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Abstract: Negative inertia is an unusual and counter-intuitive property of matter, extensively in-
vestigated in some of the most exotic branches of physics and engineering at both macroscopic and
microscopic levels. Such an exotic property promises a wide range of applications, from Alcubierre
drive to acoustic wave manipulation. Here, a novel approach to the realization of negative inertia
and the concept of negative-inertia converters are introduced for both translational and rotational
motion. The proposed devices, capable of exhibiting negative mass and negative moment of inertia,
base their operational principle on actuating the loading inertia, concealed within the housing of
the device, synchronously with the displacement of the housing itself. Negative-inertia converters
share many similarities with negative-impedance converters, including their proneness to instability.
Thus, an equivalent circuit model of the proposed devices is developed and simulated in lossless
and lossy environments. Friction, unavoidable in every practical system, is found to be the main
cause of instability. The derived closed-form stability condition suggests that the effective inertia of a
system containing a negative-inertia converter must remain positive to ensure the stability. Despite
this limitation, negative-inertia converters may become the key elements in applications requiring
reduction of an object’s inertia.

Keywords: negative mass; negative moment of inertia; negative inertia; negative-inertia converter;

negative-impedance converter; negative elements; non-Foster elements; Foster’s theorem; stability

1. Introduction

Mass is commonly defined as a measure of an object’s inertia. In a sense, it represents
the object’s resistance to acceleration. According to Newton’s second law of motion, the
mass M attributed to the object itself represents the proportionality constant between the
acceleration a and the net force f applied to an object: f = Ma. This is a quite intuitive
concept that can be experienced in everyday life. The smaller the mass of an object, the
larger the acceleration for the same applied force. Common objects always accelerate in
a direction of the applied net force suggesting that their mass is positive. Nevertheless,
Newton’s second law of motion is valid even for fictitious objects with negative mass.

Investigating nonintuitive symmetric properties of objects within the same mathe-
matical and physical frameworks has always been appealing to the scientific community.
Sometimes it results in birth of new intriguing fields in science and engineering. One of the
best examples is the field of metamaterials. Metamaterials are arrangements of artificial
structural elements, engineered to achieve advantageous and unusual properties [1,2]. The
concept of metamaterials first came from electromagnetics. The field started to develop in
1968, after Veselago proposed an electromagnetic material with negative permittivity and
permeability, which exhibits the effect of negative refraction [3]. The field of electromagnetic
metamaterials flourished over the past decade with the development of two-dimensional
(2D) metamaterials known as metasurfaces, which have shown great flexibility in manipu-
lating electromagnetic waves in terms of beam forming [4], filtering [5], wavefront [6], and
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polarization control [7]. Similar concepts are applied to develop acoustic metamaterials. For
natural materials, the acoustic parameters such as the mass density, Young’s modulus, and
Poisson’s ratio, are positive. However, in artificially constructed acoustic metamaterials,
these parameters may become negative within specific frequency ranges [8]. Negative-
mass metamaterials lead to many interesting effects and applications such as negative
refraction, anomalous Doppler effect, perfect sound-absorption effect [8], amplification
of acoustic evanescent modes and acoustic superlensing [9], tunneling through narrow
channels, control of the radiation field, perfect transmission through sharp corners and
power splitting [10,11]. A comprehensive review of mechanical and acoustic metamaterials
can be found in [12].

The property of negative mass goes beyond the field of metamaterials. The effects
of negative mass were reported at microscopic level in spin-orbit-coupled Bose—Einstein
condensates [13,14]. At a macroscopic scale, specifically in the framework of Einstein’s
general relativity, negative mass appears in the context of Alcubierre drive [15] as exotic
matter able to modify a spacetime allowing an arbitrarily large travel speed. Furthermore,
negative mass may lead to an explanation of mysterious dark energy and dark matter that
is theorized to constitute 95% of the observable Universe [16].

Unfortunately, the realization of an object or device that exhibits or can produce true
negative mass is rarely discussed. Indeed, the application of negative-mass acoustic meta-
materials is often limited to a narrow range of acoustic wave frequencies [8,12]. Although
examples of broadband mechanical metamaterials that exhibit negative parameters starting
even from zero frequency have been reported [17], all passive structures suffer from intrin-
sic frequency dispersion. In other words, the effective parameters of all passive structures
vary with frequency. This limitation is a direct consequence of Foster’s reactance theo-
rem [18] and comes from the resonant nature of passive metamaterials. Although it may
not be a limiting factor in manipulating acoustic waves, it makes acoustic metamaterials
inapplicable elsewhere. The solution to the problem comes again from electromagnetics
and lies in broadening the operation bandwidth and keeping the effective parameters
constant or dispersionless using devices known as negative-impedance converters (NICs).
NICs have been known since the era of vacuum tubes [19]. They are active devices that
transform a passive impedance into its negated and scaled counterpart that behave as ficti-
tious negative element. Such an element requires an additional power source and does not
obey Foster’s reactance theorem [18], and thus it is known as a non-Foster element. The use
of non-Foster elements has been proposed not only for the realization of broadband disper-
sionless metamaterials [20,21], but for the reduction of parasitic losses [22], improvement
of device characteristics [22], filtering [23], realization of oscillators [24], phase shifters [25],
broadband matching of small antennas [26-31], the design of broadband microwave [32]
and reflection amplifiers [33,34], and realization of parity-time symmetric systems [35,36].
In this article we transfer the concept of electrical NICs to mechanical systems and propose
novel concept of mechanical negative-inertia converters (NICs), able to produce negative
mass in a fundamentally different manner compared to acoustic metamaterials. The concept
is further extended to rotational motion, allowing the manifestation of negative moment of
inertia. In contrast to the passive structures, the proposed active devices, the first of their
kind to the best of the authors’ knowledge, promise the manifestation of nondispersive
negative mass and negative moment of inertia.

