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Abstract: The major finding of this paper is studying the stability of a double diffusive convection
using the so-called local thermal non-equilibrium (LTNE) effects. A new combined model that we call
it a Brinkmann-Forchheimer model was considered in this inquiry. Using both linear and non-linear
stability analysis, a double diffusive convection is used in a saturated rotating porous layer when
fluid and solid phases are not in the state of local thermal non-equilibrium. In addition, we discussed
several related topics such as the effect of solute Rayleigh number, symmetric properties, Brinkman
coefficient, Taylor number, inter-phase heat transfer coefficient on the stability of the system, and
porosity modified conductivity ratio. Moreover, two cases were investigated in non-linear theory, the
case of the Forchheimer coefficient F = 0 and the case of the Taylor-Darcy number τ = 0. For the
validation of this work, some numerical experiments were made in the non-linear energy stability
and the linear instability theories.

Keywords: double diffusive convection; porous layer rotation; brinkman model; local thermal
non-equilibriummodel; Taylor-Darcy number; Forchheimer model

MSC: 35D40; 65C30; 90C55

1. Introduction

Due to their wide range of applications, from the unification of binary mixtures to melt-
ing runoff in saturated soil, double diffusive convection problems in fluid and porous media
have received a lot of attention in the last few decades, where symmetric properties played
an important role in solving these problems. The study of double diffusive-convection in
a rotating porous media has been covered and supported theoretically in many studies
as well as through practical applications in engineering. The study of double diffusive-
convection in a porous medium based on the theory of linear stability for several thermal
and solute boundary conditions was first undertaken by [1]. Later, authors in [2] studied
the double diffusive-convection in porous media with the existence of double-diffusion
effects. An essential study of the effects of rotation on linear and non-linear double diffusive
convection in a sparsely packed porous medium can be found in [3]. Important examples
and experiments that contain geophysical framework, electrochemistry, and some other
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applications with an explanation of the non-linear energy stability of double diffusive
convection problems, resulting in many future investment, are those in [4,5]. A really
deep study and a comprehensive review of the problems associated with these mentioned
applications can be found in [6,7]. Moreover, an excellent review of literature on double
diffusive natural convection in a porous, fluid-filled medium can be obtained in the book [8].
Other useful review articles on a double diffusive convection in porous media can be found
in [9–11]. The authors in [12–14] studied the non-linear disturbance theory that is used for
the observation of the double diffusive convection in a porous horizontal layer. The same
study was performed by [15], where the linear stability of thermal convection was analyzed
using the Darcy–Brinkman model. Another important category of studies that are related
to the problems of double diffusive-convection and the melting of permafrost under the
sea can be seen in [16–19]. The impact of porous medium anisotropy on double diffusive
convection was explained in [20]. Further studies with many different applications such
as solidify and centrifugal casting of minerals, bio-mechanics, petroleum manufacture,
chemical operations and food, rotating machinery, and geophysical problem are found
in [21–35].

2. Basic Equations

Consider a rotating porous material layer that is located between the two planes z = 0
and z = d and that has been saturated with fluid as shown in Figure 1 below.

Figure 1. A rotating fluid saturated porous layer.

The problem can be represented as follows

Ts = Tf = TL, C = CL, z = 0; Ts = Tf = TU , C = CU , z = d. (1)

The equations are:

vi = −
K
µ

p, i − ν|v|vi + ν̂∆vi −
Kgρ f

µ
[1− αt(Tf − TL) + αc(C− CL)]ki −

2
ε
(γ× v)i,

vi,i = 0,

ε(ρc) f T f
, t + (ρc) f viT

f
, i = εκ f ∆Tf + h(Ts − Tf ),

(1− ε)(ρc)sTs
, t = (1− ε)κs∆Ts − h(Ts − Tf ),

εC, t + viC, i = εκc∆C,

(2)
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where ∆ is the Laplace operator in 3-dimensions. vi, p, C, Ts and Tf denote velocity, pressure,
concentration of salt, temperature of the solid and temperature of the fluid, respectively.
The terms K, µ, g, ρ, ε, αt, αc, c, h, κ f , κs, κc, γ, ν and ν̂ denote permeability, dynamic viscosity,
gravity, density, porosity, thermal expansion coefficient, solute expansion coefficient, spe-
cific heat at constant pressure, inter-phase heat transfer coefficient, thermal conductivity of
the fluid expansion coefficient, thermal conductivity of the solid, salt diffusivity, angular
velocity of rotation, Forchheimer coefficient and Brinkman coefficient, respectively.

