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Abstract: The aim of the paper is to examine the notion of simple Kantian equilibrium in 2× 2
symmetric games and their quantum counterparts. We focus on finding the Kantian equilibrium
strategies in the general form of the games. As a result, we derive a formula that determines the
reasonable strategies for any payoffs in the bimatrix game. This allowed us to compare the payoff
results for classical and quantum way of playing the game. We showed that a very large part of
2× 2 symmetric games, in which the arithmetic mean of the off-diagonal payoffs is greater than
the other payoffs, have more beneficial Kantian equilibria when they are played with the use of
quantum strategies. In that case, both players always obtain higher payoffs than when they use the
classical strategies.

Keywords: symmetric game; quantum game; Kantian equilibrium

1. Introduction

Game theory was launched in 1928 by John von Neumann [1] and developed in 1944
by John von Neumann and Oskar Morgenstern [2]. It is one of the branches of applied
mathematics. The aim of this theory is to mathematically model the behavior of rational
players in conflict situations. The players are assumed to maximize their own benefit and
take into account all possible ways of behaving with the other players.

Within this theory, new ideas are constantly being proposed. One of the latest trends
is to define and study new solution concepts. A fundamental concept used for predicting
players’ behavior is the Nash equilibrium [3]. It defines a strategy vector at which no player
has a profitable deviation from a strategy of that vector. Beside of that kind of stability, the
Nash equilibrium always exists in finite games. Therefore, the use of Nash equilibria is a
first step in finding reasonable moves of the players. Nash equilibria may often indicate
non-optimal solutions. Moreover, a game may have multiple Nash equilibria that imply
different outcomes. Then, one can use refinements of Nash equilibria that impose additional
restrictions on strategy vectors [4].

In the case of many games, such as the Prisoner’s Dilemma, Nash equilibria may
imply very low payoffs compared to other payoffs available in the game. This undoubtedly
has had an impact on the promotion of non-Nash equilibrium based solution concepts.
There is a significant number of articles devoted to solution concepts that do not derive
from Nash equilibra. One of the best references here is [5]. The paper introduces the
Perfectly Transparent Equilibrium—the idea based on rounds elimination of strategy
profiles that do not imply maximin payoffs. Another notion worth mentioning is the Berge
equilibrium [6–8]. The concept is based on altruism in the sense that each player’s aim is to
maximize the payoffs of the other players.

The subject of our work is the notion of Kantian equilibrium [9,10]. It follows from
a line of reasoning suggested by Hofstadter [11]. His idea assumes that the players are
superrational. This means that they are rational and also they are able to conduct a meta-
analysis, taking into account that the other players have the same reasoning. In the case of
a symmetric game, the players have exactly the same strategic position. So, if one player
predicts a rational strategy, the other players should also come up with the identical strategy.
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Examining profiles consisting of the same strategies makes finding Kantian equilibria a
lot easier compared to Nash equilibria. The task is actually to maximize a payoff function
with respect to a strategy of one of the players. This is particularly relevant in studying a
quantum game in which a player’s unitary strategy depends evenly on three parameters.

Quantum game theory is a field developed on the border of game theory and quantum
information. This is an interdisciplinary area of research. It assumes that games are played
with the aid of objects that behave according to the laws of quantum mechanics. The
theory was initiated with considering a simple extensive-form game in [12]. D. Meyer
showed that a player equipped with unitary operators has a winning strategy. Another
fundamental paper on quantum games is [13]. The scheme defined by J. Eisert, M. Wilkens,
and M. Lewenstein was the first formal protocol of playing a general 2× 2 game. According
to [13], players’ strategies are unitary operators that depend on two parameters. These
operators are performed on a maximally entangled two-qubit state. L. Marinatto and T.
Weber [14] introduced an alternative model of playing a quantum game. In their scheme
for a 2× 2 game, players’ strategies are restricted to two unitary operators (the identity
and the Pauli operator X). The operators are performed on a fixed two-qubit state (not
necessarily entangled). Quantum game theory also includes quantum models with infinite
strategy sets or games on networks. A minimalistic model of quantum Cournot duopoly
introduced by H. Li, J. Du, and S. Massar in [15] and generalized in [16]. Advanced research
on the evolution of classical and quantum strategies on networks based on the Prisoner’s
Dilemma was presented in [17,18].

