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Abstract: Mathematically representing an image with only a small number of coefficients has been
attempted a few times. These attempts represent initial steps to achieve this goal and showed
promising results by either working on a small image block size or utilizing a codebook built using a
complex operation. The use of the codebook complicated the entire transformation process. In this
work, we overcome these difficulties by developing a new scheme called systematic multichimera
transform (SMCT). This transform employs simple mathematical functions called fractal half functions
to independently build a codebook of image contents and size. These functions satisfy the symmetry
under fractal form while breaking the orthogonality condition. The transform can deal with different
image block sizes such as 8× 8, 16× 16, and 32× 32. The encoding process is conducted by repetitively
finding the similarity between image blocks and codebook blocks to achieve data reduction and
preserve important information. The coefficients of the matching process are then employed in the
decoding process to reconstruct the image. SMCT produced the highest structural similarity index
(SSIM) and a competitive Peak Signal to Noise Ratio (PSNR) over the standard discrete wavelet
transform (DWT) and discrete cosine transform (DCT) without degrading important image content.

Keywords: systematic multichimera transform; codebook; mathematical functions; PSNR

1. Introduction

The important role of multimedia information systems in various fields of human life
is rapidly expanding. In applications where large amounts of spatial data are required
to solve complex problems, efficient representations of data and fast transmission over
various channels are required [1]. Digital images contain a huge amount of information
that requires a large storage capacity and bandwidth for handling and transmitting pur-
poses. Several image-processing methods seek efficient image representations that better
encode important information using a small number of coefficients to reduce the required
processing time and boost performance. These representations are essential in many appli-
cations, such as image watermarking [2,3], compression [4], pattern recognition [5], image
retrieval [6], and image fusion [7]. Several transformations emerged to estimate an efficient
representation of images. The use of image transformation can simplify the computation
of convolution and correlation processes, remove redundant information, eliminate the
correlation between image points, and provide a compact representation using a small
number of coefficients [8]. The characteristics of the image transforms are varied on the
basis of their basis functions. The most popular transformations used in image processing
and computer vision applications are discrete Fourier transform (DFT), discrete cosine
transform (DCT), discrete wavelet transform (DWT), Walsh–Hadamard transform (WHT),
and Karhunen–Loeve transform (KLT) [9–11].

DFT [12] represents the image as a set of sine and cosine frequencies (functions).
Therefore, its calculations include complex values. DCT [13] decomposes the image into
a set of cosine functions. This transform is the basis for the international standard lossy

Symmetry 2022, 14, 516. https://doi.org/10.3390/sym14030516 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030516
https://doi.org/10.3390/sym14030516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-8918-6777
https://orcid.org/0000-0002-0142-6914
https://orcid.org/0000-0002-1681-7379
https://doi.org/10.3390/sym14030516
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030516?type=check_update&version=1


Symmetry 2022, 14, 516 2 of 16

image compression (JPEG) algorithm. In [14], a new scheme was implemented to reduce
the computational complexity of the DCT where only a few arithmetic addition operations
are utilized in its implementation over 8× 8 image blocks. To improve the quality of the
transform, Brahimi et al. [15] implemented DCT using a small set of arithmetic addition
and multiplication operations. In both previous schemes [14,15], the quality of transform is
influenced by the number of coefficients retained. DWT [16,17] applies low- and high-pass
filters to decompose the image into multiple subimages in multiresolution representation.
As the level of decomposition increases, computational resources rise. This transform
represents the core of the JPEG 2000 compression algorithm. The main limitation of this
transform is that it cannot efficiently deal with image edges and corners due to the lack of
anisotropic singularity support. To cope with this weakness, several other transforms are
adopted, such as Curvelets, Ridgelets, Contourlets, and Shearlets [8]. WHT [18] uses a set of
rectangular and square basis functions with values of −1 and +1 to decompose am image.
The computation of this transform is faster than that of DFT due to the simplicity of its basis
functions. Generalized Walsh–Hadamard transforms were recently proposed [19]. These
transforms are built by deriving orthogonal and symmetric matrices with an exponential
form. The basis functions are then extracted from these matrices and used for image repre-
sentation. KLT [20] is a popular method for dimensionality reduction that is mainly based
in principal component analysis (PCA). This transform seeks directions with the maximal
covariance between them, such that data can be represented using a smaller number of
uncorrelated variables. This type of transformation is widely used as a preprocessing
step and it is data-dependent. A fast implementation of the KLT was introduced in [21],
in which elements of the KLT matrix were approximated using the round function.