Throughout this paper, we will use both of the standard indicial and Einstein notations,
and ki = (0, 0, 1) .

Let us assume that the domain DE = {(x, y) ∈ R2} × {z ∈ (−1, 1)} × {t > 0}. It is
obvious that the equations of (1) hold in DE, and assume that Bs = (v̄i, p̄, T̄f , T̄s, C̄) denote
the solution of the initial steady state of the system, such that the fluid flow is vanished,
v̄i ≡ 0, and assume also that these solutions are in terms of only z, such that:

T̄s = T̄f = −βtz + TL, C̄ = −βcz + CL, (3)

where βt =
TU−TL

d , βc = CU−CL
d , p̄ which is called the steady pressure, and it is given by

(2)1 and can be reduced to

p̄, i = gρ f [1− αt(T̄f − TL) + αc(C̄− CL)]ki, (4)

To understand how the stability in (2) works, we introduce the perturbation (ui, π, θ, ψ, φ)
to the steady solutions (v̄i, p̄, T̄f , T̄s, C̄), such that

vi = v̄i + ui, p = p̄ + π, Tf = T̄f + θ, Ts = T̄s + ψ, and C = C̄ + φ

Using the equations in (3) and in (4), the system can be introduced as the following

ui = −
K
µ

π, i − ν|u|ui + ν̂∆ui +
ρ f Kgαt

µ
θki −

ρ f Kgαc

µ
φki −

2
ε
(γ× u)i,

ui,i = 0,

ε(ρc) f θ, t + (ρc) f uiθ, i = (ρc) f βtw + εκ f ∆θ + h(ψ− θ),

(1− ε)(ρc)sψ, t = (1− ε)κs∆ψ− h(ψ− θ),

εφ, t + uiφ, i = βcw + εκc∆φ.

(5)

Let us consider now the variables with no dimensions that have the following scales

xi = x∗i d, t =
(ρc) f d2

κ f
t∗, ui = Uu∗i , π =

Uµd
K

π∗, θ = T]θ∗, ψ = T]ψ∗, φ = T]
φφ∗, τ =

2γ

ε
,

U =
εκ f

(ρc) f d
, κc =

κ f

(ρc) f
, M =

hd2

εκ f
, F = νU, B =

ν̂

d2 , A =
(ρc)sκ f

(ρc) f κs
, λ =

εκ f

(1− ε)κs
,

T] = Ud

√
µβtc f

εκ f gαtK
, T]

φ = Ud

√
µβcc f

εκ f gαcK
, Rt = ρ f d

√
αtβtc f gK

µεκ f
, Rc = ρ f d

√
αcβcc f gK

µεκ f
.

Here Rt and Rc are the numbers of Rayleigh (dimensionless numbers), and τ is the
Taylor-Darcy number. Therefore, the equations of the system of no-dimension can be
given as

ui = −π, i −F|u|ui + B∆ui + Rtθki − Rcφki − (τ × u),

ui,i = 0,

θ, t + uiθ, i = Rtw + ∆θ + M(ψ− θ),

Aψ, t = ∆ψ− λM(ψ− θ),

φ, t + uiφ, i = Rcw + ∆φ,

(6)
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where F and B are the Forchheimer and Brinkman coefficients, respectively, and the
boundary conditions are given by the following

ui = 0, θ = 0, ψ = 0, φ = 0, on z = 0, 1. (7)

3. Linear Instability

To obtain the threshold for linear instability case, we neglect the nonlinear terms
from system (6). Since we have here a linearity, one can find solutions for the form
ui(x, t) = ui(x)eσt, θ(x, t) = θ(x)eσt, ψ(x, t) = ψ(x)eσt and φ(x, t) = φ(x)eσt, such that
σ ∈ C. Thus, we end up having the following system

ui = −π, i + B∆ui + Rtθki − Rcφki − (τ × u),

ui,i = 0,

σθ = Rtw + ∆θ + M(ψ− θ),

Aσψ = ∆ψ− λM(ψ− θ),

σφ = Rcw + ∆φ.