This article is organized as follows. Section 2 introduces the operational principles of
both translational and rotational negative-inertia converters, discusses their realization and
mathematical models. In Section 3, the equivalence between mechanical and electrical NICs
is explained and equivalent circuit model proposed. Section 4 brings simulation results of
the proposed model with emphasis on the stability analysis. Here, a closed-form stability
criterion is derived. Section 5 proposes and discusses applications and limitations of the
negative-inertia converters, while the Section 6 summarizes all the achieved results.
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2. Operational Principle of Negative-Inertia Converters

In this section, two types of one-dimensional (1D) mechanical NICs are introduced
and examined. The first type is designed for translational motion, while the second type
operates in rotational motion. Using these two NICs, negative mass and negative moment
of inertia can be realized.

2.1. Realization of Negative Mass

Let us consider the mechanical system shown in Figure 1. It comprises of the loading
mass M; placed within the hollow housing with the mass of Mj,. The loading mass can be
displaced within the housing along the x axis by a linear actuator. The implementation of
the linear actuator itself is not of crucial importance for this conceptual analysis, however,
in Figure 1 it is represented by a motor with the shaft connected to a threaded rod that
passes through the center of the loading mass. Driving the motor causes the rotation of the
threaded rod and displacement of the loading mass along x axis. Both the motor and the
rod are connected to the housing and contribute to its mass, Mj. The overall mass of the
system is thus Ms = M, + M;. For the sake of simplicity, it is assumed that the system rests
in frictionless environment, i.e., there is no friction between the housing and the surface.

\
0 : x
Ty .
r‘i & CM of the system
T;?L CM of the housing
Tlh CM of the loading mass
-~

Figure 1. Implementation of a negative-inertia converter designed for translational motion. The NIC
consists of a loading mass M confined within a housing with the mass of Mj,. The loading mass
can be displaced along the x axis using the linear actuator based on the threaded rod and the motor
attached to the housing.

Before we start analyzing the system behavior, let us define coordinate frames of
interest. The inertial coordinate frame is the outermost frame or the frame of the observer
within which the system rests. All vectors expressed within the inertial frame are denoted
with “#” in superscript. In inertial frame, we define displacement vectors for the center
of mass (CM) of the housing, the CM of the loading mass, and the CM of the system, ri,
rf, and r, respectively. The CM of the system is always located between the CM of the
housing and the CM of the loading mass. Its position can be calculated as follows:

i L (Mhr;; + M,r;‘). )
s
Multiplying (1) by M; and differentiating twice with respect to time yields:
Msal = Myal + M;al, )
fex = fn+ f1- 3)
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Here, ai, a;'l, and “li represent the accelerations of the system, housing, and loading mass,
respectively. Moreover, we can recognize three forces acting on the system and its elements,
namely fer, fr, and f;. Notice that the acceleration of the system CM can be caused only
by an external force, thus, fox = Msui. The forces f, = Mha;1 and f; = Mlﬂf represent
the forces acting on the housing and the loading mass, respectively. To understand the
relation between these two forces, let us assume for a moment that there is no external
force acting on the system (fex = 0). In this scenario, the total force acting on the housing
is equal but opposite to the force acting on the loading mass (f, = — f;). Recall that the
force exerted on the loading mass is the driving force caused by the linear actuator. Thus,
the force exerted on the housing is the reaction to the actuation the loading mass. In other
words, the reaction force is equal but opposite to the driving force (f; = —f;). This is a
direct consequence of the conservation of linear momentum principle. Indeed, the total
linear momentum of the system, equal to the sum of the housing momentum pz = th;;
and the loading mass momentum p} = M,v}, is conserved if no external force acts on the
system (pz + p;; = po, po being the initial total momentum of the system). In this case,
the only forces that appear are the internal forces, which are equal to linear momenta of
the system elements differentiated with respect to time (f;, = dp! /dt and f; = dp}/dt).
The initial momentum does not change in time, thus its time derivative is equal to zero
(fex = dpo/dt = 0). In general, if there is an external force acting on the system, (3) can be
rewritten in terms of the forces acting on the housing:

fex:fh_fr — fh:fex+fr~ (4)