According to the type of application, the computational complexity of image process-
ing operations varies. When an image is transformed to a mathematical representation, the
computation complexity of image processing operations could be hugely reduced, as it
would only be required to deal with the coefficients of the representation instead of image
data points. However, converting the image into a mathematical representation requires a
huge amount of work and multistep analysis. Some efforts were conducted in [22–25] to
convert the image into a set of mathematical representations, which demonstrated the initial
steps to achieve this goal. In [22], each image block was expressed as three coefficients
using a new curve-fitting technique with a hyperbolic tangent function. By exploiting
the symmetrical property of this function, reconstruction errors were minimized, and the
quality of the reconstructed image texture was improved. A maximal peak signal-to-noise
ratio (PSNR) of 20 dB was obtained when applying this method on a set of images. The
main limitation of this method is that it can only deal with an image block of 4× 4, and
its efficiency deteriorates with larger block sizes. To solve this limitation, the hyperbolic
tangent function was employed after applying the DCT in [23]. This improved the quality
of the reconstructed image. However, the number of functions required to represent the
image was still high, and ultimately the compression ratio was modest. This method is
also not flexible enough to deal with different mathematical functions. Further improve-
ment was accomplished in [24], in which a chimera transform was introduced. The image
was split into blocks of 4× 4 pixels, and three coefficients were then estimated from each
one. To estimate these coefficients, a library of 256 masks was constructed. Masks were
designed such that they represented different patterns in images. This transform achieved
superior performance than that of methods in [22,23], but its performance also deteriorated
when image blocks became larger than 4× 4. To mitigate this drawback, a multichimera
transform was developed in [25]. This transform splits the image into multiple blocks
of size 16× 16 pixels. A few coefficients are estimated from each block using a precom-
puted codebook of size 2096× 16× 16. Thus, the image can be represented using a few
coefficients, and a larger compression ratio can be obtained than those obtained in [22–24].
The disadvantage of this method is in the way in which the codebook is generated, where
statistical mathematical representations and a set of images are required to construct the
codebook, which complicates the whole work.
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In this work, we introduce a new scheme to simply and independently build the
codebook of image contents and dimensions. The codebook is built using only a set
of binary two-dimensional (2D) functions (deterministic way) without any previously
collected images. The encoding process is conducted by calculating the similarity between
image blocks and codebook blocks. The encoded image is mainly constructed by estimating
the coefficients of the matching block in the codebook for each image block. To minimize
the search space, the dimensions of the codebook are only restricted by the size of the image
block. The quality of the reconstructed image is improved by recursively implementing
the matching process to preserve more image details. This scheme is called systematic
multichimera transform (SMCT) and represents an extension to the work in [22–25]. Efforts
are ongoing to accomplish more advanced steps towards converting an image into full
mathematical representations. The contributions of the current work are as follows.

• A simple image transform is proposed based on recursively finding the similarity
between a precomputed codebook and image blocks.

• A simple set of 2D functions are derived to build a codebook independently of image
contents and dimensions. The size of the codebook is relatively proportional to the
image block size.

• This transform supports different image block sizes, which eventually leads to obtain-
ing different compression ratios.

• The matching process between image and codebook is directly conducted without
any complex transformations or huge mathematical calculations.

This work is organized as follows: Section 2 describes the proposed transform and its
main parts. Section 3 highlights the main experiments and their results. In Section 4, the
main concluding points and future work are depicted.

