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Abstract: Due to the cluster reducibility of multiquark operators, a strong interplay exists in
tetraquarks between the compact structures, resulting from the direct confining forces acting on
quarks and gluons, and the molecular structure, dominated by the mesonic clusters. This issue
is studied within an effective field theory approach, where the compact tetraquark is treated as
an elementary particle. The key ingredient of the analysis is provided by the primary coupling
constant of the compact tetraquark to the two mesonic clusters, considered here in the framework
of a scalar interaction. Under the influence of this coupling, an initially formed compact tetraquark
bound state evolves towards a new structure, where a molecular configuration is also present. In the
strong-coupling limit, the evolution may end with a shallow bound state of the molecular type. The
strong-coupling regime is also favored by the large Nc properties of QCD. The interplay between
compact and molecular structures may provide a natural explanation of the existence of many shallow
bound states.

Keywords: QCD; effective field theories; tetraquarks

1. Introduction and Summary

The experimental discoveries over the last two decades of new particle candidates,
corresponding to “exotic hadrons” [1–12], not fulfilling the scheme of the standard quark
model [13–16], has given rise to thorough theoretical investigations for the understanding
of the nature and structure of these states; recent review articles can be found in [17–29].

The theoretical issue faced by exotic hadrons, also called “multiquark states”, is
whether they are formed like ordinary hadrons, by means of the confining forces that act on
the quarks and gluons, or whether they are formed like molecular states, by means of the
effective forces that act on ordinary hadrons [16]. (The term “molecule” refers here to the
color-neutral character of hadrons, in analogy with the molecules formed by atoms [30,31]).
In the former case, multiquark states are expected to be compact objects, while in the latter
case, they are expected to be loosely bound states. For the formation of compact multiquark
states, the diquark model, in which two quarks form a tight preliminary system, provides
the simplest mechanism to reach that goal [32–35]. Molecular-type states [30,31,36,37], also
called “hadronic molecules”, are studied by means of effective field theories, based on
approximate symmetry properties and nonrelativistic approximation [38–45].

The reason these two competing alternatives are arising is related to the fact that the
multiquark operators that generate multiquark states are not color-irreducible, in contrast
to the ordinary hadron case, in the sense that they are decomposable along combinations of
clusters of ordinary hadron operators [16,46]. There are, therefore, two different ways of
considering the construction of a multiquark state, as depicted above. The main issue is
which one reproduces the most faithful description of reality. The existence or emergence
of hadronic clusters inside a multiquark state might be an indication of a kind of instability
when the state is built out of confining forces. It might, at some stage, dislocate into the
clusters, or, in the case of a bound state, evolve towards another state, dominated by the
clusters; that is, towards a molecular-type state.
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A theoretical hint to analyze the problem is provided by the study of the energy
balance of the two types of configurations [29]. This is most easily done for heavy or static
quarks, for which lattice calculations are available [47–53]. In the strong coupling limit
of lattice theory, analytic expressions are obtained by means of Wilson-loop expectation
values, which satisfy the area law, or, more generally, are saturated by minimal surfaces; the
corresponding predictions have been verified by direct numerical calculations on the lattice
(cf. previous references). The qualitative result that emerges from the latter calculations is
the following. When the quarks and antiquarks of the multiquark state are gathered into
a small volume, it is the compact multiquark configuration that is energetically favored,
while in situations where the quarks and antiquarks are seperated from each other at larger
distances, it is the cluster-type configurations that are energetically favored. Therefore,
there are nonzero probabilities for each type of configuration to occur for the description
of the multiquark state. However, since quarks and antiquarks are moving objects and
generally reaching, even with small probabilities, large distances, whose integrated volume
may be much larger than the small volume of the compact configuration, one expects
that an initially formed compact state would gradually evolve towards a cluster-type
configuration, typical of a molecular state. In coordinate space, the core of the multiquark
state would be better described by the compact representation, whereas the outer layer
would be better described by the molecular representation. The relative weight of each
representation would, of course, depend on specific parameters, such as the quark masses
and the quantum numbers that are involved (This scheme had been foreseen in the past
by Manohar and Wise[54], who have predicted, in the presence of two heavy quarks
and on the basis of the properties of the confining interactions at short distances, the
existence of a tetraquark bound state. They, however, recognized that the large-distance
dynamics should be better described by meson-meson interactions and switched for the
description of that domain to chiral perturbation theory). The above results have led,
in spectroscopic calculations, to the introduction of the concept of “configuration-space-
partitioning” (or for short, “geometric partitioning”), which is realized in the so-called
“flip-flop” potential model [55–67], which takes into account more faithfully the role played
by each configuration in the formation of multiquark states. However, because of the
complicated nature of the constraints, which are coordinate dependent, this model, apart
from simplified cases, has not yet led to full spectroscopic results to be compared, on
quantitative grounds, with experimental data.

In principle, if the tetraquark bound state problem could have been solved with high
precision, taking into account all interactions that act between quarks and gluons, one
would obtain the exact knowledge about its structure. Unfortunately, this is not currently
the case; one is obliged to adopt approximations and proceed step by step, including addi-
tional inputs to improve the predictions. As mentioned above, the simplest approximations
are either the compact scheme or the molecular scheme. While the latter scheme, based
on hadron-hadron interactions, has a sufficiently developed theoretical background, the
former one needs further analysis. In the diquark model, the diquark being considered in
particular in its color-antisymmetric representation (ignoring here spin degrees of freedom)
within a very small volume (pointlike or almost pointlike approximation), one always has
tetraquark (or multiquark) bound states [68–74]; this is due to the fact that, in that approx-
imation, all forces acting on the various small volumes (or points) are of the attractive
confining types. This is not the case of the molecular scheme, where the occurrence of a
bound state depends on the strength of the attractive forces. Therefore, in the compact
scheme, one is entitled to start with a tetraquark (or multiquark) candidate, with all its
accompanying multiplicities. The main problem that is encountered here is the evaluation
of the effect the mesonic (or hadronic) clusters could have on that bound state. The key
ingredient that enters in the description of that effect is the effective coupling constant of
the compact tetraquark to the meson clusters. One easily guesses that the stronger the latter
quantity is, the more important is the transformation of the compact state into a cluster-like
state, which ultimately might take the appearance of a molecular-type state.
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It is the main objective of the present paper to evaluate the interplay between the
compact and molecular structures of possibly existing tetraquark states. For this, we shall
adopt methods of effective field theories, remaining at the same time at the level of simple
qualitative features.

In effective field theories of mesons, interactions are described by meson exchanges
and by contacts. At lower energies, the exchanged meson fields can be integrated out, and
one remains only with a theory with contact-type interactions [75,76], which we call here,
the “lower-energy” theory. The correspondence between the parameters of the two types
of theory is not, however, simple and a physical understanding of the results necessitates
a more detailed investigation. We devote Section 2 to a presentation of this aspect of
the problem. Taking into account the various physical conditions and known results, we
propose, in Section 3, an empirical formula, which relates, in an explicit way, the coupling
constant of the lower-energy theory to that of the Yukawa-type theory, and allows an easy
understanding of the conditions in which a bound state may emerge. In order to emphasize
the qualitative features of the approach, we neglect spin effects and limit ourselves to scalar
interactions with scalar particles, ultimately considered in the nonrelativistic limit. The
resulting effective theory is then used to study the meson-meson interaction through the
scattering amplitude and the determination of the possibly existing bound state properties.
The corresponding scattering length and effective range are evaluated in Section 4. Some of
the results of Sections 3 and 4 are well known in the literature and are presented here for
the purpose of introducing the method of approach that is applied for more general cases.

