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Abstract: It is often noticed in the literature that some key results on the stability of discrete-time
systems of difference equations are obtained from their corresponding results on the stability of
continuous-time systems of differential equations using suitable conformal mappings or bilinear
transformations. Such observations lead to the search for a unified approach to the study of root
distribution for real and complex polynomials, with respect to the left-half plane for continuous-
time systems (Routh–Hurwitz stability) and with respect to the unit disc for discrete-time systems
(Schur–Cohn stability). This paper is a further contribution toward this objective. We present, in a
systematic way, the similarities, and yet, the differences between these two types of stability, and we
highlight the symmetry that exists between them. We also illustrate how results on the stability of
continuous-time systems are conveyed to the stability of discrete-time systems through the proposed
techniques. It should be mentioned that the results on Schur–Cohn stability are known to be harder
to obtain than Routh–Hurwitz stability ones, giving more credibility to the proposed approach.

Keywords: Routh–Hurwitz stability; Schur–Cohn stability; continuous-time systems of differential
equations; discrete-time systems of difference equations

1. Introduction

The problem of eigenvalue distribution of systems of differential equations with
respect to a given curve in the complex plane has been intensively studied. The curves
mainly used are the imaginary axis and the unit circle. The Routh–Hurwitz stability
test for the imaginary axis and the Schur–Cohn stability test for the unit circle are the
most celebrated ones, and very efficient algorithms have been explored to handle these
two types.

The Routh–Hurwitz criterion addresses the stability of continuous-time systems of
differential equations, which requires that the eigenvalues of the system lie in the left-half of
the complex plane. It was thoroughly investigated by Hermite, Routh and Hurwitz. Their
contributions were further advanced by Lienard and Chipart (see [1–3]. Howland uses
quadratic forms to achieve similar objectives [4]. The Routh–Hurwitz stability criterion
remains the backbone of stability analysis of linear systems and has been tremendously
applied to resolve several issues in mathematics and its applications, especially in the
design of digital filters and other networks.

On the other hand, the Schur–Cohn criterion addresses the stability of discrete-time
systems of difference equations, which requires that the eigenvalues lie inside the unit
circle. It was explored by Schur, Cohn and others (look at [2,5–7]). The Schur–Cohn
stability criterion is essential in various areas, such as digital signal processing, control
theory, spectral analysis, numerical computations and many others. The root distribution
of polynomials in other sub-regions of the complex plane has also been investigated by
many authors [8].

It is often noticed in the literature that some interesting result about stability in the
Hurwitz sense, for example, triggers an interest in the corresponding question in the Schur
sense, and vice versa (see [9] for example).
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The current work is motivated by several attempts to give a common interpretation
to the algorithms for testing the stability for continuous-time (RH) and discrete-time (SC)
systems, by invoking the intimate relationships that might prevail between these stability
structures. For example, the notion of positive para-oddness is playing an increasingly
effective role in the stability analysis of continuous-time systems. For discrete-time systems,
the notion of para-oddness is mirrored by complex discrete reactance functions, which are
the discrete-time counterpart of positive para-odd functions. For some recent work in this
direction, see Ref. [10].

In Section 2 of the current work, we highlight in a systematic way the symmetries that
exist between these two types of stability. In Section 3, we provide detailed proof of the key
theorems presented in Section 2. In Section 4, we provide numerical illustrations. We end
in Section 5 with some concluding remarks.

2. Symmetry between Schur–Cohn and Routh–Hurwitz

We shall list the Routh–Hurwitz related definitions and theorems in the left column and
their Schur–Cohn definitions and theorems counterparts in the right one. The properties
listed below highlight in a striking manner the strong correlations between these two types
of stability. At least in the opinion of the author, such correlations would form a firm
basis for any further investigations into the common nature of the Routh–Hurwitz and the
Schur–Cohn stability criteria.

Definition 1. A linear continuous-time system of differential equations is stable if and only if all
its eigenvalues lie in the left half-plane. If

f (s) = a0 + a1s + · · ·+ an−1sn−1 + ansn (1)

with real or complex coefficients and n a non-negative integer, is the characteristic polynomial of the
system, then the system is stable if all zeros of f (s) lie in the left-half plane. Such polynomials are
said to be Routh–Hurwitz stable.

Definition 2. The paraconjugate of f is defined by f ∗(s) = f (−s). Then, f ∗ can be written as
f ∗(s) = a0 − a1s + a2s2 + · · ·+ (−1)nansn where ak denotes the complex conjugate of ak for
k = 0, 1, . . . , n.

