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Abstract: Beyond pairwise relationships, interactions among groups of agents do exist in many real-
world applications, but they are difficult to capture by conventional graph models. Generalized from
graphs, hypergraphs have been introduced to describe such high-order group interactions. Inspired
by graph signal processing (GSP) theory, an existing hypergraph signal processing (HGSP) method
presented a spectral analysis framework relying on the orthogonal CP decomposition of adjacency
tensors. However, such decomposition may not exist even for supersymmetric tensors. In this paper,
we propose a high-order total variation (HOTV) form of a hypergraph signal (HGS) as its smoothness
measure, which is a hyperedge-wise measure aggregating all signal values in each hyperedge instead
of a pairwise one in most existing work. Further, we propose an HGS analysis framework based on
the Tucker decomposition of the hypergraph Laplacian induced by the aforementioned HOTV. We
construct an orthonormal basis from the HOTV, by which a new spectral transformation of the HGS is
introduced. Then, we design hypergraph filters in both vertex and spectral domains correspondingly.
Finally, we illustrate the advantages of the proposed framework by applications in label learning.

Keywords: hypergraph signals; total variation; high-order supersymmetric tensors

1. Introduction

Graphs model and process structured data in irregular domains [1–3], which can model
real-world agents and their pairwise interactions by vertices and edges. However, various
real-world systems have interactions among multiple agents, beyond pairwise, in many
fields such as social networks [4], computational chemistry [5], many-body physics [6,7],
neuroscience [8,9], ecology [10–13], biology [14,15], etc. In e-commerce, several strangers
may share similar shopping preferences and buy the same product online. In some ecosys-
tems, multiple species may mutually compete for food and territory and affect each other.
Those interactions are known as high-order interactions, which are about influence or
similarity at the level of groups of agents [16,17]. A high-order interaction can not only
correspond to a specific semantic attribute or behavior of agents, but it can also be an
interplay among agents in a process or an overall similarity of agents. Researchers have
been aware of the existence of high-order interactions for the past few decades.

A more general tool is needed to describe agents with such group interactions since a
high-order interaction among a group of agents is not equivalent to the ensemble of pairwise
interactions between any two members of the group in many scenarios. Hypergraphs are
a candidate tool owing to the ability to connect multiple vertices simultaneously by one
hyperedge [18]. Each hyperedge can connect a distinct number of vertices, which denotes
a corresponding-order interaction of agents. Hypergraphs provide a natural and flexible
way to model high-order interactions. A hypergraph signal (HGS) contains physical values
defined on the vertices of a hypergraph.

Several tensor-based methods have been proposed to intuitively represent hypergraph
topologies in algebra. Those methods take into consideration both uniform hypergraphs in
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which each hyperedge needs to connect the same number of vertices and general hyper-
graphs in which hyperedges can connect distinct numbers of vertices. Generalized from
graph adjacency matrices, Cooper and Dutle [19] defined adjacency tensors for uniform
hypergraphs. Further, Qi [20] presented the Laplacian and signless Laplacian of uniform
hypergraphs. Extended from the above mathematical representations of uniform hyper-
graphs, both adjacency and Laplacian tensors of general hypergraphs were proposed
in [21]. Additionally, some other Laplacians for uniform hypergraphs were presented
in [22,23], combining hyperedge-wise and pairwise cutting cost functions, respectively.
Ouvrard et al. [24] proposed e-adjacency tensors for general hypergraphs by first di-
viding a general hypergraph into multiple layers and then merging all layers by adding
additional vertices.

1.1. Related Works

The hypergraph signal processing (HGSP) framework in [25] defined the hypergraph
Fourier transform (HGFT) by the orthogonal CP decomposition [26] of hypergraph adjacency
tensors. However, a large number of real supersymmetric tensors may not be superdiago-
nalized due to the possible large rank [27,28], let alone be orthogonally superdiagonalized.
In such cases, the framework has to use an approximate decomposition instead, which may
lead to imprecision in the subsequent HGFT and frequency interpretation.

The smoothness of the HGS draws researchers’ attention and there are many existing
smoothness measures of the HGS. Utilizing high-order adjacency tensors, the total variation
of the HGS defined in [25] is not a homogeneous polynomial. A large difference between the
high-order shift result of the HGS over the hypergraph and the original 1st-order signal may
also be caused by the different powers of the two signals rather than the unsmoothness.
Based on the hypergraph cut, Hein et al. [29] defined a total variation combining the
maximum pairwise difference of the HGS in each hyperedge. Existing smoothness measures
over hypergraphs [30] were summarized or proposed as the combinations of pairwise
smoothness measures in all hyperedges.

In addition to hypergraphs, there are other models proposed to capture high-order
interactions among real-world agents. Graph approximation methods such as clique
expansion [31] and star expansion [31,32] mostly project high-order interactions onto
pairwise ones linearly and are able to utilize graphs and matrices to model high-order
interactions [33]. Those methods will bring information loss of high-order interactions
since the projections lead to the decrease of the interaction order and are irreversible.

Simplicial complexes are another tool for modeling high-order interactions in many
scenarios. In [34,35], each simplex in a simplicial complex represents an interaction and has
a signal defined on it. The framework processes signals defined on interactions and only
takes into account the adjacency of simplices with the same dimension. Two k-dimension
simplices are adjacent only if they are faces of the same (k + 1)-dimension simplex or own a
(k− 1)-dimension simplex as their common face. For k = 0, the simplices (vertices) have the
smallest dimension, and therefore, their adjacency only depends on the one-dimensional
simplices (edges). That is, interactions of vertices with orders greater than 2 are not taken
into account while processing signals defined on vertices.

1.2. Main Works

In this paper, we model high-order interactions by a hypergraph and represent both
the topology and the signal of an HGS by tensors. Unlike the total variation based on
the adjacency tensor in [25] and some existing smoothness measures combining pairwise
dissimilarities of signals [30], we propose a total variation of the HGS to measure the
smoothness by taking into account smoothness measures over each hyperedge directly in a
high-order perspective. Based on the proposed high-order total variation (HOTV) of the
HGS, we obtain a hypergraph Laplacian tensor and construct an orthonormal basis of the
HGS space to capture different spectral components of the HGS. We then propose an HGS
analysis framework utilizing the basis in the Tucker decomposition form of the hypergraph



Symmetry 2022, 14, 543 3 of 23

Laplacian since a large number of real supersymmetric tensors do not have their orthogonal
superdiagonalization forms. Our main contributions in this work are listed below:

• We propose an HOTV over hypergraphs, by which we obtain a hypergraph Laplacian
and present an orthonormal basis reflecting distinct spectral information. The HOTV
aggregates the HGS groupwise instead of pairwise, which describes the dissimilarity
of the HGS over the topology in a more comprehensive way;

• We propose a novel signal transformation (a new HGFT) by the orthonormal basis
which bridges the vertex domain and the spectral domain of an HGS. We then can
process the HGS in the two domains, clearly provide spectral interpretations for all
processing of the HGS and put forward a framework for the analysis and processing
of the HGS;

• We present hypergraph filtering tasks in the two domains and discuss two specific
forms of hypergraph filters, which do provide a new idea for the HGS filtering.

The rest of the paper is organized as follows. Section 2 introduces the HGS from the
HOTV and the corresponding tensor-based representation. In Section 3, we construct a
representative orthonormal basis, propose a novel HGFT and provide its spectral inter-
pretation. In Section 4, hypergraph filtering and two specific forms of hypergraph filters
are presented. We then provide an application of the proposed framework and show its
advantage by some experimental results in Section 5, before finally concluding the paper in
Section 6. Additionally, we first list the notations used in the paper in Table 1 below.

Table 1. Notations with descriptions.