The case of compact tetraquarks is studied in Section 5. With respect to the meson
clusters, the compact tetraquark can be represented, in first approximation, as an elementary
particle, whose internal structure would be relevant only at short-distance scales. It is then
essentially characterized by its mass and quantum numbers and described by means of its
propagator. The tetraquark, because of its internal structure, has necessary interactions with
meson pairs and, in particular, with those lying closest to its mass. In the simplest case of
one meson-pair, one may introduce a bare coupling constant for the interaction tetraquark-
two-mesons and analyze its influence on the properties of the tetraquark through the
radiative corrections it induces. For the bound state case, it is assumed that the bare
compact tetraquark mass lies below the two-meson threshold. It turns out that, in general,
the compact-tetraquark–two-meson interaction shifts the binding energy of the tetraquark
to lower values. In the strong coupling limit, the shift may even transform the compact
tetraquark into a shallow bound state, typical of loosely bound hadronic molecules. This
phenomenon is best represented by means of the “elementariness” parameter Z, introduced
by Weinberg [36], which measures the probability of a bound state to be considered as
elementary, and the complementary quantity, (1− Z), representing its “compositeness”.
In the strong coupling limit, described above, Z takes small values, approaching zero. In
parallel, the physical coupling constant of the tetraquark to two mesons tends also to zero
in the same limit. The value of Z is also measured by means of the scattering length and
the effective range parameter, the latter taking negative values when Z 6= 0.

These results, which are the main outcome of the present paper, provide a more
refined understanding of the structure of observed tetraquark candidates. Many shallow
bound states, which are typical of molecular states, might have a compact origin, provided
Z 6= 0. They would be the result of the deformation, under the influence of the mesonic
clusters, of the initially formed compact tetraquark. This is another illustration of the dual
representation of the tetraquark found in lattice theory on the basis of the energy balance
analysis [47–53].

On more general grounds, shallow bound states are usually considered as belonging
to universality classes, whose binding energy values are not naturally explained by means
of the interaction scales of the system [77]. The previous results bring a new lighting to that
problem in the case of tetraquarks. The coupling of constant compact-tetraquark–meson-
clusters introduces an additional scale parameter, whose strong-coupling limit naturally
explains the origin of the shallowness.
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The case of resonances occurs when the bare mass of the compact tetraquark lies above
the two-meson threshold. Here, however, contrary to the bound state case, additional
constraints appear for the existence of a physical resonance. The latter may exist only in
the weak-coupling regime. Large values of the coupling constant resend the state to the
bound state domain, while for a finite interval of the coupling constant, occurring prior to
the strong-coupling regime, the tetraquark state may disappear from the spectrum.

Section 6 brings complementary information with respect to Section 5, by also consid-
ering, in addition to the tetraquark-two-meson interaction effect, the influence of meson-
meson interactions, which now renormalize the primary (bare) coupling constant and
introduce a competing effect coming from direct molecular-type forces. The qualitative
conclusions drawn in Section 5 remain, however, valid. Section 7 is devoted to an analysis
of the problem in the large Nc limit of QCD. In that limit, the theory provides addi-
tional support to the dominance of the strong-coupling regime in the effective interaction
compact-tetraquark–meson-clusters. Conclusions follow in Section 8. A few detailed
analytic expressions, approximating energy eigenvalues, are gathered in the Appendix.

2. Reduction to Contact-Type Interactions

Effective field theories, which result from the integration of fields operating mainly
at high energies, are generally characterized by the presence of contact-type interactions.
Often, depending on the energy scale that is considered, these coexist with ordinary-type
interactions, whose prototype is the Yukawa interaction, responsible of meson exchanges
between interacting particles. At lower energies, the exchange-meson fields themselves
are integrated out and one remains only with contact-type interactions. A representative
example of such a theory is chiral perturbation theory [38–40], in which the interacting
particles are the pseudo-Goldstone bosons and where all other massive particle fields
have been integrated out. However, explorations of more refined properties, related to
spectroscopic problems and to the physical interpretation of numerical values of parameters,
may require a more detailed knowledge of the connection between the lower-energy theory
and its higher-energy generator.

2.1. Spectroscopic Properties of the Higher-Energy Theory

To illustrate the above aspect of the question, we shall consider, following Refer-
ence [76], a higher-energy theory, where two massive scalar particles, with masses m1 and
m2, interact by means of the exchange of a scalar particle with mass µ, described by the
interaction Lagrangian density:

LI =
2

∑
i=1

2migφ†
i φi ϕ, (1)

where, for simplicity, after factorizing, for dimensionality reasons, the mass terms 2mi, we
have chosen the same (dimensionless) coupling constant g for the two particles. The fields
φi (i = 1, 2) correspond to those of the external massive particles, while ϕ corresponds to
the exchanged particle field.

The scattering amplitude of the process {1(p′1) + 2(p′2)→ 1(p1) + 2(p2)} is given, in
lowest order in g, by the Born term, or the ladder diagram:

iT = −i
4m1m2g2

q2 − µ2 + iε
, (2)

where q is the momentum transfer: q = p1 − p′1 = p′2 − p2. This term iteratively generates
higher-order diagrams, representing the series of ladder-type diagrams, which plays a basic
role in a possible production of bound states. They are represented in Figure 1.
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Figure 1. The meson-meson scattering amplitude in terms of the series of ladder diagrams.

A complete study of the theory requires the evaluation of the effects of self-energy and
vertex corrections. These, however, do not play a fundamental role in the extraction of the
main qualitative features that are of interest for our purpose and will be ignored.

The bound state problem in the nonrelativistic limit can be studied by means of the
Schrödinger equation. The latter is obtained from the Bethe–Salpeter equation, with the
kernel considered in the ladder approximation, represented by the right-hand side of
Equation (2). One has first to use the instantaneous approximation, where one neglects, in
the cm frame, the temporal component of the momentum transfer q, and then to take the
nonrelativistic limit. The Schrödinger equation in x-space is:

Eψ(x) =
( p2

2mr
+ V(r)

)
ψ(x), r =

√
x2, x = x1 − x2, mr =

m1m2
(m1 + m2)

, (3)

where V(r) is the well-known Yukawa potential:

V(r) = −( g2

4π
)

1
r

e−µr. (4)

Making in (3) the changes of the variable and parameter [78]:

x = x′/µ, p = µp′, E =
µ2

2mr
E′, g2 = g2 µ

2mr
, (5)

one reduces the Schrödinger equation to a dimensionless equation with a single parameter, g2:

E′ψ(x′) =
(

p′2 − (
g2

4π
)

1
r′

e−r′
)

ψ(x′). (6)

Compared to the Coulomb potential, the Yukawa potential (4) is of the short-range
type and hence not all values of g2 may produce bound states. There exists a critical value
of it, g2

cr = 1.68× (4π) [76,78], below which bound states do not exist. The existence of
bound states is ensured by the inequality:

(
g2

4π
) ≥ (

g2
cr

4π
) = 1.68. (7)

At the critical value of the coupling constant, a zero-energy bound state appears. When
g2 increases, gradually new bound states appear, while the ground state binding energy
itself increases.

In more general cases, one may have the sum of several Yukawa potentials with
different meson exchanges. In such cases, one loses the notion of a universal coupling
constant squared g2. To continue exploring qualitative aspects of the problem, it would be
advantageous to approximate the sum by a single Yukawa potential with a mean exchanged
mass and a mean coupling constant.

General qualitative properties of the Yukawa potential, concerning the related spec-
troscopy and the poles of the corresponding S-matrix, could be obtained by considering
the soluble model of the spherically symmectric rectangular potential well, which is a
prototype of short-range potentials [79,80]. If V0 is the depth of the potential and R its
width, then there is a correspondence between g2/(4π) and the product 2mrV0R2 ≡ A2.
The critical value of A2 is equal to π2/4 = 2.46, which is of the same order of magnitude as
g2

cr/(4π) [Equation (7)].
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2.2. The Lower-Energy Effective Field Theory

A lower-energy effective field theory can be obtained by integrating out the mediator
field ϕ. One then obtains a theory where the only remaining fields are the φis. Their
interactions are represented by an infinite series of contact terms with increasing powers of
products of φis, also possibly containing derivative couplings. They are classified according
to their dimensionality and a systematic expansion is organized according to definite power
counting rules. The coupling constants of the lower-energy theory are usually determined
from matching conditions of the scattering amplitudes calculated in the two theories. At
low energies, it is the lowest-dimension operator that is expected to provide the leading
contribution. We stick in the following to that term. The corresponding Lagrangian density,
for the mutual interaction of particles 1 and 2, is:

LI,eff = hφ†
1φ1φ†

2φ2, (8)

where h is the coupling constant. This term, like (1), generates by iteration a chain of loop
or bubble diagrams, which are represented in Figure 2.

=
h

1

2

1

2

+
h h

+
h h h

+ · · ·

Figure 2. The meson-meson scattering amplitude in terms of the chain of loop diagrams generated
by the contact term (8).

