xi|

T 1 cl's; }E[Vl(”)]

16
Nl 32 SB[ FF g, [Bva "
E[Vo(n + 1)] = E[V2(n)] —NVX2|2{ él Kfl ] [ €S2 cls; }E[Vz(ﬂ)] W)
N[ 52 [ g, JEvion)
where
‘. — &f;:ep% K%q _ Allljgolej(epi+eqi) KrA:q _ Z{jt’;olej(epi_eqi) (18)

are parameters only corresponding to the controller’s structure. In the derivation of
Equations (16) and (17), the error vectors defined in Equation (15) are assumed to be
independent with respect to the initial phases ¢1, ¢, as well as the noise vector z(n). As a
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result, all of the terms corresponding to ¢1, ¢ and z(n) would be zero when taking this
expectation.
Equations (16) and (17) can be further combined as follows:

Vl(Tl + 1) :l < |: }11K1P1 ]/IQK12P2 :|> |: Vl(Tl) :| l: Vl(Tl) :l
E =|I- E = (I — H)E 19
[ Vz(n + 1) VlKlZPI }lszPz Vz(ﬂ) ( ) Vz(i’l) ( )
where
B 2 [T okl T e _ [ clis,
Vk - NV'Xk‘ Kk* |: K;(kI I :| qu - [ Kré;*l qu*l Pk - CIZ"S;; (20)

The convergent behaviors of Equation (19) are mainly determined by the specific
eigenvalues of the characteristic matrix (I—H) [1,16]. It can be seen that both the controller
structure and the secondary path as well as its model contribute to the convergence rate. It
can also be observed that the convergent behaviors for different disturbance frequencies are
coupled together, provided that the parameters defined in Equation (18) are non-negligible,
which generally indicates a slow convergence rate.

If the FxNewton algorithm is used with accurate models (i.e., P1 ; =I), H would be a
Hermitian matrix with real eigenvalues:

H = QfAQ (21)

where A is a diagonal matrix with all of the eigenvalues of H, and Q is the orthogonal-
transformation matrix. With Equation (21), the convergence process can further be written

] e Y] o wes[ ] e

From Equation (22), it can be found that the algorithm converges exponentially with
the different modes, each of which corresponds to a specific eigenvalue of H. The con-
vergence rate of the algorithm is determined by the slowest mode with respect to the
minimum eigenvalue Apin. In the logarithmic domain, this mode decreases linearly, and
the decreasing slope is

In(1 — Amin) ® —Amin (23)

Thus, the time constant of this mode is approximately

1

T=

(24)

)\min

within which, the mode amplitude would decrease to e~ ! of its initial value. This time
constant can be seen as a benchmark of the convergence rate and should be depressed as
much as possible. As a result, in order to obtain the fastest convergence rate, the minimum
eigenvalue of H must be maximized. This occurs when 1 = p» and all of the parameters in
Equation (18) are equal to 0. Since the parameters in Equation (18) are only determined by
the controller, its structure should be carefully designed.

2.2. The Proposed Algorithm

Since it is assumed that only a mixed-reference x (1) can be obtained, whose compo-
nents at different frequencies can hardly be separated in applications, transversal filters are
used as the controllers in this paper. For the FIR controllers with length N, Equation (18)
would become

N-1 _ . N-1 , N-1 . ‘
Kp = % 'Zo e 2wy K%q = % 'Zo e Wy + @i Kr/—}q = % 'Zo e i@y —wpi (25)
i= i= i=
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—1
_ 1 —jM2wyi > _ 1
Kk—le e’ qu_N' )
i=0 i=0 i=0

which should be kept as small as possible so that the influence of the controller structure on
the convergent process can be eliminated and the convergence rate can then be enhanced.
Since the disturbance frequencies are close, the first two parameters in Equation (25)
decrease more rapidly as N increases, which generally makes the third parameter dominant.
Meanwhile, as the difference between the two disturbance frequencies is rather small, the
controller length N should be rather large to reduce this dominant parameter. Precisely, N
should be set to one entire cycle corresponding to the difference frequency so that qu can
be reduced to 0. This is in accordance with the results in [4,5]. However, the computational
complexity would be greatly enhanced with such a large controller length.

In order to lower the computational burden, a decimated transversal controller is
proposed in this paper. The i-th coefficient vector w; (1) corresponds to a down-sampled
reference signal:

xi(n) = x(n — Mi) (26)

where M is the decimation factor. With this decimated controller, the phase-shift parameter
would be 0y; = —Mwyi and Equation (18) would reduce to
N

-1 . N-1 . .
Y eij(aJp + wy)i K}%l] _ % Y e IM(wp — wy)i 27)

It can be observed that in order to force Kﬁq to 0, the controller length N and the
decimation factor M should satisfy

T=nNM=_ " __/

w1 — wa  Af 28)

where f; is the sampling frequency. Equation (28) still indicates that the time scale T of the
controller should cover one entire cycle of the difference frequency. However, the filter
length N can be reduced by a factor of M in this case, which means that the computational
complexity can also be greatly reduced.