2. Theoretical Background
2.1. Advantages of Mathematical Representation Instead of Data

In general, each image consists of scattered data that generate some difficulties on
how to deal with the image in the various fields. These scattered data have a huge
amount of probability, for example, a particular block in an image of size 8× 8 pixels
has 3× 2568×8 (about 4× 10154) forms. Hence, if we convert this block into a binary image,
it has 28×8 (about 1.8× 1019) forms. The conversion of these scattered data (image block)
into a systematic representation simplifies any procedure that is required to process a few
coefficients of a systematic equation instead of scattered huge data. The main purpose of
using these functions instead of the data is:

1. Simplified processing: Image processing fields such as filtering, edge detection,
resizing, and color conversion require working on each pixel (point in the image).
As a result, a huge number of mathematical operations are required. If data are
converted into some mathematical representations, this reduces the required number
of operations.

2. Image analysis and classification: Image analysis and classification depend on sim-
ilarity between image details. This similarity is sensitive to many factors, such as
resizing, rotation, noise contamination, and color changes, while the similarity be-
tween mathematical functions could be simpler, faster, and more stable in comparison
with the similarity between images. For example, to remove image background, a
full analytical process is required to first capture the background and then scan all
points to remove the background. If the image is represented as a set of functions, the
detection and removal of the background could be simpler because the modification
of some coefficients in the function is expected to remove the image background.
Our previous work in [25] applied the multichimera transform to image analysis and
reconstruction.
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3. Image security: converting an image block into a mathematical representation pro-
vides autocoding for the image because an intruder cannot restore the image without
having a particular function library.

2.2. Properties of the Proposed Mathematical Representation

A mathematical representation is considered as the basic form of representing the
relationship between input and output. A representation is a rule that assigns an output
value f (x) to each input x. Such a representation could be deterministic since the output is
completely determined by the input. Mapping is a special type of representation that can
illustrate the relationship between two sets. To realize the ability of an efficient mathematical
representation in converting an image into a set of functions, a suitable 2D function must be
proposed, as is discussed in the next section. The proposed mathematical form employed
to represent the image in this work satisfied the following conditions:

1. Efficiency of 2D image representation: the first condition to satisfy a successful
transformation; output values of the mathematical expression should be able to give
a three-dimensional surface similar in topology to the original image points with
small error.

2. Simple form functions: Mathematical expressions or functions should be as simple
and commonly used as possible; but this requirement might conflict with the first
condition. To solve this conflict, an optimization process could be implemented with
some skill and experience to determine the type of function depending on the basis of
the transformation process, and taking into account the rest of the conditions.

3. Suitability for fractals: An important goal of fractal geometry is to describe images
in terms of transformations that in some way keep images unaltered. One of the
most common properties of fractal geometry is the complex form that results from a
simple process.

4. Approval for digital: Logical operations and functions are the simplest mathematical
form with the fastest implementation, and are more consistent with the computer
language. The set of the 2D binary functions that are employed to represent the image
in the proposed transform satisfies this condition (see Section 3.1). These functions
would make the conversion process more flexible.

3. Systematic Multichimera Transform (SMCT)

The main structure of SMCT consists of three phases: codebook establishment, image
encoding, and image decoding. The codebook establishment phase constitutes generating a
set of 2D binary functions in two steps. The encoding phase mainly depends on conducting
the matching process between codebook and image on a block-by-block basis. The matching
process produces a set of coefficients for each block that are eventually stored in the encoded
image. The decoding phase comprises reconstructing the original image from the encoded
image via the codebook. These phases are demonstrated in Figure 1 and described in more
detail in the following subsections.
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Figure 1. Block diagram of SMCT.

3.1. Codebook Establishment

The process of codebook establishment is simple and is deterministically determined.
The codebook is deterministically built by generating a set of 2D binary functions in two
steps. First, a set of N one-dimensional (1D) binary functions is generated. Each of these
functions has N elements. Second, a codebook is established through a set of 2D square
functions with a dimension of N × N. These 2D functions represent different patterns.
Further details are provided below.