Our work focuses on Kantian equilibria in 2× 2 symmetric game and its quantum
counterpart. We generalize the previous findings presented in [9] by deriving the general
formula for Kantian equilibria. We then examine this solution concept with respect to the
Eisert–Wilkens–Lewenstein quantum approach to the game.

In Section 2, we provide the reader with relevant notions from classical and quantum
game theory that are needed to follow this work. In Section 3, the notion of Kantian
equilibria in classical 2× 2 symmetric games are examined. Section 4 deals with Kantian
equilibria in the EWL-type quantum games.

2. Preliminaries

In this section, we review relevant notions from classical and quantum game theory
that are needed to follow our work.

The basic model of games studied in game theory is a game in strategic form.

Definition 1. [19] A game in strategic form (or in normal form) is an ordered triple (N, (Si)i∈N ,
(ui)i∈N), in which

• N = {1, 2, . . . , r} is a finite set of players.
• Si is the set of strategies of player i, for every player i ∈ N.
• ui : S1 × S2 × · · · × Sr → R is a function associating each vector of strategies s = (si)i∈N

with the payoff ui(s) to player i, for every player i ∈ N.

A game in strategic form proceeds in the following way. Each player i ∈ N chooses one
of her strategies si ∈ Si. In this way, the players determine a strategy vector (s1, s2, . . . , sr).
Then, for each player i, the payoff function ui determines a payoff ui(s1, s2, . . . , sr).

A player can also choose their own strategies according to a probability distribution.
Then we say that she plays a mixed strategy. Formally, a mixed strategy is an element of
the set [19]

Σi =

{
σi : Si → [0, 1] : ∑

si∈Si

σi(si) = 1

}
. (1)
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In particular case, if a strategic-form game has two players and each player has two
strategies, the game can be written as a 2× 2 matrix in which each element is a pair of
real numbers

(A, B) =
(
(a00, b00) (a01, b01)
(a10, b10) (a11, b11)

)
. (2)

Player 1’s strategies are identified with the rows and player 2’s strategies are identified
with the columns. Players’ mixed strategies in the case of game (2) will be denoted by
(p, 1− p) and (q, 1− q), respectively. Then, the expected payoff resulting from playing the
mixed strategies is

u1((p, 1− p), (q, 1− q)) = pqa00 + p(1− q)a01 + (1− p)qa10 + (1− p)(1− q)a11,

u2((p, 1− p), (q, 1− q)) = pqb00 + p(1− q)b01 + (1− p)qb10 + (1− p)(1− q)b11.
(3)

Symmetry is common in two-player normal form game. It is particularly visible in
2× 2 bimatrix games discussed in many game theory textbooks. Games such as the Pris-
oner’s Dilemma, Chicken, or Stag Hunt are the examples of symmetric games. Informally,
one can say that a symmetric game is one that looks the same for all the players [20]. A
more precise definition is as follows [21,22]:

Definition 2. [22] Let N = {1, 2} and S1 = S2. A game Γ = (N, (S1, S2), (u1, u2)) is
symmetric if for all pairs of strategies (x, y) ∈ S1 × S2

u1(x, y) = u2(y, x). (4)

In the case of a finite symmetric two-player game, condition (4) means that B = AT

in (2). Then, a symmetric 2× 2 bimatrix game takes the following form:(
(a00, a00) (a01, a10)
(a10, a01) (a11, a11)

)
. (5)

The Eisert–Wilkens–Lewenstein (EWL) scheme has undoubtedly been one of the most
used schemes for quantum games. In the EWL scheme, players’ strategies are unitary
operators that each of two players act on a maximally entangled state. In the literature,
there are a few descriptions of the EWL scheme that are strategically equivalent. In what
follows, we present a concise form that we adapted for the purpose of our research.