(8)

Now, taking the third components of the curl and double curl of Equation (8)1 in
system (8), leads to

ϕ = τwz,

∆w = B∆2w + Rt∆∗θ − Rc∆∗φ− τ
∂ϕ

∂z
,

ui,i = 0,

σθ = Rtw + ∆θ + M(ψ− θ),

Aσψ = ∆ψ− λM(ψ− θ),

σφ = Rcw + ∆φ.

(9)

Here ∆∗ = ∂2

∂x2 + ∂2

∂y2 and ϕ = k · ∇ × u is the third component of the vorticity.
Substituting (9)1 into (9)2, we obtain

∆w = B∆2w + Rt∆∗θ − Rc∆∗φ− τ2wzz,

ui,i = 0,

σθ = Rtw + ∆θ + M(ψ− θ),

Aσψ = ∆ψ− λM(ψ− θ),

σφ = Rcw + ∆φ.

(10)

Now, we consider the so-called “normal mode” of the representation w = W(z)h(x, y),
θ = Θ(z)h(x, y), ψ = Ψ(z)h(x, y) and φ = Φ(z)h(x, y), such that h(x, y) is a plan-form that
tiles the plane (x, y) with ∆∗h = −a2h.

Applying the previous represented mode, equations in (10) yield

(D2 − a2)W = B(D2 − a2)2W − a2RtΘ + a2RcΦ− τ2D2W,

σΘ = (D2 − a2)Θ + RtW + M(Ψ−Θ),

σAΨ = (D2 − a2)Ψ− λM(Ψ−Θ),

σΦ = (D2 − a2)Φ + RcW,

(11)

and the boundary conditions are

W = 0, Θ = 0, Ψ = 0, Φ = 0, at z = 0, 1. (12)

Hence, letting
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D = D2 − a2, D1 = D−M− σ, D2 = D− λM− σA, D3 = D1D2 − λM2, and D4 = D− σ.

Thus, from (11)2, (11)3 and (11)4, and by applying the above assumptions, we obtain

D1Θ = −RtW −MΨ, D2Ψ = −λMΘ, D3Θ = −RtD2W and D4Φ = −RcW. (13)

Now, multiplying Equation (11)1 by D3 and D4, yields

D3D4DW = BD3D4D
2W − a2RtD3D4Θ + a2RcD3D4Φ− τ2D3D4D2W (14)

With σ = 0, (13) is reduced to

(D4 −M[1 + λ]D3)W = B(D5 −M[1 + λ]D4)W + a2R2
t (D

2 − λMD)W

−a2R2
c (D

2 −M[1 + λ]D)W − τ2(D3 −M[1 + λ]D2)D2W.
(15)

Since the boundary condition W = 0 is represented on z = 0, 1, one can rewrite W as
series of the sin function, such that sin(η), where η = nπz. Next, with Λ = η

z2 + a2, and a
is the number of waves in the series in (15), one can obtain

R2
t =
{Λ2 + BΛ3 + τ2n2π2Λ + a2R2

c}(Λ + M[1 + λ])

a2(Λ− λM)
. (16)

Then, minimizing R2
t with respect to a2, we obtain

C5Λ5 + C4Λ4 + C3Λ3 + C2Λ2 + C1Λ + C0 = 0, (17)

where
C5 = 2B, C4 = 1 + Bk + 2HB, C3 = 2H(1 + Bk)− 4λπ2M− R2

c ,

C2 = 2(L + k)− (kL− R2
c π2)− 3π2λM(1 + Bk)− 2kR2

c ,

C1 = −2(L + k) + 2kR2
c π2 − R2

c − HkR2
c ,

C0 = π2λM(kL− R2
c π2)− HkR2

c π2,

k = M(1 + λ), L = τ2π2 and H = λM− π2.