The problem that interests us is to what extent the lower-energy theory in its leading-
order approximation, represented by the Lagrangian density (8), provides a faithful de-
scription of the higher-energy theory, considered in the ladder-approximation, in the bound
state domain.

Similar searches as above have been undertaken long ago in the past, although with a
different viewpoint. In this respect, Reference [81], provides a rather detailed account of
the corresponding approach. The objective has been to establish an equivalence theorem
between the two theories described by Lagrangian densities of the types of (1) and (8),
respectively, the external particles being here fermions. Putting aside the question of the
nonrenormalizability of the four-Fermi interaction theory, the approach has consisted of
considering the first ladder diagram of Figure 1, together with the radiative corrections
of the exchanged meson propagator, and searching for conditions of equivalence of the
chain of diagrams of Figure 2, considered in the t-channel. Our line of investigation is
rather different, being based on the effective field theory approach, searching for matching
conditions for the leading terms of the scattering amplitude in the s-channel.

Coming back to the present approach with its matching conditions, it turns out that all
diagrams of Figure 1, besides contributing to the coupling constants of higher-dimensional
operators, also give contributions to the coupling constant h of (8). Therefore, h, considered
as a function of g2 (or g2), has an expression in the form of an infinite series:

h =
∞

∑
n=0

h(n), h(0) =
4m1m2

µ2 g2, (9)

where h(n) represents the contribution coming from the n-loop diagram (proportional to

( g2

4π )
nh(0)). Notice that h(0) is positive. While the first few terms of the series of h are

explicitly calculable [76], the complete knowledge of the expression of h in terms of g2

is not known. It is evident, from the lower-bound (7), that, for the bound state problem,
one cannot be satisfied by a perturbative expansion of h, but rather a full nonperturbative
expression of it will be needed in order to understand and interpret the bound state
properties of the lower-energy theory in terms of those of the higher-energy theory.
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3. Nonperturbative Properties of the Coupling Constant of the Low-Energy Theory

The nonperturbative properties of the coupling constant h can be deduced from the
study of the bound state problem of the low-energy theory. The result of the latter problem
is well known in the literature [75,76] and we briefly sketch the corresponding procedure.
The scattering amplitude resulting from the chain of diagrams of Figure 2 is a geometric
series expressible in terms of the two-point loop integral J(s):

T ≡ Teff =
h

1− ihJ(s)
, s = P2 = (p1 + p2)

2, (10)

J(s) =
∫ d4k

(2π)4
i

(p1 + k)2 −m2
1 + iε

i
(p2 − k)2 −m2

2 + iε
. (11)

J(s) is divergent, but its divergence can be absorbed in h by renormalization. Defining Jr as
the regularized (finite) part of J and Jdiv as its diverging part, such that:

J(s) = Jdiv + Jr(s), (12)

one obtains:
1
h
− i Jdiv =

1
hr ⇐⇒ h

1− ihJ(s)
=

hr

1− ihr Jr(s)
, (13)

where hr is the renormalized finite part of h. Notice that this renormalization implies that
the unrenormalized h is a vanishing quantity:

h =
hr

1 + ihr Jdiv . (14)

In the limit where, for finite hr, i Jdiv → ∞, one has h→ 0.
Regularizing J by dimensional regularization and keeping in the diverging part only

mass-independent terms, Jr takes the following form:

Jr(s) =
i

16π2

[
ln
(m1m2

4πµ2

)
+

(m2
1 −m2

2)

2s
ln
(m2

1
m2

2

)
+ Q(s)

]
. (15)

where µ is the mass scale introduced by the dimensional regularization, whose value
can be chosen at will; Q(s) is defined in the complex s-plane, cut on the real axis from
s = (m1 + m2)

2 to +∞ and from s = (m1 −m2)
2 to −∞, and has the expression:

Q(s) =
√

λ(s)
s

ln
(
√

s− (m1 + m2)
2 +

√
s− (m1 −m2)

2

√
s− (m1 + m2)

2 −
√

s− (m1 −m2)
2

)
, (16)

where:
λ(s) ≡ λ(s, m2

1, m2
2) =

(
s− (m1 + m2)

2
)(

s− (m1 −m2)
2
)

. (17)

(The square-roots are defined for complex s as
√

s−m2 = eiα/2
√
|s−m2|, where α is

the angle made by (s−m2) with the positive real axis starting from m2.) On the real axis,
Q(s) takes the following forms:

Q(s) =





−
√

λ(s)
s ln

(√
(m1+m2)

2−s+
√

(m1−m2)
2−s√

(m1+m2)
2−s−
√

(m1−m2)
2−s

)
, s < (m1 −m2)

2,

+

√
−λ(s)

s

[
π − 2 arctan

(√
(m1+m2)2−s√
s−(m2

1−m2
2)

)]
, (m1 −m2)

2 < s < (m1 + m2)
2,

+

√
λ(s)
s

[
ln
(√

s−(m1−m2)
2+
√

s−(m1+m2)
2√

s−(m1−m2)
2−
√

s−(m1+m2)
2

)
∓ iπ

]
,

Re(s) > (m1 + m2)
2, Im(s) = ±ε, ε > 0.

(18)
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(The square-roots in (18) are defined with positive values, their arguments representing
moduli. Jr(s) is finite at s = 0). Physical quantities should be independent of µ. Since Teff
is such a quantity, this implies that hr itself should be µ dependent and should cancel the

µ-dependence of Jr. The absorption of the term ln
(

m1m2
4πµ2

)
into a redefined 1/hr, which

amounts to also absorbing the same quantity into Jdiv, is the simplest way of ensuring
this. We shall adopt henceforth that procedure. It is advantageous to define hr as having
a simple physical interpretation. A natural choice is the value of Teff at the two-particle
threshold [75]. We shall continue using the same notation for the redefined hr and Jr; then
the redefined Jr obtains the form:

Jr(s) =
i

16π2

[ (1
s
− 1

(m1 + m2)
2

) (m2
1 −m2

2)

2
ln
(m2

1
m2

2

)
+ Q(s)

]
. (19)

The scattering amplitude (10) then takes the form, according to (13),

T =
hr

1− ihr Jr(s)
. (20)

Bound states of T will be identified as tetraquark states of the molecular type, whose
parameters and ingredients will be labeled by the indices tm; they correspond to the
solutions of the equation:

1
hr − i Jr(stm) = 0. (21)

(We shall often omit, for the simplicity of notation and when no ambiguity is present,
the index r from hr and Jr.) We restrict ourselves to the case of possible nonrelativistic
solutions, located near the two-particle threshold. We introduce the nonrelativistic energy
Etm through the definition: √

stm = (m1 + m2) + Etm, (22)

and, to simplify notations, we shall use henceforth the reduced dimensionless energy
variable e and bound state energy etm, respectively:

e ≡ E
2mr

, etm ≡
Etm
2mr

, (23)

where mr is the reduced mass [Equation (3)]. Retaining, in the second part of Equation (18), the
leading term in

√−etm, which is contained in its first piece, one finds a unique possible solution:

√−etm = −16π

αh
, α ≡ 4mr

(m1 + m2)
. (24)

The existence of the solution is conditioned by a negative value of h. This means that
h must have changed sign with respect to the perturbative expression h(0) [Equation (9)].
To ensure the nonrelativistic interpretation of the solution, one must have a large value of
|h|, such that:

16π/|h| � 1. (25)

When |h| → ∞, the bound state approaches the two-particle threshold. On the other
hand, when h→ 0 with negative values, the binding energy increases and tends to ∞.