With Equation (26), the filtered reference matrices in Equation (3) can further be
simplified as:

R;(n) = R(n — Mi) R(n) = fgLsz(n — 1) (29)

Since the disturbance frequencies are close, a local secondary path model [8] is used in
this paper. Theoretically, L = 2 is sufficient to give the accurate frequency responses of the
model filters.

It is further noted that the decimation factor M is not limited by the Nyquist-Shannon
sampling theorem, which means that half of the actual sampling frequency of the decimated
controller can be even lower than the disturbance frequencies. However, the aliasing of
the disturbance frequencies should be avoided, i.e., M (w; + wy) should never be an
integer multiple of 27t. Otherwise, the controller would lose the ability to differentiate
the two disturbance frequencies and hence the noise reduction performance would be
greatly deteriorated. It can also be observed from Equation (27) that K’%q would be 1 in this
case, which indicates that half of the eigenvalues of the characteristic matrix (I—H) would
be 1 and the frequency responses of the controller would never converge to its optimal
value. Besides, N and M should be chosen to keep all of the 3 parameters in Equation (27)
small enough when M becomes relatively large, since in this case, Kﬁq might no longer
be dominant.

3. Simulation Validation

In this section, simulations based on a realistic multi-channel ANC system [16] are
carried out to validate the effectiveness of the proposed methods. The ANC system, as
shown in Figure 1, is mainly constituted with an acrylic box, two primary noise sources,
four secondary noise sources as well as eight error microphones. The primary sources
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are placed inside the box, while the secondary sources are mounted on the opening top
of the box. The error microphones are placed above the secondary speakers as a 4 x 2
array. All of the primary and secondary paths are identified with the FIR models, which are
used in simulations. A more detailed description as well as some of the identified acoustic
responses of the ANC system can be found in [16].

Figure 1. The multi-channel ANC system, based on which simulations are carried out.

In the simulations, an 8 kHz sampling frequency is used and two sinusoidal dis-
turbances with f1 = 99 Hz and f, = 101 Hz are generated by the two primary sources,
respectively, as shown in Figure 1. Meanwhile, Gaussian white noises are added in the
disturbance signals as z(1), whose variance is set to 0.0001. A mixed reference is used
in the control algorithm, as shown by Equation (5), where the amplitudes of the two
components are set to be equal. A set of two-order filters (L = 2) are used as the refer-
ence filters in Equation (29), whose coefficient matrices Cy and C; are calculated so that

-1
cH = (SH S) S is satisfied at 100 Hz. With these reference filters, P; and P, would ap-

proximately reduce to identity matrices, and the influence of the secondary path responses
on the convergence rate can be eliminated [16]. Hence, the influence of the controller
structure on the convergent behaviors can be shown more clearly. Since the normalized
stepsize py is affected by the controller length N, the stepsize y in Equation (4) is chosen to
satisfy 1 = pp = 0.0001 for all of the simulations. For each combination of N and M, the
convergent trajectories are obtained by the ensemble average of 30 simulations, where the
initial phases @1, ¢, are independently chosen from a uniform distribution within (0,2m).
The control algorithm is started at 1 s in the simulations.

First, the parameters in Equation (27) are calculated with different combinations
of N and M, whose absolute values are illustrated in Figure 2a—d. It can be seen that
the parameters corresponding to the controller’s structure are mainly determined by the
controller’s time scale T = NM. When M is not significant, the absolute values of x1 » and
«%, decrease rapidly as T increases. However, the decrease in xf, is much slower since
the corresponding difference frequency is much smaller. When M gets larger, «1 » and x5,
could also exhibit some non-negligible values even if T is relatively high, in which case N
should be carefully chosen so that all of the parameters in Equation (27) are small enough.
It can also be observed that Klzz equals 1 and %1 > also exhibit abnormal values when M = 40.
This is the case in which M (w; + wy) = 27t and the two disturbance frequencies are aliased
together.
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Figure 2. The absolute values of (a) x1; (b) «3; (c) Klzz 5 (d) KlAz ; (e) the minimum eigenvalues of H and
(f) the time constant T corresponding to the slowest modes with different N and M.

The minimum eigenvalues of H as well as the time constants defined in Equation (24)
corresponding to the slowest modes are further calculated, whose results are shown in
Figure 2e,f, respectively. It can be observed that, generally, Ay gets larger and the con-
vergence rate gets faster as T increases when T < 4000, which mainly results from the
decreasing values of KlAz. However, when T > 4000, Apin decreases and the convergence
rate also decreases slightly. It can be found that the fastest convergence rate can be obtained
with T = 4000 for all rational M. Thus, T = 4000 is the best choice for the controller, with
which all of the parameters in Equation (27) exhibit very small values and the fastest
convergence rate could then be expected. This value just corresponds to one cycle of a
difference frequency of 2 Hz.