The total force exerted on the housing f}, is thus equal to the sum of the external force fex
and the reaction force f;. It is important to notice that the housing experiences an extra
push in addition to the external force as a result of driving the loading mass. Furthermore,
the total and reaction force acting on the housing can be written as:

fn = Mya, ®)
fr=—Ma}. (6)

Note that the reaction force f, depends on the acceleration of the loading mass in the
inertial frame a;'. Since the loading mass is enclosed within the housing, uf is difficult to
measure directly. However, the displacement of the loading mass within the housing is
straightforward to determine. Thus, a new coordinate frame with the origin at the CM of
the housing is defined. The displacement of the loading mass is given with vector r?, as
shown in Figure 1. r;‘ can be expressed as a difference between the displacements of the
loading mass r} and the CM of the housing r} in inertial frame (see the vectors in Figure 1):

i .
=1 -1 ?)

Differentiating (7) twice with respect to time yields the acceleration of the loading mass a

expressed in the inertial frame.

I ) )
aj = aj; — ay,. 8)

Now, let us assume that the acceleration of the housing ai, is actively monitored and
used to control the acceleration of the loading mass af’, such that:

al =kal, keR )

Here, k represents an arbitrarily chosen proportionality constant that synchronizes the
accelerations ai’ and aj,. This synchronization is crucial requirement of the analyzed system.
Substituting (9) into (8) yields the relation between a}' and a’il:

al = (k+1)ai. (10)
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Substituting (10) into (6) yields the expression for the reaction force acting on the housing
as a function of M;, k, and ay:

fo=—M(k+1)aj, (11)

Finally, substituting the expressions for the total force (5) and the reaction forces (11) acting
on the housing and into (4) leads to the following expression:

fex = [My, + (k+1)M;]al,. (12)

Equation (12) describes how the housing accelerates in the inertial frame if an external
force is applied to it. The proportionality constant between the applied external force and
the acceleration of the housing is the effective mass of the system M, experienced by an
external observer.

MEff =M, + (k+1)M; (13)

It is important to note that the housing appears as a “black box” to an external observer.
In other words, an external observer has no insight into what happens inside the housing.
Since the housing experiences two synchronized pushes caused by both the external force
and the internal reaction force, its mass effectively appears to be different than M, for an
external observer. As suggested by (13), the correction term (k + 1) M; depends only on the
loading mass M; and the constant k. To explain this effect in more detail, several examples
are given in Figure 2. In all examples it is assumed that the system and all its parts were in
the resting state before an external force has been applied (i.e., the velocities of the system
and all its parts in inertial frame were equal to zero). The same external force is applied to
the system in positive x direction in all examples.

In Figure 2a, the constant k is a positive real number. Because of that, upon the action
of the external force, the loading mass accelerates in the housing frame in the same direction
as the housing in the inertial frame. The acceleration of the loading mass is caused by the
driving force applied by the linear actuator in positive x direction. Such a driving force
causes opposite reaction force on the housing, i.e., reaction force in the negative x direction.
The reaction force opposes the applied external force reducing the total force exerted on
the housing. The reduced total force causes the reduced acceleration of the housing in the
inertial frame. Consequently, the effective mass appears larger than the true mass of the
system (Mss > Ms = M, + M) to an external observer, as suggested by (13). Notice that
the relative displacement of the housing is smaller than the relative displacement of the
loading mass (Ar;I < Arf) after elapsed time At.

If k = 0 (see Figure 2b), there is no motion of the loading mass with respect to the
housing. In this example, both the housing and the loading mass accelerate with the
same acceleration in inertial frame upon action of the external force, according to (10). In
other words, the housing and the loading mass behave as a rigid body with effective mass
equal to the sum of the individual masses. Thus, the effective mass seen by an external
observer is equal to the mass of the system M,r; = M;, + M; = M;. The same result is
obtained by substituting k = 0 into (13). In this case the reaction force acts in the same
direction as in the previous example; however, its absolute value is smaller, which results
in increased total force acting on the housing and reduced effective mass. In this case, the
relative displacements of the housing and the loading mass after elapsed time At are equal
(Ary, = Ary) .
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| s - ®
0| 0|
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Figure 2. Examples of the housing and the loading mass displacements for different values of k upon
action of the same external force. The total force acting on the housing f,, equal to the sum of the
external force f,yx and the reaction force f, is depicted qualitatively. (a) k > 0, (b) k =0, (c) k = —1,
(d) k< -1

The third example shown in Figure 2c¢ depicts the scenario in which the loading mass
accelerates within the housing with the same acceleration as the housing in the inertial
frame but in the opposite direction (k = —1) upon the action of an external force. The
acceleration of the loading mass in the inertial frame is equal to zero, as suggested by (10).
Since the loading mass was initially in the resting state, it maintains its position in inertial
frame even after the force is applied (the displacement vector rf remains the same, i.e.,
Ari = 0 after elapsed time At). As a result, an external force causes only the acceleration
of the housing in the inertial frame. Thus, the effective mass is equal to the mass of the
housing M,¢s = My, which is exactly the result obtained by substituting k = —1 into (13).
Note that in this example the reaction force vanishes completely. This is not surprising,
since the actuation of the loading mass is not required. In a frictionless environment, the
loading mass maintains its position due to its own inertia. In reality, this is not completely
true. A real-life system would require some level of actuation due to unavoidable friction
between the loading mass and the actuator.