1D function generation: a set of 1D binary functions called fractal half functions are
generated by firstly choosing a mother (basis) function ( f 1) with all its elements set to ones.
This represents the first level. The functions in the second level are generated by dividing
the mother function into two halves using binary step functions. A similar procedure
is applied to each function in the previous level to generate the functions in the other
intermediate levels. Lastly, the function at the last level is generated by setting all its
elements to zeros. Figure 2 indicates the generation of the 1D functions for any N. There
are N functions separated over Z levels where Z = (log2N) + 1. Except for the last level,
there are 2Z−1 functions in each level where Z is the level number. For example, if we
consider the value of N = 8, a set of eight binary 1D functions is derived as follows.

Figure 2. Generation of 1D functions for any N.
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f1(n) = 1 where n ∈ {1, 2, . . . 8}
f2(n) = 1 where n ∈ {1, 2, . . . 4}
f3(n) = 1 where n ∈ {5, 6, . . . 8}
f4(n) = 1 where n ∈ {1, 2}
f5(n) = 1 where n ∈ {3, 4}
f6(n) = 1 where n ∈ {5, 6}
f7(n) = 1 where n ∈ {7, 8}
f8(n) = 0 where n ∈ {1, 2, . . . 8}

(1)

These functions preserve the symmetry under fractal form in 1D but break the orthog-
onality condition. The value of N ∈ {8, 16, 32} was adopted in the current work. Equations
of 1D functions for N = 16 and 32 can be similarly constructed as with N = 8.

2D functions generation: 1D functions generated in the previous step are used to construct
a set of 2D functions. Each of these 2D functions represents a particular pattern that
eventually forms the final codebook. The 2D functions are produced by implementing the
outer product between each pair of 1D functions as demonstrated below.

fi,j = fi
⊗

f j where i, j = 1, 2, . . . N (2)

where ⊗ stands for outer product operation, and fi,j is a 2D function. Consider that a and b
are two vectors with length Q; the outer product between them is calculated as follows.

a
⊗

b =


a1b1 a1b2 · · · a1bQ
a2b1 a2b2 . . . a2bQ
...

...
. . .

...
aQb1 aQb2 . . . aQbQ

 (3)

When the number of 1D functions is N, the number of 2D functions is N × N = N2.
These 2D functions are arranged in a 2D space to obtain the codebook. Figure 3 demon-
strates the representation of the codebook when N equals 8.

Each square cell in Figure 3 reflects a block of size 8× 8. The construction of this
codebook is straightforward, which facilitates the implementation of the SMCT. The size
of the codebook is related to the size of the image block and is not affected by the size of
the image. As the size of the image block grows, the size of the codebook grows. Table 1
indicates the comparison of DWT, DCT, and SMCT.

Figure 3. Codebook representation when N = 8.
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Table 1. The comparison of the DWT, DCT, and SMCT.

DWT DCT SMCT

Elements of its (Haar) basis
functions consist of −1 and +1
only.

Elements of its basis functions
are between −1 and +1.

Elements of its basis functions
consist of 0 and 1.

The energy of its elements is
fixed.

The energy of its elements is
fixed.

The energy of its elements is
decreasing.

Orthogonal Orthogonal Nonorthogonal

Symmetrical Symmetrical Symmetrical

3.2. Image Encoding

The image encoding phase passes through three stages: preprocessing, matching, and
postprocessing. In the preprocessing stage, the image is separated into nonoverlapping
blocks. The matching stage is then calculated to repetitively find the best matching code-
book block for each image block and estimate the corresponding matching coefficients.
These coefficients represent the location of a matching block in the codebook for a certain
image block and a normalization factor. Lastly, coefficients of the matching stage are rear-
ranged to form the encoded image in the third stage. The transform includes two tuneable
parameters (K and T), where K illustrates the number of times that the transform is imple-
mented, and its range is 1 < K < 8, while T acts as normalization parameter, and its range
is 0 < T < 1. The stages of the encoding phase are described in more detail in the following:

Step 1: Resize the color image to turn its size into a multiple of N, and then split the
new color image into three separate images: red (IR), green (IG), and blue (IB).