As finding the zeros of Equation (17) analytically is almost impossible, we use some iterative
methods for solving nonlinear equations such as Newton Raphson (NR), Bisection, and
many other methods that can be seen in [36]. In fact, we use here the Newton–Raphson
iterative method (NR) to solve the equation in (17) as we already tried with many different
methods, but the results of NR method are more accurate and method converges to the
solutions faster than the methods with fewer iterations. The following steps show how we
use NR method. First, let

P(Λ) = c5Λ5 + c4Λ4 + c3Λ3 + c2Λ2 + c1Λ + c0 = 0,

Next, we can create a sequence of initial solutions by using the following formula:

Λn = Λn−1 −
P(Λn−1)

P ′(Λn−1)
,

where we select Λ0 = π2. In fact, the tolerance here is γ > 0 and by repeating the iterations
we can keep creating the solutions Λ1, ...., ΛN until we satisfy the condition below:

| f (Λn)| < γ = 10−10. (18)
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Moreover, we can use another method such as the fixed-point method (FP), where can
write the previous mentioned equation as below:

Λ =
1

5
√

c5

(
− c4Λ4 − c3Λ3 − c2Λ2 − c1Λ− c0

)1/5. (19)

Then, with Λ0 = π2, one may use the formula below:

Λn =
1

5
√

c5

(
− c4Λ4

n−1 − c3Λ3
n−1 − c2Λ2

n−1 − c1Λn−1 − c0
)1/5. (20)

One may also use here the tolerance γ > 0 and by repeating the iterations we can keep
creating the solutions Λ1, ...., ΛN until we satisfy the condition below:

|Λn −Λn−1| < γ = 10−10. (21)

4. Nonlinear Energy Stability Theory
4.1. Nonlinear Stability Analysis with Forchheimer Coefficient F = 0

Before developing the nonlinear energy stability analysis, we can start by taking the
third component of Equation (6)1 in the system (6), which will lead to

ϕ = τwz,

∆w = B∆2w + Rt∆∗θ − Rc∆∗φ− τ
∂ϕ

∂z
,

(22)

substituting (22)1 into (22)2, we obtain

∆w = B∆2w + Rt∆∗θ − Rc∆∗φ− τ2wzz. (23)

Let us suppose that V represents the period cell, ‖ · ‖ represents the norm on L2(V),
and (·, ·) represents the inner product on L2(V). Niow, multiplying (23) by w, (6)3 by θ, (6)4
by λ−1ψ and (6)5 by φ and integrating over V, yield

0 = −‖∇w‖2 − τ2‖wz‖2 − B‖∆w‖2 + Rt(∇∗θ,∇∗w)− Rc(∇∗φ,∇∗w),
d
dt

1
2
‖θ‖2 = Rt(w, θ)− ‖∇θ‖2 + M(θ, ψ− θ),

d
dt
A
2λ
‖ψ‖2 = −λ−1‖∇ψ‖2 −M(ψ, ψ− θ),

d
dt

1
2
‖φ‖2 = Rc(w, φ)− ‖∇φ‖2.

(24)

Multiply (24)1 by λ1 and (24)4 by λ2 and define E, I and D by

E(t) =
1
2
‖θ‖2 +

A
2λ
‖ψ‖2 +

λ2

2
‖φ‖2,

I = λ1Rt(∇∗θ,∇∗w) + Rt(w, θ)− λ1Rc(∇∗φ,∇∗w) + Rc(w, φ),

D = λ1‖∇w‖2 + τ2λ1‖wz‖2 + Bλ1‖∆w‖2 + ‖∇θ‖2 + λ−1‖∇ψ‖2 + λ2‖∇φ‖2 + M‖θ − ψ‖2,

(25)

from adding (24)1–(24)4, we obtain

dE
dt

= I −D ≤ −D(1− 1
Υ
), (26)

where
1
Υ

= max
H

I
D . (27)
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If Υ > 1, then with substituting π as the constant in poincarés inequality, we can
see that

D ≥ c(‖θ‖2 + ‖ψ‖2 + ‖φ‖2) = cE,

where c = min{2π, 2πλA−1, 2πλ−1
2 }, from integrating (26) with γ = c(1− 1

Υ ), we have

E(t) ≤ E(0)e−γt ⇒ E(t)→ 0 as t→ ∞ at least exponentially.