Let

|Ψ〉 = |00〉+ i|11〉√
2

, C0 =

(
1 0
0 1

)
, C1 =

(
0 i
i 0

)
. (6)

For k, l ∈ {0, 1} define
|Ψkl〉 = Ck ⊗ Cl |Ψ〉. (7)

Then {|Ψkl〉 : k, l ∈ {0, 1}} is a basis for C2 ⊗C2.

Definition 3. The Eisert–Wilkens–Lewenstein approach to game (2) is defined by a triple (N,
(Di)i∈N , (vi)i∈N), where

• N = {1, 2} is the set of players;
• Di is a set of unitary operators from SU(2) with typical element.

Ui(θi, αi, βi) =

(
eiα cos θ

2 ieiβ sin θ
2

ie−iβ sin θ
2 e−iα cos θ

2

)
, θi ∈ [0, π], α, β ∈ [0, 2π), (8)
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• vi : D1 ⊗ D2 → R is player i’s payoff function given by

v1(U1 ⊗U2) =
1

∑
k,l=0

akl |〈Ψkl |U1 ⊗U2|Ψ〉|2 (9)

v2(U1 ⊗U2) =
1

∑
k,l=0

bkl |〈Ψkl |U1 ⊗U2|Ψ〉|2, (10)

where akl and bkl for k, l ∈ {0, 1} are the payoffs of (2).

According to Definition 3, the EWL approach to (2) can be regarded as a normal-form
game in which the strategies are unitary operators that the players perform on the state
|Ψ〉. The payoff function is then the expected value of measurement on the final state,

U1 ⊗U2|Ψ〉 =
1

∑
k,l=0
〈Ψkl |U1 ⊗U2|Ψ〉|Ψkl〉 (11)

with respect to the basis {|Ψkl〉 : k, l ∈ {0, 1}}.
One of the main features of the von Neumann–Morgenstern utility says that if player

i’s preferences in a game are represented by the expected value of payoffs, then every
positive affine transformation of the payoffs also represents these preferences.

Definition 4. [19] Let u : X → R be a function. A function v : X → R is a positive affine
transformation of u if there exists a positive real number α > 0 and a real number β such that for
each x ∈ X

v(x) = αu(x) + β. (12)

Theorem 1. [19] If ui is a linear utility function representing player i’s preferences, then every
positive affine transformation of ui is also a linear utility function representing the preferences.

The next example illustrates Theorem 1.

Example 1. Let us consider the following bimatrix game:(
(−14, 15) (−2,−3)
(−4, 0) (12, 12)

)
. (13)

If we transform player 1 and 2’s payoffs by the positive affine transformations 1
2 x + 5 and 1

3 x− 3,
respectively, we obtain (

(−2, 2) (4,−4)
(3,−3) (−1, 1)

)
. (14)

Although (14) is a zero-sum game in contrast to (13), both games are equivalent with respect to
players’ preferences about the result of the game. Both games have the unique Nash equilibrium
((2/5, 3/5), (1/2, 1/2)).

More generally, if (pi)
m
i=1 is a probability distribution over player i’s payoffs (ai)

m
i=1

and ∑m
i=1 piai is the expected payoff then for α ∈ R+ and β ∈ R

α
m

∑
i=1

piai + β =
m

∑
i=1

αpiai +
m

∑
i=1

βpi =
m

∑
i=1

(αai + β)pi. (15)

Hence, if a player prefers a probability distribution (pi)
m
i=1 over (p′i)

m
i=1 then

m

∑
i=1

piai ≥
m

∑
i=1

p′iai ⇔
m

∑
i=1

(αai + β)pi ≥
m

∑
i=1

(αai + β)p′i. (16)
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As the expected payoff in the EWL scheme is also in the form of ∑m
i=1 piai, where ai

are the payoffs in the classical game, a positive affine transformation of the classical game
does not change players’ preferences in the associated EWL game.