Notation Description

H = (V , E , W) a c-uniform weighted undirected hypergraph
L(c) the Laplacian tensor ofH
s an HGS
s(M) an Mth-order HGS
S(M) the Mth-order HGS set
ŝ a spectral-domain HGS
F a vertex-domain hypergraph filter
F̂ a spectral-domain hypergraph filter
⊗ the Kronecker product
� the outer product
×n the n-mode product
� the Khatri–Rao product
[n] {1, · · · , n}
mat(·) tensor matricization
vec(·) tensor vectorization
ten(·) tensorization of a matrix or a vector
ROA(·) the rank-one approximation of any form of a tensor

2. Hypergraph Signals

A weighted undirected hypergraphH = (V , E , W) consists of a vertex set V , a hyper-
edge set E and a diagonal hyperedge weight matrix W ∈ R|E |×|E|≥0 . Each hyperedge e ∈ E is
a nonempty subset of the vertex set V . The cardinality of hyperedge e denotes the number
of vertices e connects. If all hyperedges have the same cardinality c, the hypergraph is
c-uniform. A real-valued HGS s : V 7→ R defined on the vertices of hypergraphH can be
represented by a vector s ∈ R|V|, whose ith entry si represents the signal value at the ith
vertex in V .

Example 1. The 4-uniform weighted undirected hypergraph in Figure 1 consists of nine vertices
{vi}9

i=1 and three 4-cardinality hyperedges {ei}3
i=1 with weights equal to 0.8, 0.2 and 1, respectively.

The hyperedge e1 connects four vertices, i.e., v1, v2, v5 and v6.
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Figure 1. An example of 4-uniform weighted undirected hypergraphs.

In our work, we consider the weighted undirected hypergraph H = (V , E , W) as a
c-uniform hypergraph with a signal s ∈ R|V| where c is an even number. If c is odd, we
preprocess all hyperedges by adding an auxiliary vertex to each of them to make their
cardinalities even in our previous work [36]. Specifically, we denote the preprocessed hy-
pergraph byH′ = (V ′, E ′, W) where the weight matrix remains unchanged. Note that each
auxiliary vertex only appears in one hyperedge. All |E | auxiliary vertices corresponding
to each hyperedge are denoted by vi for i = |V|+ 1, · · · , |V|+ |E |, and the new vertex set
V ′ = V ∪ {vi}

|V|+|E |
i=|V|+1 contains both original and auxiliary vertices. Each auxiliary vertex

v|V|+i is added into the original hyperedge ei to obtain the new hyperedge e′i represented
by e′i = ei ∪ {v|V|+i}. The signal at each auxiliary vertex v|V|+i in the new hyperedge
e′i is the arithmetic mean of signals on all vertices in the original hyperedge ei formu-
lated as saux = 1

c ∑vi∈e si. Thus, the preprocessed HGS s′ ∈ R|V ′ | can be obtained by
s′ = [I|V|,

1
c H]Ts, in which matrices I|V| ∈ R|V|×|V| and H ∈ {0, 1}|V|×|E| are the identity

matrix and the incidence matrix of the original hypergraphH, respectively. We then can
obtain a (c + 1)-uniform hypergraph with even-cardinality hyperedges.

In the preprocessing, the introduction of the auxiliary vertices slightly changes the
topology of the hypergraph. Specifically, it makes minor changes to the topology of
each hyperedge locally, which still retains the global neighboring relationships of all |V|
original vertices.

Example 2. For simplicity, we consider a 3-cardinality hyperedge e = {v1, v2, v3} with weight
we = 1 in Figure 2. We preprocess it by adding an auxiliary vertex into e and obtain a new
hyperedge e′ = e ∪ {vaux}. The weight of e′ remains 1, the vertex set becomes V ∪ {vaux}, and
the signal at the auxiliary vertex is the arithmetic mean of signals on vertices {vi}3

i=1 denoted by
saux = 1

3 ∑3
i=1 si.

R5 R6 R7
�" R_svR5 R6 R7

�

1 1

Figure 2. The preprocessing of a 3-cardinality hyperedge.

For a general hypergraph consisting of hyperedges with different cardinalities, we
can preprocess all odd-cardinality hyperedges first. We then can divide the preprocessed
hypergraph into a set of uniform partial hypergraphs with even cardinalities.

2.1. Total Variation of Hypergraph Signals

Inspired by the total variation of the graph signal, we generalize its notion to the
total variation of the HGS to measure and describe the smoothness of the HGS over the
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hypergraph topology. Utilizing high-order adjacency tensors, the total variation of the
HGS defined in [25] is not a homogeneous polynomial. Existing smoothness measures over
hypergraphs [30] are combinations of pairwise smoothness measures in all hyperedges. Un-
like those methods, we measure the smoothness of the HGS by a high-order homogeneous
polynomial combining hyperedge-wise dissimilarities of signals.

We extend and define the HOTV of the HGS s over the c-uniform hypergraphH taking
the form of

TV(s) :=
1

n(c) ∑
e∈E

we ∑
vi∈e

(si − s̄e)
c, (1)

where n(c) = (c−1)c+c−1
cc normalizes the vertex degree for each hyperedge, we denotes the

weight of the hyperedge e, and s̄e := 1
c ∑vi∈e si is the arithmetic mean of signals at each

vertex in hyperedge e. s̄e can be viewed as the equally weighted linear aggregation of
signals on all vertices in e. Each vertex in e is treated equivalently by the hyperedge and
makes the same contribution to the HOTV over e . The HOTV considers the cth-order
hyperedge-wise differences among signals rather than pairwise differences between signals.
As a smoothness measure of the HGS s over the c-uniform hypergraphH where c is even,
the HOTV is nonnegative for ∀s ∈ R|V|. The HOTV equals zero if and only if vertices in
each connected component of the hypergraph H take the same signal value. The HOTV
will be small if the HGS obtains similar values on neighboring vertices, while the HOTV
will be large if the HGS varies greatly over the topology.

When c = 2, the hypergraph H becomes a graph and the total variation (1) has the
same form as the quadratic form of graph Laplacians L formulated as

TV(s) = 2 ∑
e={vi ,vj}∈E

we((si − s̄e)
2 + (sj − s̄e)

2) = ∑
e={vi ,vj}∈E

we(si − sj)
2 = sTLs. (2)

Therefore, the total variation of graph signals can be considered as a special case of
the proposed generalized HOTV.

Example 3. The HOTV over the 4-uniform weighted hypergraph in Figure 1 is a quartic homoge-
neous polynomial given by

TV(s) = we1 ∑
vi∈e1

(si − s̄e1)
4 + we2 ∑

vi∈e2

(si − s̄e2)
4 + we3 ∑

vi∈e3

(si − s̄e3)
4

= 0.8 ∑
vi∈{v1,v2,v5,v6}

(si −
s1 + s2 + s5 + s6

4
)4+

0.2 ∑
vi∈{v2,v3,v4,v5}

(si −
s2 + s3 + s4 + s5

4
)4 + ∑

vi∈{v3,v7,v8,v9}
(si −

s3 + s7 + s8 + s9

4
)4,

which can be seen as hyperedge-wise measuring the high-order dissimilarity among signals. When
the HGS s obtains the same value at each vertex, each hyperedge-wise term in TV(s) and thus the
whole TV(s) all equal zero.

For a preprocessed general hypergraph consisting of hyperedges with different even
cardinalities, the HOTV (1) is no longer a homogeneous polynomial. Instead, it is the sum
of the total variations of all the uniform partial hypergraphs formulated as

TV(s) = ∑
c∈C

TV(c)(s), (3)

where C is the cardinality set. The total variation of each uniform partial hypergraph is
still a homogeneous polynomial. It is worth mentioning that the preprocessing of odd-
cardinality partial hypergraphs ensures the nonnegative property of the total variation.
Moreover, the hypergraph preprocessing does not change the intrinsic essence of the total
variation, since the difference term corresponding to each auxiliary vertex equals zero and
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thus makes no contribution to the total variation. For clarity, we provide an example here
to show how the minor changes of the topology slightly affect the difference polynomial
and allow it to meet the definition of the total variation.