From Equation (6)1 (F = 0), with substituting µ as the constant in the poincarés
inequality, one could show that

‖u‖2 ≤ −µB‖u‖2 + Rt(w, θ)− Rc(w, φ),

by using Youngs inequality, we obtain

(1 + µB)‖u‖2 ≤ R2
t

2
‖θ‖2 +

R2
c

2
‖φ‖2 + ‖w‖2,

hence,

‖u‖2 ≤ R2
t

2µB
‖θ‖2 +

R2
c

2µB
‖φ‖2.

Therefore, Υ > 1 also ensures the exponential decay ‖u‖. One can show that Υ > 1 is
equivalent to R < RE, where RE is the value of R for which Υ = 1. This value of RE is the
nonlinear stability threshold.

To solve the maximum problem (27), we study the Euler Lagrange equations which
can be found from

REδI − δD = 0. (28)

Thus, the equations of Euler Lagrange appear from variational problem (28), are

2λ1(∆w− B∆2w + τ2wzz) + Rt(θ − λ1∆∗θ) + Rc(λ1∆∗φ + λ2φ) = ζ,i

2(∆θ −Mθ) + Rt(w− λ1∆∗w) + 2Mψ = 0,

λ−1∆ψ−Mψ + Mθ = 0,

2λ2∆φ + Rc(λ2w + λ1∆∗w) = 0.

(29)

Now, eliminating the Lagrange multiplier ζ, and representing the normal mode and
notation as described in Section 3, system (29), yields

(D2 − a2)W − B(D2 − a2)2W + τ2D2W +
Rt(1 + a2λ1)

2λ1
Θ +

Rc(λ2 − a2λ1)

2λ1
Φ = 0,

(D2 − a2 −M)Θ +
Rt(1 + a2λ1)

2
W + MΨ = 0,

(D2 − a2 − λM)Ψ + λMΘ = 0,

(D2 − a2)Φ +
Rc(λ2 − a2λ1)

2λ2
W = 0.

(30)

Now, one may evaluate the critical Rayleigh number (CRN) by using the following

RE = max
λ1,λ2

min
a2

R2
t (a2, λ1, λ2).
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4.2. Nonlinear Stability Analysis with Taylor-Darcy Number τ = 0 (F 6= 0)

Multiply, (6)1 by ui, (6)3 by θ, (6)4 by λ−1ψ and (6)5 by φ and integrating over V,
we obtain

0 = −‖u‖2 −F‖u‖3
3 − B‖∇u‖2 + Rt(w, θ)− Rc(w, φ),

d
dt

1
2
‖θ‖2 = Rt(w, θ)− ‖∇θ‖2 + M(θ, ψ− θ),

d
dt
A
2λ
‖ψ‖2 = −λ−1‖∇ψ‖2 −M(ψ, ψ− θ),

d
dt

1
2
‖φ‖2 = Rc(w, φ)− ‖∇φ‖2,

(31)

where ‖ · ‖3 denotes the L3(V). Let us assume now that both of λ1 and λ2 are positive
parameters. Therefore, by multiplying (31)1 by λ1, (31)4 by λ2 and adding these two
equations with (31)2 and (31)3, we obtain

dE
dt

= I −D − λ1F‖u‖3
3 ≤ I −D,

where E, I and D are given by

E(t) =
1
2
‖θ‖2 +

A
2λ
‖ψ‖2 +

λ2

2
‖φ‖2,

I = Rt([1 + λ1]w, θ) + Rc([λ2 − λ1]w, φ),

D = λ1‖u‖2 + λ1B‖∇u‖2 + ‖∇θ‖2 + λ−1‖∇ψ‖2 + λ2‖∇φ‖2 + M‖θ − ψ‖2,

(32)