3. Kantian Equilibria in 2× 2 Symmetric Games

The definition of Kantian equilibrium varies according to the type of game [23,24].
In what follows, we reproduce the one concerning a mixed extension of a finite normal-
form game.

Let us consider a normal-form game (N, (Si)i∈N , (ui)i∈N) that has identical strategy
sets, i.e., S1 = S2 = · · · = Sn = S and let ∆(S) be the set of probability distributions on S.

Definition 5. A simple Kantian equilibrium (SKE) is a vector (τ∗, τ∗, . . . , τ∗) ∈ ∆(S)n such that

τ∗ ∈ argmax
τ∈∆(S)

ui(τ, τ, . . . , τ). (17)

Obviously, Definition 5 can be easily modified when one considers pure strategies S
or quantum strategies (i.e., unitary operators) instead of ∆(S).

In [9], simple Kantian equilibria are found for a few examples of 2× 2 symmetric
games. Our results generalize that of [9]. We provide a concise formula for a general 2× 2
symmetric game.

Let us consider a two-player symmetric game (5). Let us first consider the case
a00 6= a11. There is no loss of generality in assuming that a00 > a11. To simplify Kanitan
equilibrium analysis, let us apply a positive affine transformation to (5) in the follow-
ing form:

f (x) =
1

a00 − a11
(x− a11). (18)

Then, game (5) is transformed into a preference-equivalent game(
(1, 1) (a, d− a)

(d− a, a) (0, 0)

)
, (19)

where
a =

a01 − a11

a00 − a11
, d =

a01 + a10 − 2a11

a00 − a11
. (20)

Let us first determine the expected payoff ui((p, 1− p), (p, 1− p)) of player i resulting
from playing a strategy vector ((p, 1− p), (p, 1− p)) in (19). We obtain

u1((p, 1− p), (p, 1− p)) = u2((p, 1− p), (p, 1− p)) = p2 + d(1− p)p, p ∈ [0, 1]. (21)

By Definition 5, simple Kantian equilibria in (19) are determined by points that maxi-
mize (21). We shall consider two cases. If d > 1, then the point p∗ = −d/(2(1− d)) is a
local maximum point of x2 + d(1− x)x, x ∈ R. It maximizes (21) if 0 ≤ p∗ ≤ 1 or d ≥ 2.
For 1 < d < 2,

d
dp

ui((p, 1− p), (p, 1− p)) = 2p(1− d) + d > 0. (22)

Hence, p∗ = 1 maximizes (21) for 1 < d < 2.
If d ≤ 1, function (21) attains its maximum at one of the endpoints of [0, 1]. In this case,

it is the point p∗ = 1. Summarizing, we have thus proven the following lemma:

Lemma 1. In a symmetric 2× 2 game in the form of (19), if ui((p, 1− p), (q, 1− q)) is player i’s
payoff function, then it follows that

argmax
p∈[0,1]

ui((p, 1− p), (p, 1− p)) =

{
{1} if d < 2,{
−d

2(1−d)

}
if d ≥ 2.

(23)
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Let us now consider bimatrix (5) in which a00 = a11. By using a positive affine
transformation g(x) = x − a00 we are left with the task of determining simple Kantian
equilibria in (

(0, 0) (b, e− b)
(e− b, b) (0, 0)

)
, (24)

where
b = a01 − a00, e = a01 + a10 − 2a00. (25)

Now, the problem of finding SKE comes down to determining the points that maximize

ui((p, 1− p), (p, 1− p)) = ep(1− p), p ∈ [0, 1]. (26)

We leave it to the reader to verify the following lemma:

Lemma 2. In a symmetric 2× 2 game in the form of (24), if ui((p, 1− p), (q, 1− q)) is player i’s
payoff function, then it follows that

argmax
p∈[0,1]

ui((p, 1− p), (p, 1− p)) =


{0, 1} if e < 0,
[0, 1] if e = 0,{

1
2

}
if e > 0.