Finally, let us consider the fourth example shown in Figure 2d. In this example, k is
chosen to be less than —1. Because of this, the loading mass accelerates in opposite direction
with respect to the housing in inertial frame, as suggested by (10). The housing effectively
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pushes itself from the loading mass, which creates a reaction force in the same direction
as the applied external force. In this case, the total force exerted on the housing is larger
than the external force, causing larger acceleration of the housing with respect to previous
examples. Because of this, the effective mass seen by an external observer drops below M;,,
in accordance with (13). As a result of the housing pushing itself from the loading mass,
the relative displacement of the loading mass after elapsed time At is negative (Ar} < 0).

It is important to stress that the CM of the system is displaced by the same distance
Ari after the elapsed time At in all the examples discussed above, since the same external
force is applied. However, the displacement of the CM of the system is not observable
by an external observer, but only the displacement of the housing Ar;'l, which manifests
its mass depending on k. It is also worth noting that, if k < —1, the mass contributed to
the effective mass by the correction term (k + 1) M is negative (13). In other words, the
analyzed mechanical system represents a device able to convert the positive loading mass
M into its negated and scaled counterpart (k+ 1)M; for k < —1, hence the name. Its
contribution My to the effective mass M, is equal to the correction term:

Mnic = (k+1)M;, (14)
Meff = My, + Mnic. (15)

If k is chosen such that k < —M,/ M; — 1, then |Myc| > M, and the effective mass
itself becomes negative (15). This leads to the counterintuitive phenomenon: a negative
mass accelerates in the opposite direction to the direction of applied external force. This
counterintuitive behavior is the first indication of the system instability, as will be explained
later on.

The accelerations of the housing and the loading mass in inertial frame as functions of
the parameter k are shown in Figure 3. Here, all the operating points (i.e., specific values of
k) examined in the examples described above can be found. In Figure 3, it is assumed that
the external force is foxy = 1 N and that the masses of the housing and the loading mass are
M, = 1kg and M; = 0.5 kg, respectively. Since the external force is positive (i.e., the force
vector f,, points in the positive x direction), the effective negative mass is achieved for the
values of k, for which the acceleration of the housing az is negative. Note that producing
negative mass requires translation of the loading mass, which certainly requires energy.
Although it is not specified in Figure 1, this energy comes from an electric power supply
(such as batteries) that is embedded into the housing and contributes to its mass.

6 T T T T T T T T

)

a [m/s?

—6

Figure 3. Acceleration of the housing (M, = 1 kg) and the loading mass (M; = 0.5 kg) in the inertial
frame of reference upon the action of a constant external force (fex = 1 N).

2.2. Realization of Negative Moment of Inertia

It is quite straightforward to transfer the concepts of translational NICs, examined
above in detail, to rotational motion to develop a rotational NIC that is able to produce
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negative moment of inertia. Such a device is shown in Figure 4. It is composed of a flywheel
representing the loading moment of inertia J; placed within the hollow cylindrical housing
with the moment of inertia of Jj,. The loading inertia can be rotated within the housing in
both clockwise and counterclockwise direction by the motor attached to the housing. The
stator of the motor contributes to inertia of the housing J;,, while its rotor contributes to
the loading inertia J;. The overall inertia of the system is thus J; = J, + J;. Here, again,
only the 1D case is analyzed. Furthermore, it is assumed that the system is suspended in a
frictionless environment. Since the translational NIC shown in Figure 1 is already examined
in detail above, only the key points and equations describing its rotational equivalent shown
in Figure 4 are presented here. In these equations the translational quantities (displacement
r, velocity v, and acceleration a) are replaced with the equivalent rotational quantities
(angular displacement 6, angular velocity w, and angular acceleration «).

o

<>

Figure 4. Side view (left) and top view (right) of a rotational NIC. It consists of a flywheel with the
loading moment of inertia J; confined within a housing with the moment of inertia of Jj,. The flywheel
can be rotated both in clockwise and counterclockwise direction.