Definition 3. The test function of the given continuous-time

system is defined by Φ(s) =
f (s)− f ∗(s)
f (s) + f ∗(s)

(2)

Definition 4. A rational function H(s) with complex coefficients is said to be positive if Re[H(s)] > 0
whenever Re s > 0.

Theorem 1. The linear continuous-time system of differential equations characterized by (1) is
stable if and only if the test function Φ(s) defined by (2) is a positive function.

Definition 5. A linear discrete-time system of difference equations is stable if and only if all its
eigenvalues lie inside the unit disc. If

g(z) = a0 + a1z + · · ·+ an−1zn−1 + anzn (3)

with real or complex coefficients and n a non-negative integer, is the characteristic polynomial of the
system, then the system is stable if all zeros of g (z) lie inside the unit disc. Such polynomials are
said to be Schur–Cohn stable.
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Definition 6. The reciprocal of g is defined by gτ(z) = zng(1/z). Then, gτ can be written as
gτ(z) = an + an−1z + an−2z2 + · · · + a0zn where ak denotes the complex conjugate of ak for
k = 0, 1, . . . , n.

Definition 7. The test function of the given discrete-time

system is defined by Ψ(z) =
g(z)− gτ(z)
g(z) + gτ(z)

(4)

Definition 8. A rational function K(z) with complex coefficients is said to be a discrete reactance
function if Re[K(z)] > 0 whenever |z| > 1.

Theorem 2. The linear discrete-time system of difference equations characterized by (3) is stable if
and only if the test function Ψ(z) defined by (4) is a discrete reactance function.

Theorem 3. The linear continuous-time system of differential equations characterized by (1) is stable
if and only if the test function Φ(s) defined by (2) can be written in the continued fraction expansion

Φ(s) = a0 + b0s +
1

a1 + b1s + 1
a2 + b2s+

...
+ 1

an−2+bn−2s+ 1
an−1+bn−1s

where Reaj = 0, and bj > 0 for 0 ≤ j ≤ n− 1.

Theorem 4. The linear discrete-time system of difference equations characterized by (3) is stable if
and only if the test function Ψ(z) defined by (4) can be written in the continued fraction expansion

Ψ(z) = h0
z− 1
z + 1

+ k0 +
1

h1
z−1
z+1 + k1+

...
+ 1

hn
z−1
z+1+kn

where h0 ≥ 0, h1 > 0, . . . , hn > 0 and k j are imaginary or zero for 0 ≤ j ≤ n.

3. Proof of the Key Results

The proofs of the above four key theorems will now be laid out.
To prove Theorem 1, the following two lemmas are needed.

Lemma 1. Suppose Resj < 0, then
∣∣s− sj

∣∣ > ∣∣s + sj
∣∣ whenever Res > 0.

Proof .
If Resj < 0, and Res > 0, then Resj · Res < 0.
Hence, (

sj + sj
)
(s + s) < 0

which can be written as
− ssj − sjs > ssj + ssj.

By adding the expression ss + sjsj to both sides, we obtain

ss− ssj − sjs + sjsj > ss + ssj + ssj + sjsj,
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which can be written as (
s− sj

)(
s− sj

)
>
(
s + sj

)(
s + sj

)
,

which is equivalent to ∣∣s− sj
∣∣2 >

∣∣s + sj
∣∣2

implying that ∣∣s− sj
∣∣ > ∣∣s + sj

∣∣.
�

Lemma 2. If f and f* have no common roots and g(s) = f ∗(s)
f (s) then f is a Hurwitz polynomial if

and only if g maps the right-half plane into the unit circle.

Proof .
First, assume that f is a Hurwitz polynomial. The factored forms of f and f ∗ can be

written as

f (s) = (s− s1)(s− s2) · · · (s− sn) and f ∗(s) = (−1)n(s + s1)(s + s2) · · · (s + sn)

Since f is a Hurwitz polynomial, then Resj < 0, for all 1 ≤ j ≤ n. by Lemma 1∣∣s− sj
∣∣ > ∣∣s + sj

∣∣ for all 1 ≤ j ≤ n, whenever Res > 0.

Hence
| f (s)| > | f ∗(s)| wheneverRes > 0.

which is equivalent to
|g(s)| < 1.

Therefore, g maps the right-half plane into the unit circle.
To prove the converse, assume |g(s)| < 1 whenever Res > 0, then

| f (s)| > | f ∗(s)| forRes > 0.