Example 4. For simplicity, we continue considering the 3-cardinality hyperedge e = {v1, v2, v3}
with weight 1 in Figure 2. The total variation over e′ is given by

TV(s) =
1

n(4)

3

∑
i=1

(si − s̄e′)
4 + (s̄e − s̄e′)

4 =
1

n(4)

3

∑
i=1

(si − s̄e′)
4.

The difference term of the auxiliary vertex equals zero since s̄e = s̄e′ =
1
3 ∑3

i=1 si. Obviously,
the total variation over the new hyperedge e′ still only considers the difference between the signal at
each original vertex and their arithmetic mean. The preprocessing of e changes only the order of the
polynomial from 3 to 4, since TV(s) is defined only when c is even.

2.2. Tensor-Based Representations

As multidimensional arrays, tensors are a natural tool to mathematically represent
hypergraph topologies and the corresponding high-order signals thanks to the flexibility of
the tensor order. As a bijection between the index sets of two tensors that have the same size
and different shapes, tensor reshaping such as tensor matricization and tensor vectorization
can be utilized to equivalently represent any high-order HGS by various forms, such as
matrix and vector forms. We will use operators mat(·), vec(·) to represent the two kinds of
tensor reshaping listed above and the operator ten(·) for the recovery from other forms to
the tensor form.

2.2.1. Representations of Topologies

As mentioned in Section 2.1, the HOTV (1) measures the dissimilarity of the HGS. It
can be rewritten as

TV(s) =
1

n(c) ∑
e∈E

we ∑
vi∈e

(
c− 1

c
si −

1
c ∑

vj∈e\{vi}
sj)

c

=
1

n(c)cc ∑
e∈E

we

c

∑
i=1

((cei − 1)TΦes)c

=
1

n(c)cc ∑
e∈E

we

c

∑
i=1

(ΦT
e (cei − 1))�c ×1 sT ×2 · · · ×c sT

=
1

n(c)cc ∑
e∈E

we

c

∑
i=1

(ΦT
e (cei − 1))�csc,

(4)

where the binary matrix Φe ∈ Rc×|V| samples all vertices in e from the vertex set V , the
vector ei denotes the ith column of the c× c identity matrix Ic, the vector 1 is a c-dimension
all-ones vector, the operator � is the outer product of two vectors (or matrices), and the
operator ×n denotes the n-mode product of a tensor and a matrix. From (4), we can
accordingly obtain a cth-order |V|-dimension hypergraph Laplacian tensor L(c) containing
all information of the topology as an HGS difference operator formulated as

L(c) =
1

n(c)cc ∑
e∈E

we

c

∑
i=1

(ΦT
e (cei − 1))�c, (5)

which is found to coincide with the Laplacian tensor defined in [22]. The HOTV can then
be represented by L(c) as

TV(s) = L(c)s
c (6)
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for a c-uniform hypergraph, and

TV(s) = ∑
c∈C

L(c)s
c (7)

for a general hypergraph. L(c) in (7) denotes the cth-order Laplacian tensor of the c-uniform
partial hypergraph.

It is obvious from the definition (5) that the hypergraph Laplacian is supersymmet-
ric [27], which means that its entries are invariant under any permutation of its indices.
Moreover, according to both the nonnegative property of the HOTV and the hypergraph
Laplacian form, we obtain Proposition 1 [22]. The definition of positive semidefinite tensors
is presented below as well. In general, extended from the graph Laplacian, the even-order
hypergraph Laplacian is a high-order difference operator which is supersymmetric and
positive semidefinite as well.

Definition 1 (Positive semidefinite tensor). A real mth-order n-dimension supersymmetric
tensor T = (ti1,··· ,im), 1 ≤ i1, · · · , im ≤ n is positive semidefinite if for ∀x ∈ Rn, the homoge-
neous polynomial

Txm = T×1 xT ×2 · · · ×m xT =
n

∑
i1,··· im=1

ti1,··· ,im xi1 · · · xim ≥ 0. (8)

Proposition 1. Even-order hypergraph Laplacian tensors (5) are positive semidefinite.

For a preprocessed general hypergraph, we can obtain an even-order Laplacian tensor
set according to the corresponding even-cardinality uniform partial hypergraph set. We
can subsequently process the Laplacian tensor of each order accordingly.

2.2.2. Representations of Signals

For a real-valued HGS s ∈ R|V|, we introduce nonlinearity and define a high-order
signal function s(M) : V × · · · × V︸ ︷︷ ︸

M

7→ R to obtain high-order signal values among vertices,

where M = c/2 and the operator × is the Cartesian product of two sets. The high-order
HGS s(M) ∈ S(M) ⊆ R|V|M is obtained by a nonlinear function of the original signal s
formulated as

s(M) := vec(s�M) = s⊗M, (9)

where S(M) is a subset of R|V|M formed by all values of s(M) for ∀s ∈ R|V|, and the operator
⊗ denotes the Kronecker product of two vectors (or matrices). The supersymmetric rank-
one [27,37] tensor s�M = ten(s(M)) is the tensor form of the high-order HGS. We denote
the set {1, · · · , |V|} by [|V|]. For ∀i1, i2, · · · , iM ∈ [|V|], the corresponding entry of s(M) is

(s(M))1+∑M
m=1(im−1)|V|M−m = si1 si2 · · · siM . (10)

Remark (Sign ambiguity): There exists a problem introduced by the Mth-order signals
when M = c/2 is an even number. We cannot judge the sign of an HGS from the Mth-order
form of the HGS. Instead, we can only determine the relative sign, namely, whether signals
at any pair of vertices have the same or different signs. In this case, we may obtain the
original HGS or a signal with the opposite sign from its high-order form. In semi-supervised
or supervised learning tasks, we can determine the sign of an HGS by both the relative
signs and signs of observations. For unsupervised learning tasks such as vertex clustering,
it is enough to obtain distances or similarities of vertices from topologies that are irrelevant
to signals. Therefore, although there may be no mapping from high-order signals to the
original 1st-order ones due to the sign ambiguity, it does not matter in many practical
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applications. While degenerating into the graph case, namely, M = 1, the high-order signal
coincides with the original one and thus the above problem does not exist.

3. Hypergraph Fourier Transform
3.1. Construction of an Orthonormal Basis

We assume that the HGS is correlated to the topology and evolves smoothly over
the topology since we construct the hypergraph based on high-order interactions among
vertices. We need a basis for the HGS to capture the main features of the HGS and find
relatively smooth representations of the HGS in a low-dimension vector space. Utilizing the
high-order difference property of the HOTV (4), we can obtain the basis by decomposing
the hypergraph Laplacian tensor. It is reasonable to treat each mode equivalently and obtain
the same basis in the tensor decomposition since the tensor L(c) is supersymmetric. We
require the basis vectors to be orthogonal since we hope for the HGS with distinct features
to be irrelevant and to share no signal components. We then represent the orthonormal
basis for R|V|, where the HGS is located, by a matrix U ∈ R|V|×|V|. Accordingly, the tensor
decomposition formulated as

L(c) = G(c) ×1 U×2 · · · ×c U (11)

conforms to the Tucker decomposition form [27] which allows the core tensor G(c) not to be
superdiagonal and assumes the basis U usually to be orthogonal. The decomposition (11)
of L(c) with the basis U always exists owing to the existence and the non-uniqueness of the
Tucker decomposition [27].

U⊗M is an orthonormal matrix since we require U to be orthonormal. Considering
high-order interactions among vertices, we can obtain the orthonormal basis U⊗M for the
high-order HGS by calculating the ith basis vector ui of U for i = 1, · · · , |V| in turn, which
solves a functional minimization problem formulated as

u⊗M
i = arg min

s(M)∈S(M)

TV(s(M))

s.t. (U�M
i−1 )

Ts(M) = 0
sT
(M)s(M) = 1,

(12)

where the operator � denotes the Khatri–Rao product of two matrices with the same
number of columns and the matrix U�M

i−1 = [u⊗M
1 , · · · , u⊗M

i−1 ] ∈ R|V|
M×(i−1) is only defined

for i ≥ 2. The first constraint in (12) containing i− 1 equations denotes the orthogonal
constraints of the basis vectors and only exists when i ≥ 2. The second constraint in (12)
requires the high-order signal to be normalized. By solving (12) iteratively, we can obtain a
set of orthonormal high-order signals in a sequence that keeps the HOTV nondecreasing. In
other words, for the ith problem, we obtain the smoothest signal as the basis vector which
is orthogonal to the first i− 1 obtained ones.