The stability of the solution (24) in the presence of higher-order terms in
√−etm can be

studied by also considering in Jr(s) terms of order (−e), which are contained in the second
term of Q(s) [Equation (18)] and the remaining terms of Jr(s) [Equation (17)]. Accepting
condition (25), the resulting equation continues reproducing the solution (24), but yields
also a second solution, which lies far from the two-particle threshold and does not have the
required nonrelativistic limit. Solution (24) remains, therefore, the only stable nonrelativistic
solution of Equation (21).
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The behavior of the bound state energy with respect to the variations and the order
of magnitude of the coupling constant h is unusual. Generally, if a coupling constant of a
theory increases up to infinity, one expects to find instabilities or phase transitions, while
here, one finds a smooth behavior in the vicinity of the two-particle threshold. Similarly,
vanishing values of the coupling constant should lead the theory towards its perturbative
regime. This means that the coupling constant h of the low-energy theory cannot be
interpreted as an elementary or an ordinary coupling constant. To interpret correctly its
role, one should try to connect it more explicitly to the original coupling constant g of
the higher-energy theory. In the latter theory, the lowest bound state approaches the two-
particle threshold when g approaches its critical value gcr from above. Therefore, negative
values of h correspond to values of g greater than gcr. Large and negative values of h
would correspond to the approach g→ gcr, at which the value h would have a singularity.
Vanishing of h with negative values would correspond to the increasing of g up to infinity.
When g is lower than gcr, h should change sign and the system would enter in a phase
characterized by the absence of bound states. Finally, the vanishing of h with positive values
would correspond to the approach to the perturbative regime. A schematic representation
of these correspondences is shown in Figure 3 [29].

0

0 g2cr.

h

g2

Figure 3. A schematic representation of the relationship between the low-energy coupling constant h
and the high-energy coupling constant g, the latter represented through g2 [Equation (5)].

The exact relationship between h and g not being available at present, it would be
useful to have an approximate or an empirical relation, which qualitatively reproduces
its main properties and allows for an easy understanding of the physical situation that is
considered. For this, we propose the following formula between h and g2 [Equation (5)],
the latter having a more universal meaning than g2:

αh
16π

=
2mr

µ

g2

4π

1
(1− g2/g2

cr)(1 + bg2/g2
cr)

, b ' 0.5, (26)

where b is an empirical parameter, whose approximate value has been determined by
numerical tests.

This formula is expected to be approximately valid in the nonrelativistic domain of the
bound states. To test its validity, we have compared the bound state energies, calculated
from the Schrödinger Equations [(3)–(6)] and from the lower-energy theory [(24) and (26)],
in units of µ2/(2mr). The results are graphically represented in Figure 4.

One finds a rather satisfactory matching of the two predictions. To have an idea of the
values of the predicted binding energies, choosing 2mr ' 2 GeV (corresponding for instance
to a system of DD or D∗D mesons) and µ ' 0.5− 1. For GeV (corresponding to the exchange
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of an effective scalar meson), one has for the unit of energy µ2/(2mr) ' 25− 100 MeV; the
value 0.06 of −Etm in Figure 4 would correspond to a binding energy of 1.5− 6 MeV.

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

1.68 1.78 1.88 1.98 2.08 2.18 2.28

Etm

g2/(4π)

Figure 4. The bound-state energies calculated from the Yukawa potential (red line) and from the
lower-energy theory (blue line), in units of µ2/(2mr).

By expanding in (26), g2 around g2
cr, one obtains from (24), the further approximation

of etm near the two-meson threshold:

etm ' −
( µ

2mr

)2[(4π

g2
cr

)
(1 + b)

]2( g2

g2
cr
− 1
)2

. (27)

The quadratic behavior of etm with respect to the departure of g2 from g2
cr is typical of

short-range potentials and can be verified on soluble models.
As a side remark, let us notice that the extension of formula (26) to the relativistic

domain necessitates more elaborate comparisons. The reason is that in the latter domain
one no longer has a single energy unit and the corresponding generalization is not straight-
forward. Furthermore, in the higher-energy theory, the Bethe–Salpeter equation itself has
difficulties in describing correctly the first relativistic corrections in the ladder approxima-
tion with covariant propagators [82]; one is obliged to use either the instantaneous approxi-
mation, or other quasipotential-type approaches, which reduce the Bethe–Salpeter equation
to a three-dimensional equation. We shall be content, in the present work, to stick to the
nonrelativistic domain, where many experimental data still require a detailed investigation.

One can also obtain, from the expression (20) of the scattering amplitude, the coupling
constant of the bound state to the constituent mesons, appearing in the residue of the
bound state pole. Designating by M1 and M2, the two constituent mesons, the scattering
amplitude has the following behavior near the pole position of the bound state:

T ' −
(m1 + m2)

2g2
TM1 M2

s− stm
, (28)

where gTM1 M2
represents the dimensionless coupling constant of the tetraquark to the two

mesons, defined with the accompanying mass factor (m1 + m2). Expanding in (20) Jr(s)
around stm and using (21), one obtains:

(m1 + m2)
2g2

TM1 M2
=

1
i J′(stm)

, (29)

giving:
g2

TM1 M2
= 32π

√−etm. (30)
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One notices that the coupling constant decreases when the bound state approaches
the two-particle threshold.

Let us finally emphasize, as is evident from the previous results and, in particular,
from the structure of T [Equation (10)], that the low-energy theory can reproduce, in the
present scalar theory, only the ground state of the higher-energy theory.

4. Scattering Length and Effective Range

The expression of the scattering amplitude (10) can also be used in the scattering do-
main, where only the S-wave contributes. Introducing the cm momentum

k =
√

λ(s, m2
1, m2

2)/(2
√

s) [Equation (17)] and expanding Jr(s) [(19) and the third of

Equations (18)], considered above the cut, up to terms of order k2, one finds:

T =
8π(m1 + m2)

8π(m1+m2)
h + k2

πmr
(1− d)− ik

, (31)

where we have defined:
d =

1
2

(m1 −m2
m1 + m2

)
ln(

m1
m2

). (32)

On the other hand, T can be expressed in terms of the S-wave phase shift δ0 as:

T =
8π
√

s
k cot δ0(k)− ik

. (33)

The factor cot δ0(k) is itself expressed through a low-energy expansion in terms of the
scattering length a and the effective range re [83]:

k cot δ0(k) = −
1
a
+

1
2

rek2, (34)

yielding the identifications:

a = − h
8π(m1 + m2)

=
1

2mr
√−etm

, re =
2

πmr
(1− d). (35)

(The relativistic correction coming from the expansion of
√

s in the numerator of T ,
Equation (33), has been neglected.) One finds that a is proportional to −h and, therefore,
has the same type of behavior as −h in terms of the coupling constant squared g2 (Figure 3).
(This has also been shown in [78].) According to whether g2 is greater or smaller than g2

cr, a
is positive or negative. On the other hand, the parameter d [Equation (32)] is positive and,
in general, for physical applications, smaller than 1; the effective range re is then predicted
as positive and small.

Of particular interest is the case of resonances, which appear as bumps in the cross
section above the two-particle threshold. They correspond to complex poles of the scattering
amplitude, lying below the cut of the real axis. To check the possible presence of complex
poles, we go back to the expression (16) of Q(s) in the complex plane, which can also be
rewritten in the following form:

Q(s) =
√

λ(s)
s

[
− iπ + ln

(
√

s− (m1 −m2)
2 +

√
s− (m1 + m2)

2

√
s− (m1 −m2)

2 −
√

s− (m1 + m2)
2

)]
. (36)

Using a definition of the type of (22), one has, in approximate form, neglecting
quadratic terms in E,

s− (m1 + m2)
2 ' 2(m1 + m2)E, s− (m1 −m2)

2 ' 4m1m2(1 +
E

2mr
). (37)
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The first equation shows that the complex variable E, considered as a vector, is parallel
to (s− (m1 + m2)

2) in the s-plane and therefore one can transpose to E the complex-plane
analysis, with a right-hand cut starting at E = 0. Making expansions in

√
e and retaining

terms up to order e, one obtains:

Q(s) = α
√

e (−iπ + 2
√

e). (38)

(α defined in (24).) J(s) [Equation (19)] then takes the form:

J(s) =
i

16π2 α
√

e
[
− iπ + 2

√
e(1− d)

]
, (39)

where d has been defined in (32). In the nonrelativistic domain, the second term is negligible
in front of the first and the resonance equation takes the form:

− i
√

eR +
16π

αh
= 0, (40)

which yields a purely imaginary solution for√eR and gives back the bound state solution (24).
Formal resonance solutions can be obtained outside the nonrelativistic domain for small
negative values of h [− αh

16π < 8
π (1− d)], by including also the second term of the right-hand-

side of (39); however, such values of h correspond, according to the correspondence (26), to
the strong-coupling limit of g2, which goes beyond the validity of the present nonrelativistic
approximation.