Let us assume that the angular acceleration of the housing expressed in the inertial
frame («},) is monitored and used to control the angular acceleration of the loading inertia

with respect to the housing (oc;‘), such that:
ol =kal, keR (16)

Here, k again represents a real proportionality constant between the two accelerations.
Based on (16), the behavior of the rotational NIC can be fully described with the following
expressions:

Tex = Tp — Ty, (17)
T = Jnh (18)
T = —Ji(k+1)aj,. (19)

Here, T.x represents the external torque exerted on the system, while 7j, and 7, represent
the total and the reaction torques exerted on the housing. The reaction torque 7 is a
consequence of the conservation of angular momentum and is a result of driving the
loading inertia synchronously with the housing, as indicated by (16). The torques t;, and
Ty are expressed as functions of moments of inertia J, and J;, the angular acceleration of
the housing expressed in the inertial frame !, and the proportionality constant k. Notice
that (17)—(19) are equivalent to (4), (5), and (11) respectively. Substituting (18) and (19)
into (17) yields the equation that describes the angular acceleration of the housing upon
the action of an external torque:

Tex = [ + (k+1)])]e,. (20)
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Notice that for an external observer, the system appears to change its moment of inertia
depending on k. The effective moment of inertia observed by an external observer can be
written as the sum of the housing and the NIC moments of inertia.

Inic = (k+1)]i, (21)
Jesr = In+Inic = Jn + (k+1)]. (22)

If k < —1, the contribution of the NIC to the effective inertia is indeed negative. More-
over, if k is chosen such that k < —J;,/J; — 1, the effective inertia itself becomes negative.
Similar to the translational NIC, this again leads to the counterintuitive phenomenon: the
angular velocity of a negative moment of inertia increases in opposite direction to the
direction of applied external torque. Such a behavior is again an indication of potential
system instability.

3. Equivalence of Mechanical and Electrical NICs

The mechanical NICs, described in the previous section, shows many similarities
with electrical negative-impedance converters (also abbreviated as NICs) known to the
electrical engineering community. Despite the differences in implementation of mechanical
and electrical NICs, it can be shown that they are governed by equivalent mathematical
models. To prove this statement, let us first introduce the Laplace transforms of mechanical
quantities: force, linear velocity, torque, and angular velocity.

f(5) o—e L{f(D)} = F(s) (232)
o(t) o—e L{v(t)} = V(s) (23b)
t(t) o—e L{x(t)} = T(s) (230)
w(t) o—e L{w(H)} = O(s) (23d)

Here, F, V, T, and ), are functions of complex frequency s = ¢ + jw, where j = V-1 (jw
represents the imaginary part of complex frequency s and should not to be confused with
angular velocity). The relation between F and V, and T and € can be found by applying
the first derivative property of the Laplace transform [37].

‘r:]w:]% o—e T =5s]O (24a)
f=Ma=MT o—e F=smv (24b)

To find the equation equivalent to Equation (24) that describes the relation between electrical
quantities current i(¢) and voltage u(t), let us first define their Laplace transforms.

i(t) o—e L{i(t)} = I(s) (25a)
u(t) o—e L{u(t)} = U(s) (25b)

In the force—current and the torque—current analogy [38], the mathematical equations of the
mechanical systems are related to the nodal equations of the electrical system. As a result,
torque and force become analogs of current, so as the angular velocity and linear velocity
of voltage. To find an electrical analog of mass and moment of inertia, one must look for
an electric element that relates the current through the element with the time derivative
of the voltage across the element, as indicated by (24). Such an element is a capacitor
characterized by its capacitance C.

i:c%,&a [ =sCu (26)
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Comparing (24) and (26) leads to the conclusion that a capacitor is indeed an analog of
inertia in mechanical systems. Thus, applying Laplace transform and the force—current
analogy to Equations (4), (5), and (11), or the torque—current analogy to Equations (17), (18),
and (19), yields a set of equations that describe the electrical equivalents of the mechanical
systems. Notice that sC term represents the admittance of a capacitor, reciprocal to its
impedance (Yc = 1/Z¢ = sC).

Ix=1,—-1 (27a)
Ih = sChUh (27b)
I, = —sCi(k+ 1)Uy (27¢)

For better readability, the comparison of all analog quantities of mechanical and electrical
NICs, together with the key equations that govern their behavior expressed in Laplace
domain, are given in Table 1. The table truly emphasizes the equivalence between the
different NICs.

Table 1. Comparison of the analog quantities and equations of mechanical and electrical NICs
expressed in Laplace domain.

Translational NIC Rotational NIC Electrical NIC
Description Expression Description Expression Description Expression
Mass M Moment of inertia J Capacitance C
Linear Velocity Vv Angular Velocity Q Voltage u
Force F Torque T Current I
Total Force F, = sM,V}, Total Torque T: = ]y, Total Current I, = sC,Uy,
Reaction Force F, = —sM;(k+1)V;  Reaction Torque T, = —sJ;(k+1)Q; Reaction Current I, = —sC;(k+ 1)U,
External Force Fx=F,—F External Torque Tex =T — T, External Current Lx=1,—1,

The benefit of the force-current and the torque—current analogy is that Kirchhoff’s
current law can be used to develop an equivalent circuit model that has the same topology
as the real system. The circuit model drown directly from Equation (27) is shown in
Figure 5.