The constraint sT
(M)s(M) = 1 is equivalent to sTs = 1, since the real-valued signal

satisfies sT
(M)s(M) = (sTs)⊗M = (sTs)M according to (9) and the inner product sTs is

nonnegative. Thus, we can consider the 1st-order form of HGS s directly and rewrite (12) as

ui = arg min
s∈R|V|

TV(s)

s.t. UT
i−1s = 0
sTs = 1,

(13)

where Ui−1 = [u1, · · · , ui−1] ∈ R|V|×(i−1) for i ≥ 2 . We provide a solution by the
method of Lagrange multipliers and gradient descent method in Appendix A, since the
problem (13) involves tensor operations such as tensor products and partial derivatives.
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As is also discussed in Appendix A, there may be nonzero off-diagonal entries in the core
tensor G(c) for the Tucker decomposition, specifically with the basis U.

Example 5. Three basis vectors u1, u2 and u8 of the example hypergraph H in Figure 1 are
presented in Figure 3. As the first basis vector, namely the smoothest one, u1 is a constant HGS
over the topology with a zero total variation. The basis vector u2 seems to provide an informative
vertex clustering method corresponding to a specific smoothness of the HGS. Note that basis vectors
associated with small total variations vary slowly over the topology, while basis vectors associated
with larger total variations oscillate more rapidly and disorderly and tend to have more dissimilar
values on vertices connected by large-weight hyperedges.
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Figure 3. Three basis vectors of the example hypergraph H. The signal value at each vertex is
represented by the color of the vertex. (a) TV(u1) = 0; (b) TV(u2) = 0.0063; (c) TV(u8) = 0.4153.

When c = 2, problems (12) and (13) degenerate to the graph case and become exactly
the same. By the Courant–Fischer theorem, the ith smallest eigenvalue λi of a graph
Laplacian matrix is the value of TV(ui), and the corresponding eigenvector ui can be
obtained by either (12) or (13). In either of the ways above, we can obtain a matrix U =
[u1, · · · , u|V|] which contains the basis of the graph Fourier transform (GFT) as its columns.
Therefore, one can view the proposed orthonormal basis as a generalization of the GFT
basis in the hypergraph case.

3.2. Hypergraph Fourier Transform

Given the orthonormal basis U generalized from the GFT basis, we define a novel
HGFT by projecting signals to the orthonormal basis in order to process the high-order HGS
in both vertex and spectral domains. The HGFT transforms the high-order vertex-domain
HGS s(M) into the spectral-domain signal ŝ(M), which can be formulated in both vector
and tensor forms as

(vector form) ŝ(M) := (U⊗M)Ts(M) = (UTs)⊗M (14)

(tensor form) ten(ŝ(M)) = ten(s(M))×1 UT ×2 · · · ×M UT = (UTs)�M. (15)

The inverse HGFT (IHGFT) is accordingly defined as

(vector form) s(M) = U⊗M ŝ(M) = (Uŝ)⊗M (16)

(tensor form) ten(s(M)) = ten(ŝ(M))×1 U×2 · · · ×M U = (Uŝ)�M, (17)

which transforms a high-order spectral-domain signal ŝ(M) into its vertex-domain form
s(M). When M = 1, all bases and signals in both the HGFT and the IHGFT are the same as
those in the graph case.

Obviously, only orthogonal transformation is involved in either the HGFT or the
IHGFT since U⊗M is an orthonormal matrix. Therefore, signal transformations in both
directions satisfy the conservation of energy.

To reduce the computational cost, we can calculate their equivalent forms (14) and (16)
by the last step of each formula since (15) and (17) are all supersymmetric and rank-one.
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Moreover, both the HGFT (14) and the IHGFT (16) can degenerate into the transformation
and its inverse of the original HGS given by

ŝ = UTs (18)

and
s = Uŝ (19)

in some reducible cases of the follow-up work, since the sign ambiguity brought by high-
order signals does not matter, as we have discussed in Section 2.2.

3.3. Spectral Form of Total Variation

After the construction of the orthomormal basis and the definition of the HGFT, the
HOTV of the HGS in the spectral domain can be written as

TV(s) = L(c) ×1 sT ×2 · · · ×c sT

= (G(c) ×1 U×2 · · · ×c U)×1 sT ×2 · · · ×c sT

= G(c) ×1 (sTU)×2 · · · ×c (sTU)

= G(c) ×1 ŝT ×2 · · · ×c ŝT = G(c) ŝ
c

= TV(ŝ)

(20)

according to (4) and (11). For 1 ≤ i ≤ |V|, the ith diagonal entry of G(c) denotes the
HOTV of the ith basis vector of the HGS. Off-diagonal entries of G(c) correspond to invalid
signal components since they do not belong to S(M). As is mentioned above, since we
introduce nonlinearity by defining and processing the high-order HGS, the subset S(M) is

not a subspace of R|V|M . Therefore, those components are necessary for representing any
valid HGS linearly even though they are invalid themselves.

In Section 3.2, we defined the spectral form of an HGS s as ŝ. We now analyze the
spectral property of the HGS reflected by ŝ. The ith entry of ŝ is the coefficient of projecting
s to the ith smoothest basis vector ui. Therefore, entries of ŝ reflect the spectral distribution
of the HGS from low-frequency to high-frequency.

Example 6. The total variation of an N × N image X under circular boundary conditions [38]
can be viewed as the total variation of a 2-dimensional signal vec(X) ∈ RN2

formulated as

TV(X) = vec(X)TLvec(X), (21)

where L ∈ RN2×N2
is the Laplacian matrix of the Cartesian product of two identical N-vertex

unweighted loops. The Laplacian matrix LN of such N-vertex unweighted loop can always be
diagonalized by the unitary discrete Fourier matrix VN ∈ CN×N formulated as LN = VNΛVT

N
since it is circulant. Therefore, the Laplacian matrix

L = LN ⊗ IN + IN ⊗ LN (22)

is circulant as well, and it can be diagonalized by the discrete Fourier matrix V = V⊗2
N [39,40]. The

discrete Fourier transform (DFT) of the vectorized 2-dimensional signal vec(X) is implemented by
vec(X̂) = VTvec(X).

Specifically, for a 2nd-order HGS s(2), we can treat it as a special case of general 2-
dimensional signals. If mat(G(4)) is a diagonal matrix, only all diagonal entries need to be
considered as spectral coefficients. The total variation and the signal transformation we pro-
posed are consistent with those of the above vectorized 2-dimensional signal vec(X). The
necessary and sufficient condition for mat(G(4)) to be diagonal is that G(4) is superdiagonal
since G(4) is supersymmetric. The proof can be found in Appendix B. In other words, we
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assume that the hypergraph Laplacian L(4) can be orthogonally superdiagonalized by the
basis U among all 4 modes in this special case.

4. Hypergraph Filters

In general, a hypergraph filter is a system which takes an HGS s as the input and
obtains another HGS s̃ as the output. The novel HGFT proposed in Section 3.2 provides
both vertex and spectral perspectives for HGS filtering. We now consider a hypergraph
filter F ∈ R|V|M×|V|M and denote its spectral form by F̂ ∈ R|V|M×|V|M . The filter in the two
domains can be viewed as a function of L(c) and G(c), respectively. In the vertex domain,
we can filter a high-order HGS directly by

(vertex domain) s̃(M) = Fs(M), (23)

while we filter a spectral-domain high-order signal by

(spectral domain) ˜̂s(M) = F̂ŝ(M). (24)

By substituting the HGFT and IHGFT into (24), any spectral filtering can be imple-
mented in the vertex domain as

F = U⊗MF̂(U⊗M)T . (25)

For M = 1, the hypergraph H degenerates into a graph, and (23) and (24) represent
graph filtering in the vertex and spectral domains, respectively.