The previous results mean that the present model does not produce resonances in
the vicinity of the two-particle threshold. Resonances can be produced when there are
derivative-type couplings [84–86], which we have discarded in the present approach. One
can also refer to the rectangular well model of [79], where resonances in the S-wave are
generally produced far from the real axis.

5. Compact Tetraquarks

We have considered in the previous sections, in an effective theory approach, the
bound state formation problem of a molecular state, or a hadronic molecule, which we also
called a molecular-type tetraquark, from two mesons, interacting by short-range Yukawa-
type forces, approximated in the effective theory by a contact-type interaction. We have
noticed that the smallness of the binding energy is sharpened when the coupling constant
of the lower-energy theory takes large negative values, corresponding the higher-energy
theory to the proximity of the coupling constant to the critical value, below which no bound
state exists.

The latter mechanism is not the only one that may produce bound states. Another
mechanism, based on the direct internal interaction of four-quark systems (more pre-
cisely, made of two quarks and two antiquarks) by means of the confining forces, might
also produce bound states, in analogy to what happens with the formation of ordinary
hadrons [34,35]. Because of the strong nature of the confining forces, one expects that such
bound states would have more compact sizes than the molecular-type bound states and are
distinguished from the latter in the literature under the terms of “compact tetraquarks”.

However, the formation of compact tetraquarks as definite stable bound states (with
respect to the strong interactions) remains a matter of debate. This is related to the “cluster
reducibility” problem, in the sense that the multiquark operators that create tetraquarks
are reducible to a combination of mesonic clusters, and hence the compact tetraquark
state would rapidly dislocate into them and would be transformed into a molecular-type
object [16,46,87,88].

Another argument which is advocated in favor of the molecular scheme is the prox-
imity of many of the observed tetraquark candidate states to two-meson thresholds. In
the molecolar scheme, the two-meson threshold is a natural reference of energy levels. In
the compact tetraquark scheme, the elementary confining forces do not refer to meson
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states and hence, at first sight, no natural justification is proposed for the appearance of
tetraquark states near two-meson thresholds.

We shall analyze, in the present section, these questions with the aid of the effective
field theory approach, adopted in Sections 3 and 4.

5.1. Compositeness

The comparison of the molecular and compact schemes is reminiscent of a general
problem, already raised in the past in the case of the deuteron state, denoted under the
term of “compositeness” [36]. The binding energy of the deuteron, referred to the proton-
neutron threshold, is very small as compared to the mass scale involved in the strong
interaction dynamics of the nucleons. One is inclined to consider the deuteron as a loosely
bound composite object, or a molecule, made of a neutron and a proton. On the other
hand, there might still exist some probability, that should be quantified, that it might be an
elementary particle, or a compact object. Weinberg has shown that this question can receive,
in the nonrelativistic limit, a precise and model-independent answer, by relating the latter
probability to observable quantities, represented by the scattering length and the effective
range of the neutron-proton S-wave isospin-0 scattering amplitude [36]. Designating by Z
the probability of finding the deuteron in an elementary, or compact, state, Weinberg has
found the following relations for the scattering length a and the effective range re:

a =
2(1− Z)
(2− Z)

R + O(m−1
π ), re = −

Z
(1− Z)

R + O(m−1
π ), R = (−2mrEd)

−1/2, (41)

where R is the deuteron radius, mr is the reduced mass of the proton-neutron system
[Equation (3)], Ed (≡ 2mred) the deuteron nonrelativistic energy (opposite of its binding
energy) and mπ the pion mass; O(m−1

π ) represents the scale of the hadronic corrections that
are negligible in front of R. On the other hand, introducing the dimensionless deuteron-
neutron-proton coupling constant gdnp, accompanied by the factor (mn + mp), one has
the relationship:

g2
dnp = 32π

√−ed (1− Z). (42)

One notices that the effective range is the most sensitive quantity to Z, which, in the
case Z 6= 0, is manifested by a sizeable negative value. Using Equations (41), one can also
express the compositeness factor in a combined form with respect to a and re:

1− Z =
1√

1− 2re/a
. (43)

In the case of the deuteron, the experimental data about a and re rule out a nonzero
value of Z and confirm its composite nature [36].

Equations (41) and (42) can also be used, with appropriate relabeling of the parameters,
to check the consistency of the results obtained in Sections 3 and 4. Equation (35) shows
that re has a small negligible value (as compared to R = 1/(2mr

√−etm)), which could be
interpreted as representing the higher-order hadronic corrections. Thus, with respect to
the second part of Equations (41), the main value of re is 0, which entails that Z = 0, in
accordance with the molecular nature of the bound state. Furthermore, the comparison of
Equation (30) with (42) confirms the latter conclusion.

For later reference, using notations adapted to the tetraquark problem, we display
here the expression of the scattering amplitude obtained in Weinberg’s analysis:

T = 8π(m1 + m2)
[

32π
(et − e)
g2

TM1 M2

mr +
(et + e)√−et

mr − ik
]−1

, (44)

where gTM1 M2
has been defined in (28) and e and et in (23). The main assumption underlying

this result concerns the absence of zeros in T , at least in the vicinity of the bound state [89].



Symmetry 2022, 14, 515 14 of 34

5.2. Compact Bound States

We consider, in this subsection, the case of possibly existing compact tetraquarks.
We shall not enter, for the analysis of the problem, the details of the mechanism that
produces such states, but merely shall assume their existence. If experimental data were
sufficiently precise concerning an observed tetraquark candidate, providing us with its
coupling amplitude to the nearby two-meson states, as well as the scattering length and
the effective range of the related two-meson elastic scattering amplitude, then, for a non-
relativistic state, Equations (41) and (42) would allow us to reach a conclusion about the
internal structure of the tetraquark. In the absence of high precision data, we proceed by
successive steps. In a first approximation, we assume that the compact tetraquark is a
pointlike object in comparison to a loosely bound molecular state. At this stage, we assume
that the mass of the tetraquark has been evaluated by the sole mechanism of the confining
forces, from which clustering forces or effects have been removed. (The small volume or
pointlike approximations of the diquark system satisfy this requirement.) Furthermore, we
assume that the mass of the bound state under study, designated by mtc1, where the labels
tc refer to the compact tetraquark, is rather close to the nearest two-meson threshold mass
(m1 + m2) and, therefore, a nonrelativistic energy of the bound state, Etc1, can be defined
by means of the equation:

Etc1 = mtc1 − (m1 + m2), (45)

Etc1 remaining a small quantity with respect to the two-meson reduced mass. However,
we do not assume that the bound state is shallow. Considering the case of the deuteron as
an example of a shallow bound state, whose binding energy is of the order of 2 MeV, Etc1
might have values of the order of 20–30 MeV.

Another point worth emphasizing is that, in general, when one has many differ-
ent quark flavors inside the tetraquark state, the latter has two different two-meson
clusters [29,90,91] and one should, in that case, use a coupled-channel formalism. However,
in order to display in a clearer way the main qualitative aspects of the problem, we stick
here to a single-channel formalism (which describes an exact situation when two quarks, or
two antiquarks, have the same flavor).

Because of the existence of internal two-meson clusters inside the tetraquarks, the
compact tetraquark necessarily has a coupling to the two mesons M1 and M2. The cor-
responding (dimensionless) coupling constant is designated by g′, factored by the mass
term (m1 + m2). However, the latter coupling generates, through meson loops, radiative
corrections inside the tetraquark propagator, thus modifying the parameters of the bare
propagator. They are graphically represented in Figure 5.

= + + + · · ·

Figure 5. Chain of meson-one-loop radiative corrections to the tetraquark propagator.

Designating by mtc0 the bare tetraquark mass, the full tetraquark propagator becomes:

Dtc(s) =
i

s−m2
tc0 + i(m1 + m2)

2g′2 J(s)
, (46)

where s stands for p2 and J is the same loop function as the one met in Equations (11)–(19).
The divergence of J is now absorbed by the bare mass term, yielding the renormalized
mass mtc1:

m2
tc1 = m2

tc0 − i(m1 + m2)
2g′2 Jdiv. (47)

The renormalized tetraquark propagator is now:

Dtc(s) =
i

s−m2
tc1 + i(m1 + m2)

2g′2 Jr(s)
. (48)
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Notice that g′ does not undergo any renormalization. The mass term mtc1 does not
yet represent the physical mass of the tetraquark. The latter is determined from the pole
position of the propagator. Sticking to the nonrelativistic limit, one can use for s and mtc1
expansions of the types of (22) and (45). Retaining in Jr(s), the dominant contribution, one
finds for the nonrelativistic energy of the tetraquark, designated by Etc, the equation:

− etc + etc1 +
g′2

16π

√−etc = 0, (49)

whose solution is:
√−etc =

1
2

[
− g′2

16π
+

√( g′2

16π

)2
− 4etc1

]
. (50)

The binding energy (−etc), being a decreasing function of g′2/(16π), comes out, in
general, smaller than (−etc1), reaching the value 0 when g′ → ∞ (see Figure 6).