With some mathematical simplifications, we obtain

dE
dt

= −D(1− 1
RE

), (33)

where
1

RE
= max

H

I
D , (34)

such thatH is the space of admissible functions.
In fact, if RE > 1 then substituting π as the constant in poincarés inequality, one

can obtain
D ≥ α(‖θ‖2 + ‖ψ‖2 + ‖φ‖2) = αE,

where α = min{2π, 2πλA−1, 2πλ−1
2 }. Now integrating (33) with γ = α(1− 1

RE
), yields

E(t) ≤ E(0)e−γt ⇒ E(t)→ 0 as t→ ∞ at least exponentially.

To obtain decay of u, we note from Equation (31)1 with the aid of Youngs inequality

‖u‖2 +F‖u‖3
3 + B‖∇u‖2 = Rt(w, θ)− Rc(w, φ)

≤ R2
t ‖θ‖2 + R2

c‖φ‖2 +
1
2
‖w‖2

≤ R2
t ‖θ‖2 + R2

c‖φ‖2 +
1
2
‖u‖2.

Then, the decay of u is clearly obtained.
Since the global stability has been already established, we can study the maximum

problem (34) keeping in mind its condition as RE > 1. In fact, we could solve this max-
imization problem by studying the equations of Euler Lagrange which can be obtained
from the following

REδI − δD = 0.
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Now, by using the above equation and the values of both δI and δD, one can obtain
the following equations

2λ1ui − 2λ1B∆ui + Rt(1 + λ1)θki + Rc(λ2 − λ1)φki = ς,i,

2∆θ + Rt(1 + λ1)w− 2Mθ + 2Mψ = 0,

λ−1∆ψ + Mθ −Mψ = 0,

2λ2∆φ + Rc(λ2 − λ1)w = 0,

(35)

The above equations in (35) are called the Euler Lagrange equations, where ς,i rep-
resents the Lagrange multiplier. Now, by taking the third component in (35)1, one can
remove the Lagrange multiplier. Thus, we obtain

2λ1∆w− 2λ1B∆2w + Rt(1 + λ1)∆∗θ + Rc(λ2 − λ1)∆∗φ = 0,

2∆θ + Rt(1 + λ1)w− 2Mθ + 2Mψ = 0,

λ−1∆ψ + Mθ −Mψ = 0,

2λ2∆φ + Rc(λ2 − λ1)w = 0.

(36)

Introducing the normal mode representations, then, system (36) becomes

(D2 − a2)W − B(D2 − a2)2W − a2Rt(1 + λ1)

2λ1
Θ− a2Rc(λ2 − λ1)

2λ1
Φ = 0,

(D2 − a2 −M)Θ +
Rt(1 + λ1)

2
W + MΨ = 0,

(D2 − a2 − λM)Ψ + λMΘ = 0,

(D2 − a2)Φ +
Rc(λ2 − λ1)

2λ2
W = 0.

(37)

Now, one my evaluate the critical Rayleigh number (CRN) by using the following

RE = max
λ1,λ2

min
a2

R2
t (a2, λ1, λ2).