Filtering in either of the two domains takes linear transformations of high-order
components as the results. However, the subset S(M) is defined to contain all vector forms
of the Mth-order |V|-dimension supersymmetric rank-one tensors. Obviously, it is not a
subspace and may not contain the column space of F. In this case, the subset S(M) does
not satisfy the rules for vector addition and multiplication by real scalars. Thus, after
implementing the linear combination of high-order components, the filtering result s̃(M)

may not lie in the subset S(M) anymore. It may take an invalid form and not be able to
reduce to the original 1st-order form as the filter output. In this case, we need to add the
rank-one approximation (ROA) of ten(s̃(M)) into the filtering process to obtain a valid high-
order signal form. The ROA of the supersymmetric tensor ten(s̃(M)) in the least-squares
sense [41] solves a minimization problem formulated as

(λ̂, û) = arg min
λ∈R,u∈R|V|

‖ten(s̃(M))− λu�M‖2
2

s.t. uTu = 1
(26)

and arrives at the solution
ROA(s̃(M)) = λ̂û⊗M, (27)

which preserves the most dominated supersymmetric rank-one component of ten(s̃(M))
in the least-squares sense. The relationship between the valid forms of (23) and (24) still
maintains the correspondence of signals in both domains formulated as

ROA(s̃(M)) = U⊗MROA( ˜̂s(M)) (28)

where ROA(·) specifically denotes the equivalent vector operation of the tensor ROA, and
the proof is given in Appendix C. In this way, we can ensure that taking the original HGS s
as an input, the hypergraph filter can obtain a vector of the same size as its output. Outputs
of a vertex-domain filter F and a spectral filter F̂ can be respectively obtained by

(vertex domain) s̃ = (ROA(s̃(M)))
⊗1/M (29)
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and

(spectral domain) ˜̂s = (ROA( ˜̂s(M)))
⊗1/M, (30)

where (·)⊗1/M denotes the inverse operation of the Kronecker products of M identical
vectors. If M is odd, we can obtain the value of the ith entry by plugging i1 = · · · = iM = i
into (10) and calculating its 1/Mth power. However, if M is even, we can only obtain the
absolute value of the ith entry because of the sign ambiguity. The relative sign between
signals at vertices vi and vj can be obtained by entries in (10) with {im}M

m=1 composed of
odd numbers of i and j. The final signs of signals can be determined according to signs
of observations.

Example 7. For the operator (·)⊗1/M with an even M, according to (10), it can be learned from
(ROA(s̃(M)))1 = s̃M

1 = 1 and (ROA(s̃(M)))1+∑M
m=1 |V|M−m = s̃M

2 = 1 that |s̃1| = |s̃2| =
11/M = 1. The signs of s̃1 and s̃2 are the same if (ROA(s̃(M)))1+∑M

m=2 |V|M−m = s̃1 s̃M−1
2 = 1. The

signs of s̃1 and s̃2 are different if (ROA(s̃(M)))1+∑M
m=2 |V|M−m = s̃1 s̃M−1

2 = −1. We can judge the
final sign of the HGS s̃ according to signs of observations.

We now discuss two specific forms of hypergraph filters. One is polynomial filters
which are based on the hypergraph Laplacians and can be operated in the vertex domain
directly. The other one is reducible filters which can ensure that all high-order signals
in the whole processing task are in valid forms and are able to degenerate into their
1st-order forms.

4.1. Polynomial Filters Based on the Hypergraph Laplacians

Polynomial hypergraph filters are a kind of common and handy filter which can be
directly implemented in the vertex domain of the HGS. Taking vertex-domain signals as the
input, we can construct a hypergraph polynomial filter based on the hypergraph Laplacians
in Figure 4 formulated by

(vertex domain) s̃ = (ROA(
K

∑
k=0

akmat(L(c))
ks(M)))

⊗1/M = (ROA(
K

∑
k=0

ak s̃(k)
(M)

))⊗1/M, (31)

where K is the order of the polynomial filter, {ak}K
k=0 are the filter coefficients and s̃(k)

(M)
is

the kth-order term of the hypergraph Laplacian filtering result. The whole filtering process
can be divided into two parts. To obtain the kth-order term s̃(k)

(M)
, we process the high-order

signal s(M) by L(c) for k times. Then, we take the linear combination of results of each
order according to the filter coefficients, perform a rank-one approximation to obtain a
valid high-order result and finally reduce it into its 1st-order form as the output of the
filter. Regardless of whether the filtering result is valid or not, the computational cost of
simply filtering an Mth-order |V|-vertex hypergraph signal is O( (K+1)K

2 |V|2M), namely,
O(|V|c). The computational cost of the algorithm of the ROA of an Mth-order |V|-vertex
hypergraph signal is O(Niter ∑M

i=1 |V|i), namely, O(|V|M), where Niter denotes the number
of iterations in the algorithm of the tensor ROA. Therefore, the computational cost of the
high-order polynomial filter is O(|V|c).

From the spectral perspective, by (28), we accordingly have

(spectral domain) ˜̂s = (ROA(
K

∑
k=0

akmat(G(c))
k ŝ(M)))

⊗1/M. (32)

As we have discussed before, the hypergraph Laplacian L(c) can be treated as a high-
order difference operator, and G(c) takes high values on the positions corresponding to
rapidly oscillating components in the tensor decomposition of L(c). Therefore, L(c) can be
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regarded as a high-pass filter focusing on relatively greatly varying components of signals.
We can utilize L(c) to process s(M) and mostly obtain the high-frequency components. Thus,
the polynomial filter takes the ROA of the linear combination of the high-order HGS and
its multi-order high-pass filtering results as the output.

�

=5

ú:Ö; ú:Ö;

ROA

ú:Ö;®

=4 =Ä=6

]/

power

] s�/

power

�

ä�

®

Figure 4. The polynomial filter based on the hypergraph Laplacian.

When the filter coefficients {ak}K
k=0 take different values, we can obtain filters with

distinct spectral properties for different applications. For instance, if smoothly varying
components are more important and informative to the tasks, we can adjust the coefficients
to remove the rapidly oscillating component from the input signal s(M), namely, s̃(0)

(M)
, by

utilizing the multi-order high-pass filtering results {s̃(k)
(M)
}K

k=1 in (31). The above operation
can be considered as a low-pass filter.

4.2. Reducible Filters

Reducible filters provide a way to ensure the validity of the high-order HGS through-
out the whole filtering process. Thus, reducible filters do not need the ROA of the high-order
HGS and allow the whole signal processing task to be equivalently implemented in a 1st-
order way. More precisely, the reducibility requires filters in either of the two domains to be
the Kronecker products of M identical matrices. We then can represent the spectral-domain
filter by F̂ = F̂⊗M

m , where F̂m ∈ R|V|×|V|. By substituting the spectral form into (25), the
corresponding vertex-domain form is F = (UF̂mUT)⊗M = F⊗M

m . Under this condition,
hypergraph filtering in the vertex domain (23) and the spectral domain (24) can be precisely
written as

(vertex domain) s̃(M) = F⊗M
m s(M) = F⊗M

m s⊗M = (UF̂mUTs)⊗M (33)

and

(spectral domain) ˜̂s(M) = F̂⊗M
m ŝ(M) = (F̂ms)⊗M, (34)

and thus can be respectively reduced to

(vertex domain) s̃ = Fms = UF̂mUTs (35)

and

(spectral domain) ˜̂s = F̂m ŝ (36)

as Figure 5 shows.
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Figure 5. The degenerate form of the reducible filter.

As is mentioned in Section 2, the hypergraph H is undirected and does not take
into account edge-dependent vertex weights [42], which means that all the c vertices in
a hyperedge are treated equivalently. We hope that in each hyperedge, the way of signal
transmission among the c vertices in the filtering process is the same for any direction to
any vertex. Therefore, we constrain the tensor form of the filter F̂ to be supersymmetric.
We then utilize the following proposition which is proven in Appendix D to filter the
1st-order HGS.