Uh

.
-

l

Figure 5. Equivalent circuit model of the mechanical systems shown in Figures 1 and 4 based on
equations Equation (27).

Using Kirchhoff’s voltage law, the output voltage U, can be written as the difference
between the voltages across Cj, and C;.

U, =U, — (k+ 1)U, = —kU, (28)

Notice that the voltage U, represents the voltage U;, multiplied by the factor —k. This
voltage multiplication can be modeled using an ideal inverting voltage amplifier with the
constant gain G = —k and infinite input impedance. This leads to the final equivalent
circuit model shown in Figure 6. For the time being, let us ignore the conductance Gy. It
will be important later on.
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(k =+ I)Uh,
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> > > —k —O
Iy

Iem@) Crn ==1|Un Uo

[ ’T’ ! o

Cers Cnic

Figure 6. Equivalent circuit model of the mechanical systems shown in Figures 1 and 4 based on the
electrical NIC circuitry.

The input impedance into electrical NIC can be calculated as the ratio between its
input voltage Uj, and its input current I,. Thus, we can write:

NC™ L T Uq/Ze,  k+1 1-G

(29)

Equation (29) represents the well-known expression for the input impedance of a
NIC expressed as function of the feedback impedance C; and the gain G. Substituting the
expression for the impedance of the capacitor C; leads to the equivalent NIC capacitance.

s 1 1
NIC = S(k—|—1)cl a SCNIC
Cnic = (k+1)C (30b)

(30a)

Note that if k < —1, the inverting amplifier shown in Figure 6 becomes noninverting with
the gain G > 1. Indeed, an amplifier with the positive feedback loop is a well-known
method of a negative-impedance realization. Usually, the amplifier is implemented using
an operational amplifier. Such NICs are widely reported in the literature [34-36]. In this
case, the output voltage of the noninverting amplifier U, is greater than the input voltage
Uy,. This causes the current I, to change its direction increasing the total current Ij, through
Cp,. Furthermore, the capacitance Cyjc becomes negative for k < —1, as suggested by (30b).
Since Cj, and Cyjc are in parallel, the equivalent capacitance can be calculated as:

Ceff =Cy+Cnic =C,+ (k+1)C. (31)

As expected, the expression for the effective capacitance (31) is of the same form as the
effective mass (13) and effective moment of inertia (22). This is the final and conclusive
proof and confirmation of the equivalence between the three analyzed systems.

4. Simulation Results and Stability Concerns

To examine the behavior of the analyzed mechanical NICs, the equivalent circuit
model circuit shown in Figure 6 is simulated using LTSpice® circuit simulator by Analog
Devices, Inc. The results of the simulations are shown in Figure 7. Due to the force-current
and the torque—current analogy, all electrical quantities can be easily interpreted in terms
of mechanical quantities (all equivalents are presented in Table 1). For example, the blue
graphs in Figure 7 represent the voltage U}, (expressed in V) interpreted as linear or angular
velocities of the translational and rotational NIC (expressed in m/s and rad/s, respectively).
The voltage Uj, is the response of the system to the external current pulse I, with the
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Voltage [V

peak value of 1 A (the red graph) interpreted as the external force or the external torque
exerted on the systems (expressed in N or Nm respectively). The values of the capacitors,
representing the mass (kg) and moment of inertia (kg m?), are illustratively chosen to be
Cy, = 1F and C; = 0.5 F. These analogies are valid throughout the analysis; however, for
convenience we focus solely on electrical quantities. Two cases are examined for different
values of parameter k: lossless case with the simulation results presented in Figure 7a and
lossy case with the simulation results presented in Figure 7b. In both cases it is assumed

that the initial voltage U}, is equal to zero.

- -

~——
~—

~——

Time [s]

(a)

10
Time [s]

(b)

Current [A

Figure 7. Simulation results of the equivalent circuit model shown in Figure 6. The graphs show

voltage Uj, (blue curves) for different k. The system is excited by the external current source I, (red

curve). The capacitance values are illustratively chosen to be C;, = 1 Fand C; = 0.5 F. (a) Lossless

system (Gy = 0). (b) System with losses (G = 0.05 5).

In the lossless case (Figure 7a), the value of the conductance Gy in Figure 6 is equal
to zero. As expected, if the circuit is driven with a constant current source, the voltage U,
across both Cj, and Cyjc increases linearly with time, as suggested by (26). Note that the
same voltage U, appears across the effective capacitance C,ss. Thus, the larger the slope of
Uy, the lower Cfs. Since C.¢y depends directly on k (31), the slopes of the blue graphs in
Figure 7a are also different for different k. Notice that for k = 0, the output voltage U, is
equal to zero regardless of the input voltage Uj,. Thus, the right terminal of the capacitor C;
connected to the output of the amplifier is grounded, making the capacitor C; connected in
parallel with Cj,. Consequently, the effective capacitance is Corf = Cp + Cj. In case k = —1,
the amplifier behaves as an ideal voltage follower. Since both the input and the output
voltages of the amplifier are the same, there is no difference in electrical potential across the
capacitor C; and thus there is no current I,. In this case, the input impedance of the NIC is
infinite, making Cnjc = 0 (29). Thus, the effective capacitance is equal to Cj,. Since C,sf
is smaller for k = —1 than for k = 0, the slope of the dashed-blue graph is larger than the
slope of the solid-blue graph. Further decreasing k to k = —2 leads to even smaller C,¢
and larger voltage slope since the capacitance contributed by the NIC becomes negative
(Cnic < 0). Eventually, Cf itself becomes negative and U, changes its orientation even
though the current excitation remains positive (notice that the voltage Uj, is negative for
k = —5). In all the examples above, the voltage U}, remains constant after the current pulse.
This is not surprising, since there is no lossy element within the system able to dissipate
the energy injected by the current source. Such a system can be classified as a marginally