0.

√−etc1

0 0.5 1 1.5 2

√−etc

g′2/(16π)

Figure 6. Variation of the square-root of the binding energy as a function of g′2/(16π). The value of
−etc1 (≡ −Etc1/(2mr) has been fixed at 0.01.

Of particular interest are the weak- and strong-coupling limits in g′, determined by the
comparison of the factors g′2/(16π) and

√−4etc1. In the first case, g′2/(16π)� √−4etc1,
−etc is obtained close to −etc1 with a small negative shift. In the second case, g′2/(16π)�√−4etc1, one obtains:

√−etc ' −etc1
16π

g′2
. (51)

(This expression could also be obtained directly from (49) by neglecting in it etc in
front of etc1.) Because of the nonlinear relationship between etc and etc1, there appears a
strong decrease in etc. Therefore, one has:

etc
etc1

= −etc1

(16π

g′2
)2

. (52)

Considering, for example, −Etc1 ' 20 MeV and 2mr ' 2 GeV, one has −Etc1/(2mr) '
0.01; values of g′2/(16π) of the order of or greater than 0.5 produce ratios Etc/Etc1 ≤ 0.04,
or equivalently −Etc ≤ 0.8 MeV. These values of g′2/(16π) are not exceptional and we may
conclude that we are not in the presence of a fine tuning effect. There is a nonnegligible
probability, in many physical cases, to meet such a situation.

The contribution of the tetraquark state, in the s-channel, to the two-meson elastic
scattering amplitude is obtained by inserting the tetraquark propagator between two
tetraquark-two-meson couplings, as shown in Figure 7.
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Figure 7. The tetraquark contribution, in the s-channel, to the two-meson elastic scattering amplitude.

One finds:

T = − (m1 + m2)
2g′2

s−m2
tc1 + i(m1 + m2)

2g′2 Jr(s)
. (53)

Proceeding as in the molecular case [Equation (28)], one can obtain the physical
coupling constant gTM1 M2

of the tetraquark to the two mesons:

g2
TM1 M2

= 32π
√−etc

1
[
1 + 2

(
16π
g′2

)2
(etc − etc1)

] . (54)

Comparing this expression with (42), one obtains Z:

Z =
1

1 +
(

g′2
16π

)2
1

2(etc−etc1)

, (55)

which, after taking into account Equation (49), can also be expressed as:

Z =

√−etc√−etc +
1
2

g′2
16π

. (56)

One notices, in particular from (55), that Z decreases in the strong-coupling limit and
takes small values. With the numerical example considered above, one has Z ≤ 0.075. On
the other hand, in the same limit, the physical coupling constant gTM1 M2

also decreases,

like
√−etc. The variation of Z as a function of g′2/(16π), taking into account (50), is

represented in Figure 8. One notices the rapid decrease of Z.

0

0.2

0.4

0.6

0.8

1

0 0.25 0.5 0.75 1 1.25 1.5

Z

g′2/(16π)

Figure 8. Variation of Z as a function of g′2/(16π); −etc1 has been fixed at 0.01.
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It is also possible to calculate from (53), as in the molecular case [Equations (31) and (32)],
the scattering length and the effective range. One finds, neglecting other contributions to the
scattering amplitude,

a =
( g′2

16π

) ( 1
2mr(−etc1)

)
, re =

1
mr

(
− 16π

g′2
+

2
π
(1− d)

)
. (57)

(d is defined in (32).) Eliminating g′2/(16π) and etc1 in favor of Z and etc, one obtains the
expected expressions:

a =
2(1− Z)
(2− Z)

R, re = −
Z

(1− Z)
R, R =

1
2mr

√
1
−etc

. (58)

(The second term in re, which is small, has been neglected.)
It is of importance to have a precise interpretation of the values of Z. When g′ = 0,

Z = 1 and the tetraquark is completely decoupled from the two mesons. This would mean
that either its mass scale or quark content are different from those of the two mesons. In
the opposite case, corresponding to the strong-coupling limit, Z decreases and approaches
the value 0. This does not mean, however, that the tetraquark’s nature becomes molecular.
Nowhere in the present model did we consider direct interactions between mesons; the
existence of the bound state is entirely due to the confining forces that are responsible for
its compact nature. The value of (1− Z) simply reflects the strength of the (bare, but finite)
coupling of the tetraquark to the two meson clusters. As g′ grows, the latter, through the
radiative corrections, plays an increasingly determinant role in the internal structure of
the tetraquark, leading to a strong decrease of the binding energy and to a corresponding
increase of the radius R [Equation (58)]. The tetraquark, though of compact nature, is
gradually deformed into a molecular-type state.

5.3. Resonances

A resonance may occur when the renormalized (real) mass of the compact tetraquark
[Equation (47)] lies above the two-meson threshold. Its nonrelativistic energy, defined
in (45), is now positive. The position of the complex mass of the possibly existing resonance
can be searched for with the same method and the same approximations as in the bound
state case. Designating by ETR the nonrelativistic (complex) energy of the tetraquark
resonance, the equivalent of Equation (49) is:

(eTR − etc1) + i
g′2

16π

√
eTR = 0. (59)

Its solutions are:

√
eTR = − i

2
g′2

16π
±
√

etc1 −
1
4

( g′2

16π

)2
. (60)

The imaginary part of √eTR comes out negative, which means that the two solutions
lie in the second Riemann sheet. The expression of eTR is:

eTR =
[
etc1 −

1
2

( g′2

16π

)2]
∓ i

g′2

16π

√
etc1 −

1
4

( g′2

16π

)2
. (61)

The two solutions are complex conjugates to each other, the resonance corresponding
to the negative imaginary part. One verifies that the modulus of eTR is equal to etc1:

|eTR| = etc1. (62)
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The condition of the positivity of the real part of eTR (resonance above the threshold)
requires that:

( g′2

16π

)2
≤ 2 etc1. (63)

This means that one is in the weak-coupling regime. As the coupling constant increases,
the real part of the resonance energy approaches the threshold, the upper bound of (63)
corresponding to its merging with the threshold. On the other hand, the imaginary part
remains always different from zero; at threshold, it is only the latter that survives.

The scattering amplitude, due to the resonance, is:

T = − (m1 + m2)

4mr

g′2(
e− etc1 + i g′2

16π

√
e
) . (64)

We have represented, in Figure 9, the shape of |T |2 in the vicinity of the threshold, for
real E and for several values of g′2/(16π) in its allowed domain.

0

0 Etc1

0

0 Etc1

0

0 Etc1

0

0 Etc1

|T |2

E

|T |2

E

|T |2

E

|T |2

E

Figure 9. The shape of |T |2 for several values of g′2/(16π):
(

g′2/(16π)
)2

/etc1 = 0.1 (black curve),
0.75 (green), 1.25 (red), 2.0 (blue).