5. Discussion of Results

For the validation of the proposed work, we present in this section some experimental
examples and focus on the numerical solutions of the instability of the linear case and the
stability of the nonlinear case. The numerical solutions of the systems in (11) (the linear
instability), with respect to the stationary and oscillatory convection cases. The results
are reported when M = 100, λ = 0.5, τ = 20 and B = 0.1. Furthermore, we discuss the
different values of λ, M, B, τ and Rc in Figures 2–5. Chebyshev collocation method has
been used for solving the systems of eigenproblems (11), (30) and (37). More information
about these types of systems can be seen in [21–24,37–39]. The solutions are then presented
in Tables 1–3, which comprise RL and RE which are called the critical thermal Rayleigh
numbers (CTRN) for both of the linear instability theory and the non-linear stability theory,
respectively. In fact, these values have been evaluated from (11), (30) and (37) in order
to compute the various values of λ, M, B and τ, respectively, with Rc = 0. We can see
in the results that the values of M, τ and B are increasing in the stability case, while the
stability curve fall away from the instability curve for the large values of λ. However, in
Tables 2 and 3, the values of RE which have been evaluated from (30) for the nonlinear
stability theory are oscillating with different values of λ, M, B, τ and Rc = 0; thus, from
Table 1, we can see that the linear instability theory is more accurate than the nonlinear
stability theory. Consequently, we can observe that these effects in the physical sense are
overlapping in somehow in a competition with each other. In addition, we can see that the
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CTRN values do not change and stay the same in the two cases (the linear and nonlinear
cases) without any critical unstable senses.

Table 1. Critical thermal Rayleigh number RL against M, B, τ, λ and Rc, with M = 100, λ = 0.5,
τ = 20, B = 0.1.

M RL B RL τ RL λ RL

1 3129.269 0.03 4454.813 5 1040.987 0.1 6891.419
10 3571.252 0.05 4983.339 10 2230.570 0.3 6287.196
20 3963.275 0.1 5812.355 20 5812.355 0.5 5812.355
40 4584.929 0.3 7836.130 30 10,708.940 1 5023.691
100 5813.3146 0.5 9299.307 50 16,011.301 3 3940.149

Table 2. Critical thermal Rayleigh number RE against M, B, τ, λ and Rc, with M = 100, λ = 0.5, τ = 20,
B = 0.1.

M RE B RE τ RE λ RE

1 2.00 × 10−9 0.03 2.04 × 10−10 5 1.47 × 10−10 0.1 2.08 × 10−10

10 2.01 × 10−9 0.05 1.31 × 10−10 10 25.30 × 10−10 0.3 5.23 × 10−10

20 8.15 × 10−10 0.1 2.26 × 10−9 20 2.26 × 10−9 0.5 2.26 × 10−9

40 1.82 × 10−10 0.3 8.60 × 10−9 30 1.68 × 10−10 1 5.26 × 10−10

100 2.08 × 10−10 0.5 2.12 × 10−10 50 2.18 × 10−10 3 5.24 × 10−10

Table 3. Critical thermal Rayleigh number RE against M, B, τ, λ and Rc, with M = 100, λ = 0.5, τ = 0,
B = 0.1.

M RE B RE λ RE

1 2.22 × 10−9 0.03 5.07 × 10−10 0.1 7.04 × 10−10

10 1.64 × 10−10 0.05 1.30 × 10−10 0.3 1.70 × 10−9

20 3.86 × 10−10 0.1 3.62 × 10−10 0.5 5.38 × 10−9

40 3.03 × 10−10 0.3 5.38 × 10−10 1 1.44 × 10−9

100 7.04 × 10−10 0.5 4.12 × 10−10 3 1.44 × 10−9
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Figure 2. RL (the number of Rayleigh) versus Rc with respect to the values of λ.
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Figure 3. RL (the number of Rayleigh) versus Rc with respect to the values of M.
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Figure 4. RL (the number of Rayleigh) versus Rc with respect to the values of B.
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Figure 5. RL (the number of Rayleigh) versus Rc with respect to the values of τ.



Symmetry 2022, 14, 565 12 of 13

6. Conclusions and Future Direction

The stability of a double diffusive convection problem using the local thermal non-
equilibrium (LTNE) effects has been considered in this recent work. In addition, a new
model has been used along with a new approach by using two numerical methods to
analyze the linear and non-linear stability of the mentioned problem. From the results of
the critical thermal Rayleigh numbers (CTRN), we were able to compute the various values
of λ, M, B and τ, respectively, with Rc = 0 that we used to analyze the linear and non-linear
stability. For future work, one might use different models than Brinkmann-Forchheimer
and a different numerical method than the one we used to solve the equation in (17).
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