stable system.

To introduce losses into the analysis, let us assume that the mechanical NICs experience
a frictional force or torque proportional to the velocity of the housing but in the opposite
direction. An example of such a friction is the fluid friction, such as air friction or air drag.
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Although this velocity dependence may be quite complicated, the linear model is usually a
good approximation at low speeds and sufficient to demonstrate the stability properties of
the introduced NICs. Such a friction can be modeled with the conductance G¢:

If = Gslj. (32)

The friction effectively reduces the external force or torque exerted on the system. The
resultant force, torque, and the equivalent current are thus equal to:

Fl, = F..— F, (33a)
T), = Tor — T, (33b)
Ly =Ly — 1. (33¢c)

In the equivalent circuit model the conductance Gy is placed in parallel with the current
source and C¢f, as shown in Figure 6. This changes the relation between the currents,
such that:

L,=1I,—I. (34)

Equating (33c) and (34), and substituting the expressions for I, I, I, and C,sr (see
Equations (27), (31), and (32)) leads to the relation between I, and U}, in the lossy system.

Iy = If + I, -1 = [Gf +sCp +s(k+1)C U, = (Gf + SCeff)uh (35)

Equation (35) can be used to define the transfer function of the system in Laplace domain.
Indeed, if Uj, is treated as the system output and I, as the system input, the transfer
function H(s) is the ratio between the two.

o uy 1

H) =t =— 36
(S) Lex Gf+SCeff ( )

Notice that the analyzed system is a first-order system with a single pole s, defined by
the root of the transfer function denominator, placed at the real axis of the complex plane
(sp €R):

Gy

Cesf
The location of the pole s, in complex plane is consistent with the poles of the similar
systems reported in the literature [39,40]. It is associated with the characteristic time-
domain exponential response of the form exp(—t/t), where T = —1/ sp = Ceff / Gy
represents the time constant (not to be confused with torque). These exponential responses
can be seen clearly in Figure 7b. During the current pulse, U, increases exponentially
in contrast to the linear voltage increase seen in Figure 7a. After the current pulse, Cfs
discharges on Gy, causing exponential decrease of the voltage also related to the time
constant T = C, ff /G - Recall that in lossless case the voltage remains constant after the
current pulse. It is important to notice that for k € {0, —1, —2}, the voltage exponentially
drops to zero with time. However, for k = —5 after the current pulse, the voltage keeps
decreasing exponentially to —oo. Such an unbounded exponential response is characteristic
of unstable systems. Indeed, C,s is negative for k = —5, making the time constant T
negative. In general, a system is unstable if one of its poles is placed in the right half-plane
of the complex plane. Thus, to ensure the system stability, all the system poles must be
located within the left half-plane, i.e., the real part of all the system poles must be negative.
Applying this criterion to the analyzed system leads to the conclusion that the system pole
sp must be negative. Since Gy is a positive real number, this criterion is met only if:

Sp=0p = (37)

Ceff > 0. (38)
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The inequality (38) represents the stability condition of the system shown in Figure 6. If,
however, the system is lossless (G¢ = 0), the pole s, is located at the origin of the complex
plane (sp = 0) regardless of C,ss. Such a system is not stable nor unstable, but rather at
the stability margin, which validates the classification of the lossless system as marginally
stable. The stability condition (38) is easily applied to the mechanical NICs: in order to be
stable, the effective mass or effective moment of inertia must be positive.

Mgff >0 (39a)
]eff >0 (39b)

Stability is the crucial requirement of every practical system, with the exception of
some very specialized systems such as oscillators. The instability provides an explanation of
why negative inertia is such a counterintuitive concept. Negative inertia in not observable
in everyday life since it would be unstable. In other words, such a system requires infinite
energy and thus it is unsustainable in the common physical setup that we are accustomed to.