Next, the proposed algorithm is simulated with different combinations of N and M.
The resultant convergent behaviors of the total error energy, which is the summation of all
squared error signals, is shown in Figures 3 and 4. The total error energy is normalized in
these figures with respect to its initial value before the control. Figure 3 shows the averaged
convergent trajectories with a different T while M is fixed to 20. It can be found that the
controller’s time scale T is a key issue for the convergence rate. When T is small in this case,
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«f, has a relatively large value, and hence a slow convergence process is observed. The
convergence rate can be enhanced as T gets larger and the value of xf, gets smaller. The
fastest convergence rate can be obtained when T = 4000, just as predicted by Figure 2, in
which case «, is exactly 0. However, the convergence rate is slightly reduced as T increases
to 6000. This is because KlAZ also increases in this case, as shown in Figure 2. The results of
Figure 3 illustrate that an inappropriate controller structure would degrade the convergence
rate of the ANC system, just as analyzed in Section 2 and predicted by Figure 2. In order to
control the disturbances with the close frequencies efficiently, the controller’s time scale T
must be sufficiently large.

5 -
‘ ——T=400
0 ——T=1000
T=2000
ST ——T=4000
10l T=6000

Total error energy / dB
|
9

720 L
_25 L
730 L
_35 1 L L L
0 5 10 15 20 25
Time / sec

Figure 3. Averaged convergent trajectories of the normalized total error energy with M = 20 and
different time scales T of the controller.

Total error energy / dB

_35 1 1 1 1 1
0 2 4 6 8 10 12

Time / sec

Figure 4. Averaged convergent trajectories of the normalized total error energy with T = 4000 and
different decimation factors M.

Figure 4 shows the averaged convergent trajectories with a different M. Here, T is
set to 4000 so that the optimal convergence rate can be expected. It can be observed
that with a different M, the proposed algorithm exhibits almost the same convergent
behaviors. The only exception is the case of M = 40, with which the aliasing of the two
disturbance frequencies happens, and hence the noise reduction performance is significantly
deteriorated. It is also shown that the maximum stepsizes of the proposed algorithm with a
different M are almost the same. These results indicate that the decimation of the controller
would not affect the performance of the ANC system, provided that the decimation factor
is carefully chosen so that the aliasing of the disturbance frequencies is avoided. However,
the decimation of the controller can greatly reduce the computational burden. In this case,
the controller length N is reduced to 8 with a decimation factor of 500, while this value
is as large as 4000 for the original FXLMS algorithm. Thus, with a decimated controller,
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the proposed algorithm could still be computationally efficient even with a very large T.
Figure 5 shows the total power spectrum of the error signals, which is the summation of
the individual power spectrums over all of the error signals. It can be found that the tonal
disturbances with the close frequencies can be effectively attenuated.

40

---------- before control
after control

20

Relative amplitude / dB
(e}

AW AN W I A AN AN

740 1 1 1
80 90 100 110 120

Frequency / Hz

Figure 5. The total power spectrum of the error signals before and after control.

Finally, the convergent behaviors of the frequency responses of the controllers are com-
pared with the theoretical ones predicted by Equation (19). Figure 6 shows the averaged
and theoretical convergent trajectories of the controller’s frequency responses correspond-
ing to all of the four output channels at both f; and f5. In this case, T and M are set to
1000 and 20, respectively. It can be seen that the averaged results can match well with the
theoretical ones. The errors might mainly result from the independence assumption of the
initial phases and the controller, especially when the stepsize is relatively large.

0 i 2
chanl chan2
chan3 chan4
————— heoretical
—05t theoretical 15
z g
= -1 o
3 <
I~ = I /A u
N 05 /‘/" chanl chan2
——————— ’-' chan3 chan4
A theoretical
72 0 L L 1 L
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time / sec Time / sec
(a) (b)

Figure 6. Cont.
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------------- chan3 chan4
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Figure 6. Averaged convergent trajectories of the frequency responses of the controllers, with
T =1000 and M = 20: (a) real; (b) imaginary parts for Wy; (c) real; (d) imaginary parts for Wy. Colored
solid lines for simulation results and gray dashed lines for theoretical results.

4. Conclusions

The design of the narrowband ANC system becomes challenging if the disturbance
frequencies are rather close to each other, especially when the reference signals correspond-
ing to each disturbance frequency cannot be directly obtained from the primary sources.
In this paper, the control of the narrowband disturbances with two close frequencies is
discussed, in which only a mixed-reference signal is assumed to be available. Based on
the symmetry of the controller’s frequency responses, the convergent behaviors of a gener-
alized FxXLMS-based algorithm are theoretically analyzed, through which a characteristic
matrix is constructed to reveal the influence of the controller structure on the convergence
rate. A novel narrowband algorithm is further proposed with a decimated transversal
controller. Simulations based on a 4 x 8 ANC system are carried out, and the results show
that the time scale of the controller should cover one entire cycle of the difference frequency
in order to obtain the fastest convergence rate. With the help of the decimation of the
controller, the proposed algorithm can maintain its fastest convergence rate with much less
computational complexity.
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