(27)

Although formulae (23) and (27) find simple Kantian equilibria for games (19) and (24),
respectively, Lemmas 1 and 2 enable us to generalize the results to arbitrary symmetric
2× 2 games (5). Below, we derive a formula that allows one to directly determine a classical
Kantian equilibrium depending on the payoffs of the game.

Proposition 1. Let ui((p, 1− p), (q, 1− q)) be a player i’s payoff function in symmetric 2× 2
game (5) in which a00 ≥ a11. Then

argmax
p∈[0,1]

ui((p, 1− p), (p, 1− p)) =


{1} if a01 + a10 − 2a00 ≤ 0 and a00 > a11,
{0, 1} if a01 + a10 − 2a00 < 0 and a00 = a11,
[0, 1] if a01 + a10 − 2a00 = 0 and a00 = a11,{

a01+a10−2a11
2(a01+a10−a00−a11)

}
if a01 + a10 − 2a00 > 0 and a00 ≥ a11.

(28)

Proof. The first part of (28) follows from the first part of (23), i.e., the condition d < 2 is
equivalent to a01 + a10 − 2a00 < 0 by (20). Moreover, −d/(2(1− d)) = 1 for d = 2.

Similarly, from the first and second part of (27), we obtain the second and third part
of (28).

Substituting the form of d given in (20) into −d/(2(1− d)) we obtain

p =
a01 + a10 − 2a11

2(a01 + a10 − a00 − a11)
. (29)

In particular, p given in (29) is equal to 1/2 for a00 = a11.

Corollary 1. Formula (28) in Proposition 1 also applies to game (5) with a00 < a11 by the reverse
numbering of players’ strategies, i.e., by swapping two rows and two columns in the bimatrix. Then
we see a game that is isomorphic to (5) and a00 > a11. The value of p resulting from (28) is then the
probability of playing the second strategy in the initial game.
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SKE given by formula (28) implies the following payoff outcomes in a symmetric 2× 2
game:

max
p∈[0,1]

ui((p, 1− p), (p, 1− p)) =

{
a00 if a01 + a10 − 2a00 ≤ 0,
(a01+a10)

2−4a00a11
4(a01+a10−a00−a11)

if a01 + a10 − 2a00 > 0.
(30)

In what follows, we apply (28) and (30) to concrete examples of bimatrix 2× 2 games.

Example 2.

1. The general structure of the Prisoner’s Dilemma game can be expressed by (5) that satisfies

a10 > a00 > a11 > a01 and a00 >
a01 + a01

2
. (31)

The second condition of (31) is aimed at preventing the players from alternating between their
first and second strategies. The condition coincides with the one of (28). This means that
the simple Kantian equilibrium is ((p, 1− p), (p, 1− p)) = ((1, 0), (1, 0)) with the payoff
outcome a00 for each player.

2. A symmetric game isomorphic to the Battle of the Sexes game can be described by (5) such that

a01 > a10 > a00 = a11. (32)

By (1), the strategy of SKE is

p =
a01 + a10 − 2a00

2(a01 + a10 − 2a00)
=

1
2

(33)

with the resulting payoff

(a01 + a10)
2 − 4a2

00
4(a01 + a10 − 2a00)

=
1
4
(2a00 + a01 + a10). (34)

4. Kantian Equilibrum in the EWL-Type Quantum Games

One of the main motivations for studying quantum games is to search for reasonable
quantum strategy profiles that would imply higher payoffs than ones implied by classical
strategies. In this section, we examine simple Kantian equilibria in the EWL quantum game
to see whether players can benefit from playing quantum game.