Step 2: Separate each image (IR, IG, and IB) into nonoverlapping blocks of size N × N as

Ic = {Bc
1,1, Bc

1,2, . . . Bc
P,S} (4)

where c ∈ {R, G, B}, while P and S denote the number of image blocks over the horizontal
and vertical directions, respectively.

Step 3: From each block in IR, IG, and IB, estimate three coefficient vectors (lxc, lyc, mc)
using Steps 4–9.

Step 4: Set B = Bc
p,s where Bc

p,s denotes the current image block, and (p, s) is the in-
dex of the image block over the vertical and horizontal directions, respectively.

Step 5: Repeat Steps 6–9 for K times.

Step 6: Find the maximal value of the block (B), and then multiply it by a constant (T) to
estimate the value of m at index k as

mc
k = bT ×max(B)c (5)

where bc returns the largest integer. The m parameter acts as a normalization factor that
facilitates the matching process between the image and the binary codebook.

Step 7: Compare the image block (B) with each block in the codebook (CB) by multi-
plying (CB) by mc

k and then calculating the mean absolute error (MAE) between them using

{MAEx,y} = MAE(B, mc
k × CBx,y) for x, y = 1, 2, . . . N (6)
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where MAE between two vectors a and b of size L is given as

MAE(a, b) =
∑L

l=1 |al − bl |
L

(7)

Step 8: Find the index (x, y) of the CB block with the minimal MAE (i.e., the best match)
to estimate the value of LXc and LYc such that lxc stores the x values and lyc stores the y
values as

(lxc
k, lyc

k) = argmin
x,y

{MAEx,y} (8)

Step 9: Update the values of the image block (B) as

B = Bc
p,s −mc

k × CB(lxc
k, lyc

k) (9)

Step 10: Split the elements of the coefficient vectors (lxc, lyc, mc) estimated for all image
blocks into IR, IG, and IB, and rearrange them into separate matrices to denote the coef-
ficients collected in a particular color channel and in a certain iteration (k), as shown in
Figure 4. Each cell in this figure refers to a matrix of size (P× S) pixels. More precisely,
matrix LXR

1 contains the values of lx coefficients collected over all blocks in IR and at k = 1.
The remaining matrices in Figure 4 are similarly interpreted.

Figure 4. Representation of the SMCT coefficients.

Steps 1 and 2 represent the preprocessing stage. Steps 3–9 represent the matching
stage, and Step 10 represents the postprocessing stage. Figure 5 shows the representation
of the Lenna image in the SMCT domain. In this representation, we set N = 8, T = 0.25, and
K = 4. According to these settings, the algorithm was implemented four times. The repre-
sentation in Figure 5b consists of three horizontal parts that belong to the representation of
the red, green, and blue channels.

(a) (b)

Figure 5. Representation of Lenna image in SMCT domain. (a) Lenna image; (b) SMCT domain.
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3.3. Image Decoding

The image decoding phase encompasses retrieving the original image from the en-
coded image via the codebook. The algorithm of image decoding involves the inverse
operations to those used in the encoding phase. However, the decoding process is faster
than the encoding process because the locations of the matching blocks in the codebook are
already stored in the encoded image. Suppose that the values of K, T, and N are known
by both sender and receiver; steps of reconstructing the original image from the encoded
image are described below.

Step 1: Split the image vertically into three identical sections that correspond to the encoded
parts of red, green, and blue channels.

Step 2: Split each section horizontally into K identical subsections that correspond to
the three coefficient matrices that are estimated in each iteration k.

Step 3: Split each subsection vertically into three separate units to access the entries
of each coefficient matrix (LXc

k, LYc
k , Mc

k) individually.