Proposition 2. A real tensor ten(F̂) = F̂�M
m is supersymmetric for M ≥ 2 if and only if F̂m is a

real symmetric rank-one matrix or a zero matrix.

We now consider that a degenerate spectral filter F̂m to be designed is a real symmetric
rank-one matrix and takes the form F̂m = λm f̂ f̂ T where the unit vector f̂ ∈ R|V| and the
scalar λm ∈ R. The degenerate form of the vertex-domain reducible filtering (35) can then
be rewritten as

s̃ = λmU f̂ f̂ TUTs = λm(U f̂ )(U f̂ )Ts. (37)

It can be learned from (37) that f̂i (the ith entry of f̂ ) corresponds to the ith component
of the basis. By designing all the coefficients in f̂ , we obtain a unit vector U f̂ which is
a signal with multiple spectral components. The filtering process is to project the signal
s onto the unit vector U f̂ and then to multiply the projecting result by a coefficient λm
which includes the sign information and the amplitude gain of the filter. The smoothness
property of the signal U f̂ directly determines the spectral components retained in the
filtering process.

In general, as a function of G(c), the original reducible filter F̂ = λM
m ( f̂ f̂ T)⊗M considers

spectra corresponding to both valid and invalid high-order basis vectors and preserves
a valid HGS form throughout the whole process simultaneously. Moreover, unlike some
other filters, reducible filters can degenerate into a 1st-order form and thus provide outputs
with intuitive spectral interpretations without the additional ROA.

While designing filters such as low-pass, high-pass, or band-pass filters, we can adjust
the filter coefficients f̂ and λm according to the practical demand. For example, the output
of a low-pass filter tends to mainly concentrate on smooth HGS components represented
by the first few basis vectors.

5. Application

As one of the widely studied supervised learning tasks, label learning studies a
problem where each instance corresponds to a real-world agent associated with a label. The
problem is to learn a function that predicts labels for unobserved instances according to
some given observations. If features of all instances take the form of hypergraph topologies,
the label learning task refers to hypergraph label learning specifically.

Hypergraph label learning has been widely applied to various scenarios such as auto-
matic image annotation [43], visual classification of 2D or 3D objects [44–46], recommender
systems [47,48], etc. Existing methods mostly utilize matrix-based or tensor-based forms to
represent and process the HGS.
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5.1. Hypergraph Label Learning Model

We model hypergraph labels by an HGS and implement hypergraph label learning in
two steps. We first estimate the HGS by solving the following minimization problem

min
s∈R|V|

`(s, y, Ψ) + λΩ(s), (38)

where the loss function ` measures the estimation error of known labels y, the regularization
term Ω aims to avoid overfitting, the nonnegative parameter λ makes a trade-off between
the above two terms, and Ψ is the sampling operator of the training set. We then set a
threshold, divide all vertices into two categories according to the estimated signal and
finally obtain the labels of the test set.

Concretely, we here provide a label learning method by directly filtering the 1st-
order HGS, namely, using the degenerate form of reducible filters (37) by setting the filter
coefficients λm and f̂ appropriately. We assume that the HGS evolves smoothly over the
topology and lies in a low-dimension vector space since we construct hypergraphs based on
the vertex similarity and correlation. We then consider recovering signals by constraining
it in a low-dimension linear subspace spanned by the first few vectors of the orthonormal
basis. Therefore, given the number of vertices with known labels N, the last |V| − N entries
of f̂ are constrained to be zero, and the 1st-order HGS to be recovered can be represented by

s̃ = λmU f̂ f̂ TUTs = UΦα, (39)

where Φ = [IN , 0N×(|V|−N)]
T ∈ R|V|×N is a binary matrix and α = λmΦT f̂ f̂ T ŝ ∈ RN is

the first N entries of the output of the 1st-order spectral reducible filter. For the sake of
simplicity, instead of designing the coefficients λm and f̂ of the reducible filter, we can filter
the HGS by learning α whose dimension N is less than the number of the filter coefficients.
However, a sufficiently large N possibly introduces the basis vector which is not smooth
enough and tends to lead some large-variation components into the estimation of unknown
labels. We thus consider to introduce a regularization term by constraining the values of α
and sacrificing a little estimation accuracy since an appropriate N takes different values
under different specific situations. In our experiment, we choose the square loss of known
labels as the loss function ` and the squared `2-norm of α as the regularization term Ω. The
optimization problem (38) can then be rewritten as

min
α∈RN

‖ΨUΦα− y‖2
2 + λ‖α‖2

2. (40)

5.2. Experimental Setups and Results

In this subsection, we provide two simulation examples over the acute inflammations
dataset [49] and the iris dataset from the UCI Machine Learning Repository [50]. For the
two datasets, we model them by 4-uniform weighted undirected hypergraphs based on
the Euclidean distances of agents in their attribute vector space. The more similar the
attribute vectors of any group G of 4 agents are, the more similar or correlated those
agents seem to be and the more likely they are to be in one hyperedge. Therefore, in
hypergraph topology constructions, we denote the arithmetic mean and the variance of the
distance between any two agents in the group G by distam = 1

(4
2)

∑{vi ,vj}∈G dist(vi, vj) and

distvar =
1
(4

2)
∑{vi ,vj}∈G(dist(vi, vj)− distam)2, respectively . We then consider the values of

distam and distvar, and we accordingly set two thresholds τam and τvar of the above two
values to determine the existence of a hyperedge. We set τam for two datasets equal to 0.5
and 0.07, respectively, and set τvar for both datasets to select the 50% smallest-variance
hyperedges of all the hyperedges which have already met the threshold τam. In addition,
each vertex and its nearest group members must be in a hyperedge to ensure that no
vertex is isolated. The weight of each hyperedge can be calculated by a Gaussian kernel

function of distam formulated as w = exp(−dist2
am

2σ2 ) where parameters σ of the two datasets
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are set to 2
√

2 and 1/
√

2 respectively. Here, we provide 15-vertex sub-hypergraphs as
examples for both datasets in Figure 6. The signal defined at each vertex is the classification
label represented by a scalar (for a two-class dataset) or a three-dimensional vector (for a
three-class dataset) taking the values from {0, 1}, and the label classification threshold is
set to 0.5.
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Figure 6. Examples of 15-vertex 4-uniform sub-hypergraphs of the two datasets. Each sub-hypergraph
consists of a vertex set, a hyperedge set and vertex indices. (a) The acute inflammations dataset;
(b) The iris dataset.

We compare the proposed factorization-based method with other three factorization-
based methods. Given the same hypergraph topology, HGSP’20 [25] obtains its HGFT basis
by the orthogonal CP decomposition [26] of the adjacency tensor in the HGSP framework.
As one of the graph approximation methods [33], the method in [32] projects high-order
interactions onto pairwise ones and defines a normalized hypergraph Laplacian matrix
(HGLM) according to the same hypergraph topology. We can obtain an orthonormal basis
by the eigendecomposition of the Laplacian matrix and we denote the method by HGLM’06.
Focusing on pairwise interactions from the beginning, the graph method directly constructs
a graph according to the same threshold τam and the same weight function, ensures that no
vertex is isolated, and uses the GFT basis for the task.

We first consider the disease diagnosis over the acute inflammations dataset with
|V| = 120 potential patients and two diseases (as two labels) for each potential patient. The
manifestation of the acute inflammation of the urinary bladder (denoted by label d1) and
acute nephritisis (denoted by label d2) is provided as 6 attributes of each person such as
temperature, the occurrence of nausea, etc. In each trial, we randomly choose 10–25 persons
as agents with known labels and left the labels of the remaining persons unknown. We
tested the learning accuracy for the two diseases (labels d1 and d2), respectively, by setting
λ = 0 and taking the average of 1000-trial results, as shown in Figure 7.