First, we need to make sure that the game generated by the EWL scheme is symmetric
so that we can apply the notion of simple Kantian equilibrium.

Lemma 3. The Eisert–Wilkens–Lewenstein approach to a symmetric 2× 2 game is a symmet-
ric game.

Proof. Our proof starts with the observation that

〈Ψ00|U1 ⊗U2|Ψ〉 = 〈Ψ00|U2 ⊗U1|Ψ〉 = cos(α1 + α2) cos
θ1

2
cos

θ2

2
+ sin(β1 + β2) sin

θ1

2
sin

θ2

2
,

〈Ψ01|U1 ⊗U2|Ψ〉 = 〈Ψ10|U2 ⊗U1|Ψ〉 = cos(α1 − β2) cos
θ1

2
sin

θ2

2
+ sin(α2 − β1) sin

θ1

2
cos

θ2

2
,

〈Ψ10|U1 ⊗U2|Ψ〉 = 〈Ψ01|U2 ⊗U1|Ψ〉 = cos(α2 − β1) sin
θ1

2
cos

θ2

2
+ sin(α1 − β2) cos

θ1

2
sin

θ2

2
,

〈Ψ11|U1 ⊗U2|Ψ〉 = 〈Ψ11|U2 ⊗U1|Ψ〉 = cos(β1 + β2) sin
θ1

2
sin

θ2

2
− sin(α1 + α2) cos

θ1

2
cos

θ2

2
.

(35)
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As it is assumed that the 2× 2 game is symmetric, then akl = blk for k, l ∈ {0, 1}. From (35)
it follows that

v1(U1 ⊗U2) =
1

∑
k,l=0

akl |〈Ψkl |U1 ⊗U2|Ψ〉|2 =
1

∑
k,l=0

alk|〈Ψkl |U2 ⊗U1|Ψ〉|2

=
1

∑
k,l=0

bkl |〈Ψkl |U2 ⊗U1|Ψ〉|2 = v2(U2 ⊗U1). (36)

This finishes the proof.

Let us first consider a game given by bimatrix (19). The payoff functions in the EWL
scheme associated with (19) are symmetric. In particular,

|〈Ψ00|U⊗2|Ψ〉|2 =

(
cos 2α cos2 θ

2
+ sin 2β sin2 θ

2

)2
, (37)

|〈Ψ01|U⊗2|Ψ〉|2 = |〈Ψ10|U⊗2|Ψ〉|2 =

(
(cos(α− β) + sin(α− β)) cos

θ

2
sin

θ

2

)2
. (38)

Therefore, for i = 1, 2, player i’s payoff function in the EWL game can be written as

vi(U, U) = |〈Ψ00|U⊗2|Ψ〉|2 + d|〈Ψ01|U⊗2|Ψ〉|2. (39)

Obviously, the squared magnitudes of |〈Ψij|U⊗2|Ψ〉|2 sum to unity. Moreover, it is
easy to check that

max
U∈SU(2)

|〈Ψ00|U⊗2|Ψ〉|2 = 1, max
U∈SU(2)

|〈Ψ01|U⊗2|Ψ〉|2 =
1
2

. (40)

Note also that for U′ ∈ argmaxU∈SU(2) |〈Ψ00|U⊗2|Ψ〉|2 we have |〈Ψ01|U′⊗2|Ψ〉|2 = 0.
Similarly, for U′′ ∈ argmaxU∈SU(2) |〈Ψ01|U⊗2|Ψ〉|2 we see that |〈Ψ00|U′′⊗2|Ψ〉|2 = 0.
Hence, for d > 2,

max
U∈SU(2)

vi(U, U) = max
U∈SU(2)

d|〈Ψ01|U⊗2|Ψ〉|2 =
d
2

. (41)