Step 4: To estimate the dimension of the original image, multiply the size of any coef-
ficient matrix by N as [

Z
V

]
= N ×

[
P
S

]
(10)

where (Z, V) is the image size, N is the length of the 1D function that is used to construct
the codebook, and (P, S) is the size of each coefficient matrix (i.e., LXc

k , LYc
k , and Mc

k).

Step 5: Set a new empty matrix (A) of size (Z, V, 3) and split it into blocks of size N × N.

Step 6: Loop over the elements of the LXc
k , LYc

k , and Mc
k in three color channels and

estimate the values of the corresponding blocks in A by multiplying the normalization
factor in the M matrix by the codebook block in the index specified by the elements in the
LX and LY matrices as

Ac
x,y =

K

∑
k=1

Mc
k(xx, yy)× CB(LXc

k(xx, yy), LYc
k (xx, yy)) (11)

where (xx, yy) is the index of the element in LXc
k, LYc

k , and Mc
k while (x, y) is the index of

the block in A and in a color channel c.

4. Experiments and Results

The effectiveness of the SMTC is demonstrated in this section. A set of analyses were
conducted to show the contribution of different parameters in the proposed transform. In
the experiments, the quality of the SMTC is assessed by estimating the value of the peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM), and the compression ratio
(CR) [18,24,25]. The PSNR estimates the quality of the reconstructed (decoded) images
and it is inversely proportional to the mean square error (MSE). The SSIM reflects the
similarity between decoded and original images. The CR reflects the amount of information
compressed by the proposed transform. Six standard color images are employed in the
experiments and are presented in Figure 6. These images were Lenna, Baboon, Peppers,
House, Airplane, and Lake. Each of these images had a size of 512× 512. Selected images
had different contents and details.
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Figure 6. Color images employed in the experiments.

4.1. Length of Coefficient Vector (K) versus Quality and CR

This experiment measured the variation in the quality of the reconstructed images
with the length of parameter K. To accomplish this, we applied the proposed transform on
each test image by setting the values of T and N to 0.25 and 8, respectively, and modifying
the number of iterations (K) required to estimate the coefficient vectors (mc, lxc, and lyc) in
Equations (6) and (8) from 1 to 8. For each K, PSNR, SSIM, and CR values are shown in
Table 2.

Table 2. Influence of K parameter.

Image Quality
Metric

K Parameter

1 2 3 4 5 6 7 8

Lenna
PSNR 14.81 25.48 26.99 27.57 27.86 28 28.07 28.1
SSIM 0.535 0.946 0.959 0.964 0.966 0.967 0.968 0.968
CR 75.42 34.1 28.57 27.21 26.55 26.24 26.04 25.94

Baboon
PSNR 14.53 19.46 20.28 20.71 20.97 21.1 21.16 21.18
SSIM 0.375 0.644 0.69 0.72 0.735 0.743 0.747 0.748
CR 77.16 21.29 17.45 16.1 15.45 15.13 14.98 14.92

Peppers
PSNR 16.03 24.38 25.36 25.7 25.83 25.89 25.91 25.92
SSIM 0.736 0.939 0.95 0.955 0.957 0.957 0.958 0.958
CR 59.15 32.07 27.41 26.23 25.67 25.39 25.28 25.20

House
PSNR 14.72 27.34 29.32 29.84 30.02 30.11 30.14 30.15
SSIM 0.508 0.928 0.952 0.96 0.963 0.964 0.965 0.966
CR 105.41 40.85 34.63 32.94 31.97 31.53 31.14 30.96

Airplane
PSNR 11.38 23.37 24.68 25.1 25.27 25.35 25.38 25.39
SSIM 0.585 0.793 0.842 0.86 0.869 0.873 0.876 0.877
CR 105.26 40.37 30.32 28.88 28.02 27.59 27.41 27.27