So, f has no roots for Re s > 0, which implies the only possible roots of f when Re s ≥ 0
are purely imaginary.

From the factored forms of f of f ∗, any purely imaginary root of f is also a root of f ∗,
which contradicts the hypothesis that f and f ∗ have no roots in common.

Therefore, f has only roots with negative real parts, and f is a Hurwitz polynomial. �

Proof of Theorem 1.

Φ(s) =
f (s)− f ∗(s)
f (s) + f ∗(s)

is equivalent to

Φ(s) =
1− g(s)
1 + g(s)

where g(s) =
f ∗(s)
f (s)

.

Clearly

Φ(s) =
1− g(s)
1 + g(s)

is equivalent to

g(s) =
1−Φ(s)
1 + Φ(s)
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Direct calculations lead to

Φ(s) + Φ(s) =
2
[
1− g(s) g(s)

]
|g(s) + 1|2

and

1− g(s)g(s) =
2
[
Φ(s) + Φ(s)

]
|Φ(s) + 1|2

.

by Lemma 2, f is a Hurwitz polynomial if and only if

|g(s)| < 1 whenever Res > 0.

But
|g(s)| < 1⇔ g(s)g(s)< 1⇔ 1− g(s)g(s) >0

which is equivalent to

Φ(s) + Φ(s) =
2
(

1− g(s)g(s)
)

|g(s) + 1|2
> 0⇔ ReΦ(s) > 0.

The conclusion is:
f is a Hurwitz polynomial if and only if Re Φ (s) > 0 whenever Re s > 0.
By definition, Φ is a positive function if and only if Re Φ (s) > 0 whenever Re s > 0.
Therefore, f is a Hurwitz polynomial if and only if Φ is a positive function and the

proof is complete. �

Proof of Theorem 2. Obviously, the relation s = z−1
z+1 is equivalent to z = 1+s

1−s , and |z|<1
equivalent to Res < 0.

Defining the function

f (s) = (1− s)ng
(

1 + s
1− s

)
.

It follows that
f (s) = ∑n

k=0 ak(1− s)n−k(1 + s)k.

From the definition of Hurwitzness Hurwitz, f is a Hurwitz polynomial if and only if
g(z) 6= 0 for all |z| ≥ 1.

Consider the paraconjugate of f

f ∗(s) = ∑n
k=0 ak(1 + s)n−k(1− s)k.

If gτ(z) = an + an−1z + an−2z2 + · · ·+ a0zn as defined in Definition 6, then

(1− s)ngτ

(
1 + s
1− s

)
=

n

∑
k=0

ak(1 + s)n−k(1− s)k.

So, if

f (s) = (1− s)ng
(

1 + s
1− s

)
,

then

f ∗(s) = (1− s)ngτ

(
1 + s
1− s

)
.

It follows that

f (s) + f ∗(s) = (1− s)n(g + gτ)

(
1 + s
1− s

)
,
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and

f (s)− f ∗(s) = (1− s)n(g− gτ)

(
1 + s
1− s

)
.

Defining the function

P(s) =
(g− gτ)

(
1+s
1−s

)
(g + gτ)

(
1+s
1−s

) ,

Then

P(s) =
f (s)− f ∗(s)
f (s) + f ∗(s)

.

By definition, the function (g−gτ)(z)
(g+gτ)(z) is a complex discrete reactance function if and

only if

Re
[
(g− gτ)(z)
(g + gτ)(z)

]
> 0 whenever |z| > 1,

and that is equivalent to Re [P(s)] > 0 whenever Res > 0
Which is in turn equivalent to the fact that P is a positive function.
g, gτ have no zeros in common, if and only f and f ∗ also have no zeros in common.
By [11] (Theorem 5.1, p. 300), P is positive if and only if f is Hurwitz, which is

equivalent to g(z) 6= 0 for all |z| ≥ 1, and that completes the proof. �

The proof of Theorem 3 was established in [12] (Theorem 3.2, p. 65).
The continued fraction expansion of the above theorem led to the construction of the

Extended Routh Array in [12], which generalized the Routh Array to polynomials with
complex coefficients.