Otherwise, maxU∈SU(2) vi(U, U) = 1.
The bimatrix (24) can be handled in much the same way. The payoff function

vi(U, U) = e|〈Ψ01|U⊗2|Ψ〉|2 attains its maximum equal to e/2 if e > 0, and 0 otherwise.
By using the inverse transformation f−1(y) = (a00 − a11)y + a11, g−1(y) = y + a11

and the substitutions (20) and (25), we can return to general payoffs to obtain f−1(d/2) =
g−1(e/2) = (a01 + a10)/2 and f−1(1) = g−1(0) = a00. Summarizing, we have thus proven
the following proposition:

Proposition 2. Let vi(U, U) be a player i’s payoff function in the Eisert–Wilkens–Lewenstein
quantum approach to symmetric 2× 2 game (5) in which a00 ≥ a11. Then

max
U∈SU(2)

vi(U, U) =

{
a00 if a01 + a10 − 2a00 ≤ 0,
a01+a10

2 if a01 + a10 − 2a00 > 0.
(42)

The above formula determines the payoffs that correspond to possible Nash equilibria.
Comparing formulae (30) and (42) for a01 + a10 − 2a00 ≤ 0 we find that SKE implies the
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same payoff in both the classical and quantum game. For a01 + a10 − 2a00 > 0, SKE played
in the quantum game results in a strictly better payoff than in the classical one. Indeed,

a01 + a10

2
− (a01 + a10)

2 − 4a00a11

4(a01 + a10 − a00 − a11)
=

(a01 + a10 − 2a00)(a01 + a10 − 2a11)

4(a01 + a10 − a00 − a11)
> 0. (43)

Let us reconsider the games from Example 2.

Example 3.

1. The Prisoner’s Dilemma played with the use of the EWL scheme implies a00–the result of SKE
in the classical game. An example of a strategy of SKE is U(θ, α, β) = U(0, π/2, 0).

2. A symmetric game to isomorphic to the Battle of the Sexes game satisfies the condition
a01 + a10 − 2a00 > 0. Therefore, the payoff predicted by SKE is (a01 + a10)/2. Given
particular payoffs in the Battle of the Sexes, e.g., a01 = 5, a10 = 3, a00 = a11 = 1, this means
that SKE in the quantum game yields the payoff of 4, whereas playing SKE in the classical
game results in the payoff of 2.5.

5. Conclusions

Simple Kantian equilibria provide us with a prediction how a symmetric game might
be played. It is based on the assumption that players choose the same strategies when
they each face the same strategic position in the game. It greatly simplifies the analysis
required to find a reasonable strategy profile as one comes down to finding a maximum of
a function. Our work has shown that the notion of SKE is suitable for both the classical and
quantum games. By applying a positive affine transformation, we simplified the structure
of a symmetric 2× 2 game and derived a general formula of SKE in the classical game
and possible payoff outcomes of SKE in the quantum game. We found that the result from
playing SKE in the quantum game is at least as good as in the classical game. Moreover,
in many cases, the players benefit from playing the quantum game, gaining a strictly
higher payoff.

Our work also aimed to show the advantages of non-Nashian solution concepts in
quantum games. Pure Nash equilibria do not usually exist when the strategy sets are equal
to SU(2) in the EWL model. If they can be found, the Nash equilibria are trivial in the sense
that they determine payoffs equal to the Nash equilibrium payoffs in the classical game. In
contrast, SKE always exist in the quantum approach to symmetric 2× 2 game which allows
us to compare reasonable outcomes when the game is played in a classical and quantum
manner. Our studies also initiate further research on symmetric games of higher dimension.
In the case of the EWL-type scheme for n× n games, n ≥ 3, the problem of finding Nash
equilibria is extremely complex due to the large number of parameters defining possible
unitary strategies. The concept of Kantian equilibrium comes down to the appropriate
maximization of the payoff function. Therefore, we assume that this property will enable
us to examine n× n symmetric games.
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