Lake
PSNR 14.12 21.93 23.09 23.59 23.81 23.92 23.96 23.97
SSIM 0.523 0.83 0.864 0.878 0.884 0.887 0.888 0.888
CR 66.62 25.99 21.74 20.63 20.09 19.88 19.78 19.76
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The table indicates that the quality of images improved as the number of iterations
increased. The worst quality was achieved when the transform was only implemented once.
Considerable improvement was achieved when we repeatedly applied the transform on the
resulting images. However, the improvement in image quality was modest when the value
of K was greater than 4. Image contents showed that the quality of images with a few small
details (i.e., Lenna, Peppers, and House) was better than that with highly complex details
(i.e., Baboon, Airplane, and Lake). On the other hand, we achieved the highest compression
ratio when the value of K equaled 1. After that, it began to significantly decrease until the
value of K reaches 4, and it then slightly decreased. The value of the CR was also influenced
by the details of the image contents. The highest CR was recorded for the House image
(a few small details), and the lowest CR was recorded for the Baboon image (many small
details). To obtain a compromise between the quality of the reconstructed image and the
compression ratio, the value of K should be set to 4.

4.2. Influence of Parameter T versus Quality

This experiment measures the variation of the quality of the reconstructed images
with the value of the parameter T. In this experiment, we applied the proposed transform
on the Lenna image by varying the value of T from 0.15 to 0.95 at a step of 0.1, and the
number of iterations (K) from 1 to 8. For each pair of T and K, PSNR and SSIM values were
estimated and are displayed in Table 3 where the bold number indicates the best quality
across each column.

Table 3. Variation in T versus K parameter.

T Quality
Metric

K Parameter

1 2 3 4 5 6 7 8

0.15 PSNR 14.79 25.37 26.86 27.46 27.79 27.95 28.04 28.08
SSIM 0.534 0.945 0.958 0.963 0.965 0.967 0.968 0.968

0.25 PSNR 14.81 25.48 26.99 27.57 27.86 28.00 28.07 28.10
SSIM 0.535 0.946 0.959 0.964 0.966 0.967 0.968 0.968

0.35 PSNR 14.82 25.50 27.00 27.55 27.82 27.95 28.00 28.02
SSIM 0.535 0.947 0.959 0.964 0.966 0.967 0.967 0.967

0.45 PSNR 14.82 25.42 26.92 27.48 27.74 27.86 27.91 27.92
SSIM 0.535 0.947 0.959 0.964 0.965 0.966 0.967 0.967

0.55 PSNR 14.79 25.14 26.69 27.30 27.58 27.70 27.75 27.77
SSIM 0.532 0.945 0.958 0.963 0.965 0.965 0.966 0.966

0.65 PSNR 14.72 24.54 26.21 26.99 27.33 27.48 27.55 27.57
SSIM 0.528 0.941 0.956 0.961 0.963 0.964 0.964 0.965

0.75 PSNR 14.53 23.55 25.38 26.32 26.82 27.06 27.18 27.24
SSIM 0.518 0.932 0.950 0.957 0.961 0.962 0.963 0.963

0.85 PSNR 14.23 22.21 24.09 25.27 25.95 26.35 26.56 26.67
SSIM 0.502 0.917 0.940 0.951 0.956 0.958 0.960 0.960

0.95 PSNR 13.73 20.48 22.35 23.64 24.52 25.09 25.45 25.65
SSIM 0.476 0.891 0.922 0.937 0.946 0.951 0.954 0.955

Results show that the optimal value of T was 0.35 when values of K were from 1 to 3
(small iterations), and 0.25 when the value of K was from 4 to 8 (large iterations). However,
the quality of the reconstructed image was bad for smaller values of K. Results showed the
same tendency when the experiment was conducted on the other images. We, therefore, set
the value of T to 0.25 in the rest of the experiments.
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4.3. Parameter K versus Parameter N

We studied the relationship between parameters K and N. To accomplish this analysis,
we applied the transform on all images by modifying these parameters. The value of
parameter N was set to 8, 16, and 32. For each value of N, we set the value of K from 1 to 8.
The relationship was estimated as shown in Figure 7 for the Peppers image in accordance
to PSNR, SSIM, and CR.