Expanding T around ETR [Equation (61)] and using for the resonance the plus sign
in (60), one obtains:

T ' −
(m1 + m2)g2

TM1 M2

2(E− ETR)
, (65)

with:

g2
TM1 M2

=
32π
√eTR√

4etc1

(
16π
g′2

)2
− 1

. (66)

Comparing (66) with (42), the former being considered as a formal extension of the
latter to the resonance region, one obtains the compositeness coefficient:

1− Z =
1√

4etc1

(
16π
g′2

)2
− 1

. (67)

We notice that, due to the inequality (63), which guarantees the occurrence of the
resonance above the threshold, (1− Z) is real, positive and smaller than 1. This allows us
to continue giving it a probabilistic interpretation.
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Writing the (reduced) energy of the resonance in the form:

eTR = eTRr − i
γ

2
, (68)

where eTRr is the real part of the (reduced) energy and γ the reduced dimensionless width
of the resonance, defined as (see also (23)):

γ ≡ Γ
2mr

, (69)

Γ being the dimensionful width, one has, from (61):

eTRr = etc1 −
1
2

( g′2

16π

)2
, γ = 2

g′2

16π

√
etc1 −

1
4

( g′2

16π

)2
, (70)

which allows us to express (1− Z) in terms of observable quantities :

1− Z =
Γ/2

(
ETRr +

√
E2

TRr +
Γ2

4

) . (71)

(The following relations are also useful:
√

4e2
TRr/γ2 + 1 = ((1− Z)−1 + (1− Z))/2

and 2eTRr/γ = ((1− Z)−1 − (1− Z))/2.)
Of particular interest is the case of narrow resonances, characterized by the inequality

Γ� 2ETRr, which entails:

1− Z ' Γ
4ETRr

, Γ� 2ETRr. (72)

It is evident from this result that the narrow resonance case favors values of Z close to
1, that is, dominance of the compact nature of the tetraquark. In the opposite case, when
the inequality (63) is saturated, one has vanishing of eTRr and merging of the resonance
with the threshold, with Z = 0; the trace of the compact origin of the resonance is then
completely lost.

The expressions of the scattering length and the effective range are the same as in
Equations (57), except that etc1 is now positive:

a = − g′2

16π

1
2mretc1

= − 1
2mr

γ/
√

2
√

e2
TRr +

γ2

4

√
eTRr +

√
e2

TRr +
γ2

4

, (73)

re = −
16π

g′2
1

mr
= − 1

mrγ/
√

2

√

eTRr +

√
e2

TRr +
γ2

4
. (74)

(The second term in re, which is small, has been neglected.) One notices that now, as
compared to the bound state case (57), both the scattering length and the effective range
are negative. In terms of a and re, the compositeness coefficient (67) takes the form:

1− Z =
1√

2re
a − 1

, (75)

a relation also obtained in [84]. It can be compared with Equation (43), valid in the bound
state case. In the narrow resonance case, one has the simplified expressions:

a ' − 1
4mr

γ

e3/2
TRr

, re ' −
2

mr

e1/2
TRr
γ

. (76)
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Let us also comment on the case of the strong-coupling limit, where, in particular,
the inequality (63) is no longer satisfied. We must distinguish here two cases. The first
corresponds to the domain 2etc1 < (g′2/(16π))2 < 4etc1, in which case (1− Z) > 1 and the
real part of the energy becomes negative [Equation (70)]. This is a sign of the instability
of the initial system under the influence of the two-meson clusters and might signify the
disappearance of the compact tetraquark from the spectrum. The second corresponds to the
domain 4etc1 < (g′2/(16π))2. In that case, √eTR [Equation (60)] becomes imaginary and
eTR becomes real and negative, falling back in the bound-state regime. Considering then,
the new value of eTR as a starting value (equal to a new etc1), one continues remaining in the
bound-state regime for any value of the coupling constant, as we have seen in Equation (50)
and Figure 6. Therefore, genuine resonances may occur, in the present model, only in the
weak-coupling regime, satisfying the inequality (63).

Let us notice, as a final remark, that due to the fact that the internal structure of the
compact elementary particle, assumed here as being a tetraquark, was not specified, one is
also entitled to apply the previous approach, when the flavor and other quantum numbers
are compatible, to ordinary mesons. In that case, its field theoretic basis is even more robust.
This is supported by the large Nc limit of QCD [29,92–94]. In that limit, the spectrum of
the theory is composed of free mesons, which are made of one quark-antiquark pair. They
do not have any internal other meson clusters. Therefore, their elementary nature with
respect to the other mesons is well justified. The couplings to the other mesons appear only
at nonleading order in Nc, putting the clustering phenomenon at a perturbative level. This
is in contrast to the multiquark case, where the clustering occurs already at a leading order
in Nc and becomes even stronger in the large Nc limit [29]. (Cf. also Section 7.)

Detailed investigations about the compositeness criterion and its applicability to various
tetraquark candidates, as well as to ordinary hadrons, can be found in References [84,95–109].

6. Presence of Meson-Meson Interactions

In the model considered in Section 5, where the influence of the coupling of a compact
tetraquark to two mesons was studied, the presence of meson-meson interactions as a
background effect was not taken into account. This had the advantage of exhibiting, in a
clearer, way the role of the aforementioned coupling on the observable properties of the
tetraquark state, in particular, its gradual deformation, in the strong coupling limit, towards
a molecular-type object. To complete the previous study, we include in this section the
effect of the meson-meson interaction into the dynamical process.

6.1. The Meson-Meson Scattering Amplitude

The meson-meson interaction, in the present effective field theory description, was
considered in Sections 3 and 4. When a compact tetraquark state is present, its effect is first
manifested through a vertex renormalization related to the coupling constant g′. This is
graphically represented in Figure 10.

=
g′

+
h g′

+
h h g′

+ · · ·

Figure 10. Chain of meson-one-loop radiative corrections to the tetraquark-two-meson coupling
constant g′. The coupling constants at the vertices are indicated. g′ is accompanied by the mass factor
(m1 + m2).

The corresponding vertex function, denoted Γ(3)TM1M2
, takes the form (cf. Equations (10)–(14)):

Γ(3)
TM1 M2

(s) =
i(m1 + m2)g′

1− ihJ(s)
. (77)

We have seen that the divergence contained in J(s) [Equation (12)] is absorbed by a
renormalization of the coupling constant h, according to (13) or (14). Here, the occurrence
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of the same divergence necessitates a similar renormalization of g′, involving, however,
also h:

g′ =
g′r

1 + ihr Jdiv . (78)

Equivalently, one has the following renormalizations:

h
1− ihJ(s)

=
hr

1− ihr Jr(s)
,

g′

1− ihJ(s)
=

g′r

1− ihr Jr(s)
. (79)

These ensure the renormalization of Γ(3)
TM1 M2

:

Γ(3)
TM1 M2

(s) =
i(m1 + m2)g′r

1− ihr Jr(s)
. (80)

A second effect of the meson-meson interactions is manifested through the radia-
tive corrections of meson-one-loop diagrams, occurring in the tetraquark propagator
(cf. Figure 5). Each loop receives radiative corrections, as represented in Figure 11.

=
g′ g′

+
g′ h g′

+
g′ h h g′

+ · · ·

Figure 11. Chain of meson-one-loop radiative corrections to the one-loop diagram of the tetraquark
propagator. The coupling constants at the vertices are indicated.

The chain of such diagrams can be summed and yields the full one-loop contribution,
which we designate by Γ(2)

TT(s). Thus, one obtains:

Γ(2)
TT(s) = (m1 + m2)

2 (ig
′)2 J(s)

1− ihJ(s)
. (81)

These full one-loop contributions replace now the simple loop contributions of Figure 5.
The full tetraquark propagator is then given by the series of diagrams of Figure 12.

= + + + · · ·

Figure 12. The full tetraquark propagator.

One finds for the full propagator:

Dt(s) =
i

s−m2
tc0 + i(m1 + m2)

2g′2 J(s)/(1− ihJ(s))
. (82)

Using the renormalizations given in (78) and (79), and after taking the limit i Jdiv → ∞,
one finds:

Dt(s) =
i

s−m2
tc0 + (m1 + m2)

2g′r2/[hr(1− ihr Jr(s))]
. (83)

One notices that after the renormalizations of the coupling constants h and g′ have been
realized, the radiative corrections of the tetraquark propagator are now finite. This is in
contrast to the case where the meson-meson interactions had been ignored (h = 0) and the
divergence of the radiative corrections had been absorbed by the mass renormalization,
while the coupling constant g′ had remained finite (cf. (46) and (47)). Nevertheless, the
radiative corrections in (83) contain a singularity in hr. When hr → 0, one recovers the
divergence that exists in the aforementioned case. To remedy this defect, one has to subtract
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that singularity from the global radiative corrections and associate it with a renormalization
of the bare mass mtc0. Designating by mtc1 the renormalized bare mass, one has:

m2
tc1 = m2

tc0 −
(m1 + m2)

2g′r2

hr . (84)

As long as hr is nonzero, this mass renormalization is finite. When hr → 0, one recovers the
situation of Equation (47).