Proof of Theorem 4. We can assume that an = 1 in g(z).
The function g(z) is Schur stable if and only if f (s) as defined in (1) is a Hurwitz

polynomial. By [2] (p. 78),the function Φ(s) = f (s)− f ∗(s)
f (s)+ f ∗(s) defined in (2) can be written in

the form
Φ(s) =

1
it1 + d1s + 1

it2 + d2s+
...
+ 1

itn+dns

where tk real and dk > 0 for 1 ≤ k ≤ n.
Since Ψ(z) = Φ

(
z−1
z+1

)
, we obtain

Ψ(z) =
1

it1 + d1
z−1
z+1 + 1

it2 + d2
z−1
z+1+

...
+ 1

itn+dn
z−1
z+1

Substitute dj by hj and tj by kj for j = 1, . . . , n to obtain the form for Ψ, as in the
statement of the theorem.

h0 and k0 can be assumed to be zero, since in the rational function Φ as defined in (2),
the degree of the numerator can be 1 less than the degree of denominator, which occurs
when the degree of f defined in (1) is even. �

Note how Theorem 2 was obtained from Theorem 1 by using the conformal mapping
s = z−1

z+1 which is equivalent to z = 1+s
1−s .
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Additionally, in the proof of Theorem 4, the conformal mapping s = z−1
z+1 was success-

fully used again to deliver Theorem 4 from the stability test theorem of Ref. [2] (p. 78).
An interesting connection between continued fraction expansions and systems that

are stable with respect to the left-half plane has been established in Ref. [12]. Theorem 3.2
of [12] played a key role in the derivation of the ERA, which is the complex counterpart
of the Routh Array. Additionally, for discrete-time systems, testing the stability requires
the expansion of a discrete reaction function in a continued fraction form. For an excellent
survey on continued fraction expansions in stability contexts, we refer to Ref. [13].

4. Numerical Illustrations

Example 1. Consider the Hurwitz polynomial

f (s) = s3 + 4s2 + 6s + 4

whose zeros are −2, −1 + I and −1–− i having all negative real parts.
The paraconjugate of f is

f ∗(s) = −s3 + 4s2 − 6s + 4.

Therefore, the test function can be written as

Φ(s) =
f (s)− f ∗(s)
f (s) + f ∗(s)

=
s3 + 6s
4s2 + 4

.

By long division, we get

Φ(s) =
1
4

s +
5s

4s2 + 4
,

which can be written as
Φ(s) =

1
4

s +
1

4s2+4
5s

.

Another long division leads to

Φ(s) =
1
4

s +
1

4
5 s + 4

5s
,

which finally can be written as

Φ(s) =
1
4

s +
1

4
5 s + 1

5
4 s

.

This is exactly the continued fraction expansion of Φ, as expressed in Theorem 3 with

a0 = a1 = a2 = 0, b0 =
1
4
> 0, b1 =

4
5
> 0, b2 =

5
4
> 0.

Example 2. Consider the Schur polynomial

g(z) = 4z3 − 6z2 + 4z− 1

whose zeros are
1
2

,
1
2
+

1
2

i,
1
2
− 1

2
i

all lying inside the unit disc.
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The reciprocalof g is

gτ(z) = zng(1/z) = −z3 + 4z2 − 6z + 4

Therefore, the test function can be written as

Ψ(z) =
g(z)− gτ(z)
g(z) + gτ(z)

=
5z3 − 10z2 + 10z− 5

3z3 − 2z2 − 2z + 3

Using basic algebra to expand Ψ(s) in the variable (z− 1)/(z + 1) leads to the following
expansion

Ψ(z) =
15
11

(
z− 1
z + 1

)
+

1
121
40

(
z−1
z+1

)
+ 1

40
11 (

z−1
z+1 )

This is exactly the continued fraction expansion of Ψas expressed in Theorem 4 with

k0 = k1 = k2 = 0, h0 =
15
11

> 0, h1 =
121
40

> 0, h2 =
40
11

> 0.

5. Conclusions

The search for a unified approach to the study of eigenvalue distribution with respect
to the left-half plane for continuous systems and with respect to the unit disc for discrete
systems has been advocated by many eminent researchers in the field. In the current
work, we provide a framework to be pursued to reconcile the two most important types
of stability, namely Routh–Hurwitz and Schur–Cohn. The striking symmetries between
these two types were highlighted. The proof of the main theorems provides further insight
into the intriguing relationships that exist between the two stability criteria. The results we
established are simply a contribution to various attempts to put different types of stability
on common ground. However, many research efforts are still directed toward the search
for a unified approach to the study of root distribution, not only for the further theoretical
development of this subject, but also for the sake of obtaining simpler and more easily
realizable stability criteria in practice.

The author thanks the referees for their suggestions, which certainly improved the
quality of the paper.
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