10 15 20 25

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed

HGSP'20

HGLM'06

graph method

10 15 20 25
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

proposed

HGSP'20

HGLM'06

graph method

Figure 7. Accuracy of a disease diagnosis example using hypergraph label learning with different
numbers of known-label agents.

In Figure 7, the proposed method performs best in the diagnosis accuracy of unknown-
label potential patients, which indicates that the proposed orthonormal basis owns the
most spectral information of both two signals in this situation. The spectral forms of the
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two signals are relatively sparse, and the signal components of the two signals tend to
concentrate more on the low-frequency basis vectors. The performance of HGSP’20 is
the least satisfactory here, likely because of the uncertainty caused by the orthogonal CP
decomposition on some occasions. HGLM’06 does not perform as well as the proposed
method probably due to the projection of high-order interactions onto pairwise ones. The
projections and the subsequent mathematical representations bring irreversible information
loss to the analysis of the HGS. The graph method also performs very well in the learning
of the two labels. The reason why the graph method outperforms HGLM’06 is possibly
that HGLM’06 focuses on the hypergraph topology at first and attaches a much larger
weight to the edge onto which is projected by multiple large-weight hyperedges by the
direct summation of the hyperedge weights. That might not be suitable in this case. In
general, the two methods describe and utilize different pairwise interactions from different
starting points.

In addition to the binary classification for each label, we also provide a three-class
simulation example over the iris dataset with |V| = 150 agents. We model the three-class
label of each agent by a three-dimensional binary vector, as mentioned before, and we
solve the optimization problem (40) for each dimension by setting λ equal to 0, 0.007 and
0.007, respectively. We test the label learning accuracy of unknown-label agents with the
number of known labels N ranging from 1 to 40 by averaging 1000-repetition results. The
comparative results are shown in Figure 8.
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Figure 8. Accuracy of a 3-class simulation example using hypergraph label learning with different
numbers of known-label agents.

It can be observed in Figure 8 that the proposed method generally achieves a higher
accuracy than other methods. For a very few N, HGLM’06 performs well and the accuracy
increases rapidly, which indicates that its first few basis vectors do greatly help with the
classification task. Both the proposed method and HGLM’06 behave well for a relatively
small N, which shows the advantage of focusing on high-order interactions. Unlike those
two methods, the graph method does not perform so well and it seems to need more labels
to achieve a better result when N takes relatively small values. For a larger N, the graph
method obtains more labels and performs a lot better. In summary, the above results show
the advantage of the proposed method in this scenario and demonstrate the advantage of
mining high-order interactions, especially under the lack of known labels.

6. Conclusions

To capture high-order interactions in complex structured signal processing, we propose
an HGS analysis framework based on the hyperedge-wise HOTV proposed in this paper.
The HOTV can be regarded as a smoothness measure of the HGS, and the hypergraph
Laplacian obtained from the HOTV can be regarded as a high-order difference operator
of the HGS. According to the smoothness measure, we construct an orthonormal basis
reflecting spectral information of signals over the topology. We further propose a new signal
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transformation (a novel HGFT) and introduce both the vertex and the spectral domains of
the HGS. We then implement hypergraph filtering in both domains equivalently and provide
two specific filter forms. Finally, we validate the advantages of the proposed framework in
some scenarios using applications in label learning and some experimental results.

Author Contributions: Conceptualization, R.Q. and H.F.; methodology, R.Q. and H.F.; software,
R.Q.; validation, R.Q. and H.F.; formal analysis, R.Q.; investigation, R.Q.; resources, R.Q.; data
curation, R.Q.; writing—original draft preparation, R.Q.; writing—review and editing, R.Q., H.F.,
C.X. and B.H.; visualization, R.Q.; supervision, H.F. and B.H.; project administration, H.F. and B.H.;
funding acquisition, H.F. and B.H. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the Shanghai Municipal Natural Science Foundation
(No. 19ZR1404700).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

CP CANDECOMP/PARAFAC
GFT Graph Fourier transform
GSP Graph signal processing
HGFT Hypergraph Fourier transform
HGLM Hypergraph Laplacian matrix
HGS Hypergraph signal
HGSP Hypergraph signal processing
HOTV High-order total variation
IHGFT Inverse hypergraph Fourier transform
ROA Rank-one approximation

Appendix A. Solution of Problem (13)

We provide a way to solve the problem here since the objective function of the prob-
lem (13) refers to tensor products. By the method of Lagrange multipliers, we can convert
the minimization problem with i equality constraints into an unconstrained problem by
first forming the Lagrangian function

L(s, λ, µ) = L(c)s
c − λ(sTs− 1)− 1Is(i)

i−1

∑
j=1

µjuT
j s, (A1)

where Is = {2, 3, · · · , |V|}, 1Is(i) is an indicator function equal to 1 for i ∈ Is and 0
otherwise, and µ = [µ1, · · · , µi−1]

T ∈ Ri−1 (for i = 1, we only take the smoothness
measure and the normalization constraint into consideration, and the last term of (A1)
does not exist). The i constraint gradients u1, · · · , ui−1 and 2s of the ith minimization
problem (13) are orthogonal and thus linearly independent. Therefore, the first-order
necessary condition (Lagrange multipliers) holds by Proposition 3.1.1 in [51]. We set the
gradient of (A1) to zero and arrive at

∇s,λ,µL(s, λ, µ) = [∂sLT , ∂λL, ∂µLT ]T = 0, (A2)

the solutions of which are all candidates of the optimal solution including the global
optimal one since the optimal problem is nonconvex. Specifically, the partial derivative of
the Lagrangian function with respect to s in (A2) is formulated as
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∂sL = cL(c)s
c−1 − 2λs− 1Is(i)

i−1

∑
j=1

µjuj. (A3)

It is worth noting that (A3) involves partial derivatives of tensor products [52] which
are formulated as

∂s(L(c)s
c) = cL(c) ×2 sT ×3 · · · ×c sT = cL(c)s

c−1. (A4)

According to (A2) and (A3), by sT(∂sL) = 0 and UT
i−1(∂sL) = 0, the multipliers λ and

µ can be solved and represented by s as

λ =
c
2

L(c)s
c, (A5)

and
µj = cuT

j L(c)s
c−1, ∀j∈ [i− 1]. (A6)

By plugging (A5) and (A6) into (A3), we have

∂sL = (I|V| − ssT−Ui−1Ui−1
T)cL(c)s

c−1. (A7)

We can arrive at a solution corresponding to a local minimum of the objective function
using the gradient descent method by iterating

sk+1 = sk − η(∂sL)
∣∣
s=sk

= sk − η(I|V| − sksT
k−i−1Ui−1

T)cL(c)sk
c−1 (A8)

where the stepsize η > 0.
Using the solutions U of the |V| problems as the basis, the tensor decomposition (11)

takes the form of the Tucker decomposition [27]. We can view the first basis vector in U
from the perspective of Z-eigenpairs of supersymmetric tensors [52]. According to (A2)
and (A7), solutions corresponding to any local minimum of the objective function all satisfy

(I|V| − ssT−Ui−1Ui−1
T)cL(c)s

c−1 = 0 (A9)

which indicates that the vector L(c)sc−1 belongs to the nullspace of (I|V| − ssT −Ui−1UT
i−1),

namely, the column space of [Ui−1, s]. Specifically, following from (A5), when i = 1, (A9)
can be written as L(c)u

c−1
1 = 0u1 which takes the form of Z-eigenpairs of L(c). The Z-

eigenvector u1 can be 1√
|V|

1 which is the smoothest signal over any topology with the

corresponding Z-eigenvalue 0 as the smallest one. However, when i ≥ 2, L(c)u
c−1
1 may

no longer be consistent with the form of Z-eigenpairs, which indicates that there may be
nonzero off-diagonal elements in the core tensor G(c) in (11). Therefore, we represent the
Laplacian tensor L(c) in the form of the Tucker decomposition by the orthonormal basis.