5. Applications and Limitations of Negative-Inertia Converters

Although the stability criterion is the limiting factor in the design of systems based on
mechanical NICs, they may still find their applications in many fields. The most obvious
application is the reduction of an object’s inertia. Indeed, if a translational NIC is attached to
another object, M,y is increased by the mass of the object, which allows even lower values
of k to be chosen (k < 0). This fact allows full reduction of M}, and partial reduction of the
mass of the object, while keeping M, > 0. The same concept can be applied to rotational
systems with the rotational NIC. The inertia reduction may be especially important in
measurement setups in which the inertia of the setup interferes with the measurements
or is difficult to eliminate in postprocessing. An example of such a measurement setup is
an attitude determination and control system testbed for validation of nanosatellites in
laboratory conditions prior to launch into orbit. An example of such a setup is shown in
Figure 8. The purpose of the testbed is to emulate conditions that a satellite experiences
in orbit, the most important of which are frictionless and weightless state. To eliminate
friction, the satellite under test is placed within the spherical holder of the same radius
as the spherical air bearing. A thin film of compressed air fed from an air compressor is
created between the spherical holder and air bearing separating one from another and
eliminating the friction between them. A weightless state is achieved by adjusting the
center of mass of the spherical holder and all its components along orthogonal axes by
using sliding balancing masses (SBM) such that the center of mass coincides with the
center of rotation located at the geometric center of the spherical holder. In such a way,
the unwonted gravitational torque Tz = r X w (r and w being the displacement vector
and the weight of the setup respectively) is eliminated and all three degrees of rotational
freedom ensured. However, the SBMs introduce additional mass to the system and increase
the overall moment of inertia. As a consequence, the satellite dynamics in laboratory
conditions deviate from the dynamics in orbit, complicating the testing and optimization of
the satellite. The solution to this problem lies in rotational NICs. By using rotational NICs,
the unwonted moment of inertia introduced by the testbed itself can be fully eliminated
while maintaining the effective moment of inertia J,¢s equal to the moment of inertia of
the satellite under test. Since J.¢ remains positive, the condition (39b) is satisfied and
stability is ensured. Although attempts of active moment of inertia compensation of the
satellite testbed have been reported [41], to the best of the authors” knowledge, the proposed
approach is the first self-consisted method that does not require prior knowledge of the
satellite’s dynamics and mechanical properties.

The translational and rotational NICs undoubtedly manifest quite interesting proper-
ties, however, one should be aware of their limitations. For example, the translational NIC
has a displacement range of the loading mass limited by the size of the housing, since it
is enclosed by the housing. Such an NIC is suitable for applications that do not require a
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wide actuation range. These applications may imply periodic or oscillatory translational
motion of the NIC housing and loading mass. For example, the translational NIC is suitable
for mass reduction with the goal of increasing the resonant frequency of a mechanical
setup. The challenge of a limited actuation range can be mitigated by increasing M;, which
decreases the value of k and displacement of the loading mass within the housing for the
same M,fs. Furthermore, it may be possible to apply the same principles to systems with
loading masses not confined within the housings, which would increase the actuation range
of the NIC. Examples of such systems include a bullet (the loading mass) inside of a gun
(the housing) and rocket fuel (the loading mass) inside a fuel tank (the housing). In contrast
to the translational NIC, the actuation range of the rotational NIC is not limited. This
makes it highly practical even for longer lasting external torques. However, one should be
aware that a constant external torque causes constant angular acceleration of the housing
and, thus, constant angular acceleration of the loading inertia, which eventually drives the
motor into a nonlinear saturated mode. In other words, the actuation of the loading mass is
limited by the maximal angular velocity of the motor. The same applies to the translational
NIC and any real-life system. Indeed, no real-life system is perfectly linear.

y-axis SBM
spherical holder ﬁ

Yy

i z-axis SBM i

\—> satellite under test

y-axis NIC

<>

air bearing

(a) (b)

Figure 8. Uncompensated CubeSat testbed (a) with the center of mass displaced from the center of
rotation, and the compensated testbed (b) with balanced mass and compensated moments of inertia.

6. Conclusions

In this paper, novel concepts of negative-inertia converters for both translational and
rotational motion are introduced. The proposed devices are capable of obtaining negative
mass and negative moment of inertia by synchronous actuation of the loading inertia with
the acceleration of the housing. Negative-inertia converters share many similarities with
electrical negative-impedance converters, including their proneness to instability. It is
found that friction can cause a counterintuitive unbounded exponential response, indi-
cating the system’s instability. The derived closed-form stability condition suggests that
the effective inertia must be positive to ensure the stability of the system. Although the
instability is a limiting factor, negative-inertia converters may become the key elements in
applications requiring the reduction of an object’s inertia. The presented one-dimensional
converters can be easily generalized to all three spatial dimensions by using three orthogo-
nally oriented NICs. Since all three orthogonal converters are controlled independently,
designing a system with an arbitrary value of inertia along each orthogonal axis is feasible.
While it is not surprising that nonsymmetrical objects manifest different moments of in-
ertia for rotation around different coordinate axes, to the best of the authors” knowledge,
similar manifestation of the object’s mass has not been reported. The experimental verifi-
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cation of the presented concepts and underlying theory will be the subject of our future
research efforts.
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