(a) (b)

(c)

Figure 7. Relationship between K and N. (a) PSNR; (b) SSIM; (c) CR.

This figure indicates that the quality of the reconstructed image (PSNR, SSIM) deterio-
rated as the value of N increased. The value of N was directly proportional to the value of
K. As the value of N increased, a higher value of K was required to achieve better quality
for the reconstructed image. Contrarily, CR grew when the value of N increased for all
values of K. This was obvious because the same number of coefficients was estimated from
each image block regardless of its size, while the total number of blocks decreased when
the value of N increased, which means that more information was lost. To achieve a better
compromise between image quality and the CR, the value of K can also be selected to be 4.

4.4. Comparison with Standard Transforms

Comparison analysis between different transforms was conducted in this experiment.
The proposed transform was implemented using N = 8, K = 4, and T = 0.25. Four
coefficients were estimated from each block of size 8× 8 and used for reconstruction. To
conduct a fair comparison with other transforms, we considered the same block size in
DWT and DCT, and the same number of coefficients estimated from each block by setting
the values of the remaining coefficients to zero. Comparison results in accordance to the
PSNR and SSIM are shown in Table 4 using the six chosen images. Table 4 shows that
SMCT outperforms other transforms as indicated by the SSIM metric for all images, and
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it produced comparable quality with that of other transforms as indicated by the PSNR
metric. On average, the SMCT produced the highest PSNR and SSIM values.

Table 4. Comparison of different transforms.

Image Quality
Metric

Transform

DWT DCT SMTC

Lenna PSNR 26.77 27.2 27.57
SSIM 0.954 0.955 0.964

Baboon PSNR 20.28 20.41 20.71
SSIM 0.655 0.657 0.720

Peppers PSNR 25.39 26.18 25.7
SSIM 0.946 0.953 0.955

House PSNR 28.41 29.07 29.84
SSIM 0.937 0.937 0.960

Airplane PSNR 24.78 25.31 25.10
SSIM 0.836 0.773 0.860

Lake PSNR 23.00 23.61 23.59
SSIM 0.849 0.852 0.878

Average PSNR 24.77 25.29 25.41
SSIM 0.862 0.854 0.889

Figure 8 shows the qualitative analysis of different transforms on four images. DCT
yielded a high blocking effect on the whole reconstructed images. DWT caused a blurring
effect. The SMCT had a lower blurring effect than that of DWT, while the blocking effect was
only observed on the edges of the reconstructed images. These results were expected, as we
only applied the transforms on images without any postprocessing operations. This aids in
understanding the characteristics of this transform to formulate appropriate postprocessing
operations in future work.

Figure 8. Cont.
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Figure 8. Visual comparison of different transforms. (left) Results of applying DWT; (center) results
of applying DCT; (right) results of our proposed transform.

5. Conclusions

A new transform for image representation was developed aiming to represent an
image using a small number of functions. We first built a codebook using a set of simple
binary functions that aid the process of image encoding and decoding. This codebook
is independent of image size and contents. The main operation in the process of image
encoding is to calculate the matching process between image blocks and codebook blocks,
and estimate the coefficients of the codebook block that is most similar to each image
block. These coefficients were then employed to reconstruct the image from the codebook
in the decoding process. Results revealed that the transform could achieve competitive
performance as compared to that of DCT and DWT on six standard images in terms of PSNR
and SSIM. For future work, our next efforts are to improve the quality of the reconstructed
image, enlarge the size of the image block, and eliminate the need for the codebook.
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The following abbreviations are used in this manuscript:

SMCT Systematic multichimera transform
SSIM Structural similarity index
PSNR Peak signal-to-noise ratio
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DWT Discrete wavelet transform
DCT Discrete cosine transform
WHT Walsh–Hadamard transform
KLT Karhunen–Loeve transform
JPEG Joint Photographic Experts Group
PCA Principal component analysis
MAE Mean absolute error
CR Compression ratio
CB Codebook
MSE Mean square error
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