For general hypergraphs, we can find the local minimum of TV(s) and the correspond-
ing ith basis vector in a similar way. In this case, the Lagrange multipliers (A5) and (A6)
respectively become

λ =
1
2 ∑

c∈C
cL(c)s

c (A10)

and
µj = uT

j ∑
c∈C

cL(c)s
c−1, for ∀j ∈ [i− 1]. (A11)

The partial derivative of the Lagrangian function (A3) with respect to s accordingly
changes to

∂sL = (I|V| − ssT −Ui−1UT
i−1) ∑

c∈C
cL(c)s

c−1. (A12)

We can also obtain a local minimum of the problem using the gradient descent method
by iterating

sk+1 = sk − η(∂sL)
∣∣
s=sk

= sk − η(I|V| − sksT
k −Ui−1UT

i−1) ∑
c∈C

cL(c)s
c−1
k , (A13)

where the step size η > 0.
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Appendix B

Proposition A1. mat(G(4)) is a diagonal matrix if and only if the supersymmetric tensor G(4) is
superdiagonal.

Proof. For an even number c > 0, the two forms, G(c) and mat(G(c)), are equivalent
representations with entries

(G(c))i1,··· ,ic = (mat(G(c)))1+∑M
m=1(im−1)|V|M−m ,1+∑c

m=M+1(im−1)|V|c−m for ∀i1, · · · , ic ∈ [|V|] (A14)

since either of them can be obtained from the other by tensor reshaping. We define functions
g1 : [|V|]× · · · × [|V|]︸ ︷︷ ︸

M

7→ [|V|M] and g2 : [|V|]× · · · × [|V|]︸ ︷︷ ︸
M

7→ [|V|M] to describe the way

indices of G(c) map to indices of mat(G(c)), by which (A14) can be simplified as

(G(c))i1,··· ,ic = (mat(G(c)))g1(i1,··· ,iM),g2(iM+1,··· ,ic) for ∀i1, · · · , ic ∈ [|V|]. (A15)

Entries of mat(G(c)) with indices satisfying

im = im+M ∈ [|V|] for ∀m ∈ {1, · · · , M} (A16)

are the |V|M diagonal entries of mat(G(c)). Entries of G(c) with indices i1 = · · · = ic ∈ [|V|]
are the |V| superdiagonal entries of G(c).

For the sufficiency, mat(G(c)) is a diagonal matrix if G(c) is a superdiagonal tensor,
since all the |V| superdiagonal entries of G(c) correspond to the |V| diagonal entries of
mat(G(c)).

For the purpose of this study, we already know that mat(G(c)) is a diagonal matrix. We
then consider the |V|M− |V| diagonal entries of mat(G(c)) that correspond to entries off the
superdiagonal line of G(c). G(c) is a superdiagonal tensor if all those entries are zero. Indices
of those entries take at least two distinct values from [|V|]. Therefore, all those entries
can be denoted by (mat(G(c)))g1(i1,··· ,im1 ,··· ,im2 ,··· ,iM),g2(iM+1,··· ,im1+M ,··· ,im2+M ,··· ,ic) where im1 =

im1+M 6= im2 = im2+M and 1 ≤ m1 < m2 ≤ M. The supersymmetry of G(c) requires

(mat(G(c)))g1(i1,··· ,im1 ,··· ,im2 ,··· ,iM),g2(iM+1,··· ,im1+M ,··· ,im2+M ,··· ,ic)

= (mat(G(c)))g1(i1,··· ,im2 ,··· ,im1 ,··· ,iM),g2(iM+1,··· ,im1+M ,··· ,im2+M ,··· ,ic).
(A17)

The last equality in (A17) is an off-diagonal entry of the diagonal matrix since its index
does not satisfy (A16). Therefore, (A17) equals zero. That is, all those diagonal entries of
mat(G(c)) that correspond to entries off the superdiagonal line of G(c) are zero. We then
complete the proof that G(c) is superdiagonal.

Therefore, specifically for c = 4, the proof of Proposition A1 is completed.

Appendix C. Proof of (28)

(λ̂, û) = arg min
λ∈R,u∈R|V|

`(s̃(M), λ, u)

s.t. uTu = 1,

We use `(s̃(M), λ, u) to denote the objective function in (26) which can be rewritten as

`(s̃(M), λ, u) = ‖ten(U⊗M ˜̂s(M) − λu⊗M)‖2
2

= ‖U⊗M( ˜̂s(M) − λ(U⊗M)Tu⊗M)‖2
2

= ‖U⊗M( ˜̂s(M) − λ(UTu)⊗M)‖2
2

= ‖ ˜̂s(M) − λ(UTu)⊗M‖2
2

= ‖ten( ˜̂s(M))− λ(UTu)�M‖2
2

= `( ˜̂s(M), λ, UTu)

(A18)
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by utilizing the IHGFT (16) and the orthonormal property of the matrix U⊗M. It can be
learned from (A18) that the problem (26) can solve the ROA of both ten(s̃(M)) and ten( ˜̂s(M)).
Similar to (27) , the final solution of ten( ˜̂s(M)) is accordingly given by

ROA( ˜̂s(M)) = λ̂(UT û)⊗M. (A19)

Therefore, we have (28) according to (27) and (A19).

Appendix D. Proof of Proposition 2

Consider the tensor ten(F̂) = F̂�M
m for M ≥ 2 and its entry

(ten(F̂))i1,··· ,ic =
M

∏
m=1

(F̂m)i2m−1,i2m for ∀i1, · · · , ic ∈ [|V|]. (A20)

For the sake of sufficiency, both the real symmetric rank-one matrix and the zero
matrix allow F̂m to take the form of F̂m = λm f̂ f̂ T = λm f̂ � f̂ where the unit vector f̂ ∈ R|V|
and the scalar λm ∈ R. Then, ten(F̂) takes the form

ten(F̂) = (λm f̂ � f̂ )�M = λM
m f̂�c, (A21)

and consequently is supersymmetric.
For the purposes of this work, ten(F̂) is supersymmetric, and thus there should be no

change under any permutation of the tensor indices. Since ten(F̂) is defined by F̂m, we first
think about the intrapair exchange which exchanges two indices of the matrix F̂m. Any
intrapair exchange will keep ten(F̂) unchanged, and therefore we have

ten(F̂) = F̂T
m � F̂�M−1

m (A22)

which indicates that F̂m should be symmetric. In addition to intra-pair exchanges, we also
need to take into account interpair exchanges, namely, exchanges of indices in two different
matrices. We might exchange the 1st and the 3rd indices of ten(F̂), and we will arrive at

(ten(F̂))i1,··· ,ic = (F̂m)i3,i2(F̂m)i1,i4

M

∏
m=3

(F̂m)i2m−1,i2m for ∀i1, · · · , ic ∈ [|V|]. (A23)

If the supersymmetric tensor ten(F̂) is not a zero tensor, F̂m is not a zero matrix. We
then can learn from (A20) and (A23) that

(F̂m)i1,i2(F̂m)i3,i4 = (F̂m)i3,i2(F̂m)i1,i4 for ∀i1, · · · , i4 ∈ [|V|]. (A24)

We now denote the ith column of F̂m by col(i)
F̂m

, and then (A24) can be rewritten as

col(i2)
F̂m

col(i4)T
F̂m

= col(i4)
F̂m

col(i2)T
F̂m

for ∀i2, i4 ∈ [|V|]. (A25)

It is obvious that (A25) shows the symmetry of the matrix col(i2)
F̂m

col(i4)T
F̂m

for the two

indices i2, i4 with arbitrary values. Therefore, each column of F̂m is parallel to the others,
which implies that F̂m is rank-one.

If the supersymmetric tensor ten(F̂) is a zero tensor, F̂m is a zero matrix.
Therefore, F̂m is a real symmetric rank-one matrix or a zero matrix if ten(F̂) is real and

supersymmetric.
Thus, we have completed the proof of the necessary and sufficient condition for the

real tensor ten(F̂) = F̂�M
m to be supersymmetric.
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