The full tetraquark propagator takes now the following form:

Dt(s) =
i

s−m2
tc1 + i(m1 + m2)

2g′r2 Jr(s))/(1− ihr Jr(s))
. (85)

When hr → 0, one also recovers the propagator (48).
The meson-meson scattering amplitude is obtained by inserting the tetraquark propaga-

tor inside two vertices of the type of (77), which are finite [Equation (80)], and by adding the
contribution generated by the contact interaction (8) [Figure 2 and Equations (10) and (13)].
This is represented in Figure 13.

= +

T = T (g′,h) + T (h)

Figure 13. The meson-meson scattering amplitude, T , due to the contributions of the renormalized
compact tetraquark pole, with its renormalized vertices with two mesons, T (g′ ,h), and the chain of
contact interactions of Figure 2, T (h).

Thus, one obtains:

T ≡ T (g′ ,h) + T (h)

= − (m1 + m2)
2g′r2

(1− ihr Jr(s))2
1[

s−m2
tc1 + i(m1 + m2)

2g′r2 Jr(s))/(1− ihr Jr(s))
]

+
hr

(1− ihr Jr(s))

=
hr(s−m2

tc1)− (m1 + m2)
2g′r2

[
(s−m2

tc1)(1− ihr Jr(s)) + i(m1 + m2)
2g′r2 Jr(s)

] (86)

The above expression could also have been obtained by starting from the integral
equation iT = K + iKJT , with the kernel K given by:

K = −i
(m1 + m2)

2g′2

(s−m2
tc0)

+ ih. (87)

After the renormalizations of the coupling constants and of the mass mtc0 are done,
one finds (86).

6.2. Bound States

The singularities of the scattering amplitude (86) are the same as those of the tetraquark
propagator (85). The separate molecular-type singularity, present in T (h), has been can-
celled by a similar singularity resulting from the radiative corrections in T (g′ ,h).
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We first focus on the bound state problem. The tetraquark mass, mt, is given by
the equation:

(st −m2
tc1)(1− ihr Jr(st)) + i(m1 + m2)

2g′r2 Jr(st) = 0, (88)

where st = m2
t . Sticking to the nonrelativistic limit and using definitions similar to (22)

and (23), and:

Et = mt − (m1 + m2), et ≡
Et

2mr
,

Etc1 = mtc1 − (m1 + m2), etc1 ≡
Etc1
2mr

, (89)

Equation (88) reduces to (omitting henceforth the renormalization label r from the cou-
pling constants):

(−et + etc1)(1 +
αh

16π

√−et) +
g′2

16π

√−et = 0, (90)

where α is defined in (24). (The presence of the bare binding energy of the compact
tetraquark, −etc1, introduces a new energy scale in the equations. Scaling et as et → −etc1et
and the coupling constants as g′2 → √−etc1g′2, h → h/

√−etc1, one can get rid of −etc1
from the equation. We shall, nevertheless, maintain the primary definitions, with the
explicit presence of −etc1, in order to remain closer to the physical meaning of the different
quantities.) We notice that in the case g′ = 0 (absence of tetraquark-two-meson coupling),
the equation splits into two independent equations yielding the molecular-type solution (24)
(for h < 0), on the one hand, and the bare compact tetraquark mass (84), on the other. In the
case h = 0 (absence of molecular-type forces), the equation reduces to that of the compact
tetraquark case (49). Equation (90) cannot be solved analytically, but accurate analytic
approximate solutions can be found for it. One has to distinguish two cases, according to
the sign of h.

We first consider the case h > 0. According to the empirical relationship (26) and
Figure 3, this case corresponds to subcritical values of three-meson coupling constants, for
which no genuine molecular-type bound states can exist. Even though h may take large
values, approaching +∞, one may characterize this domain as globally representing a weak-
coupling regime. Therefore, one expects that the tetraquark bound state originates entirely
from a compact configuration, the molecular forces mainly introducing deformations.

A leading approximate solution to (90) is:

√−et0 =
1
2

[
− b′ +

√
b′2 − 4etc1

]
, b′ =

g′2

16π

1
(1 + αh

16π

√−etc1)
, (91)

which generalizes (50). This expression, together with its next-to-leading term, which is
presented in the Appendix [Equation (A1)], reproduces the behavior of the exact solution
with an error of less than a few percent, the error slightly increasing with h. The behavior
of
√−et with respect to variations of g′2/(16π), for fixed h, is similar to that of Figure 6.

With increasing g′2/(16π),
√−et approaches zero, starting from

√−etc1. The effect of the
presence of h is simply the weakening of the slope of the decrease; the molecular forces
appear as opposed to the rapidity of the decrease. Figure 14 displays the variation of

√−et
for a few typical values of αh/(16π).

The second case to be considered is h < 0. Here, we have two distinct solutions, which
we shall label with the indices 1 and 2, corresponding to the generalizations of the two
solutions existing in the uncoupled case with g′ = 0. In the present domain of h, the most
interesting case corresponds to large values of −h, producing a molecular-type state near
the two-meson threshold. The case where −h is small, actually corresponds, according to
Figure 3, to large values of the three-meson coupling constant g, which lies outside the
domain of applicabilty of the nonrelativistic approximation. Hence, we shall stick to a
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single large value of −h, fixed for numerical applications at −αh/(16π) = 103/2 = 31.62,
for −etc1 = 0.01, and also shall consider its limiting value +∞.

0.

√−etc1

0. 0,5 1. 1.5

0.

√−etc1

0. 0,5 1. 1.5

0.

√−etc1

0. 0,5 1. 1.5

0.

√−etc1

0. 0,5 1. 1.5

√−et

g′2/(16π)

√−et

g′2/(16π)

√−et

g′2/(16π)

√−et

g′2/(16π)

Figure 14. Variation of the square-root of the binding energy as a function of g′2/(16π), for four dif-
ferent positive values of αh/(16π): 0 (black curve), 5. (red), 30. (blue), +∞ (magenta, the horizontal
line at

√−etc1); −etc1 has been fixed at 0.01.

The first solution describes the evolution of the molecular-type solution (24) under the
influence of the coupling g′. A leading approximate expression of it is:

√
−et0,(1) = −

etc1
g′2

16π + etc1
αh

16π

. (92)

Its next-to-leading term is given in the Appendix. The analytic approximation (A2)
reproduces the behavior of the exact solution with an error of less than one per mil. The
behavior of

√
−et,(1) with respect to variations of g′2/(16π), for fixed h, is again similar to

that of Figure 6; however, now it starts when g′2/(16π) = 0, from
√−etm [Equation (24)],

instead of
√−etc1 (Figure 15). In the limit h → −∞,

√−etm tends to 0 (the two-meson
threshold) and the whole curve coincides with the horizontal 0 line.

The second solution describes the evolution of the compact-type solution (50) under
the influence of the coupling h. A leading approximate expression of it is:

√
−et0,(2) =

√
−etc1 −

g′2/(16π)

αh/(16π)
. (93)

(The condition − αh
16π

√
−et0,(2) � 1 should be fulfilled.) Its next-to-leading term is

given in the Appendix. The analytic approximation (A3) reproduces the behavior of the
exact solution with an error of less than one percent. The behavior of

√
−et,(2) with respect

to variations of g′2/(16π), for fixed h, is represented by an increasing function. The binding
energy of the compact tetraquark thus increases in the presence of the molecular-type state
(Figure 15). In the limit h → −∞, the curve coincides with the horizontal

√−etc1 line.
Actually, the solution

√
−et,(2) can be considered as the continuation of the solution found

in the case of positive values of h to negative values of h. As can be seen in Figure 14, when
h increases with positive values, the solution reaches, in the limit h → +∞, the constant
value

√−etc1. Then, according to Figure 3, h passes to −∞, which also corresponds, for the
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solution
√
−et,(2), to the same constant value

√−etc1 in Figure 15. The increasing of h with

negative values then produces the curves lying above that horizontal line.

0.

√−etm

√−etc1

0. 0,5 1. 1.5

√
−et,(1)

√
−et,(2)√−et

g′2/(16π)

Figure 15. The two solutions of the bound state Equation (90) and their variation under changes of
g′2/(16π). The value of −αh/(16π) has been fixed at 31.62 and that of −etc1 at 0.01. At the limiting
value h = −∞,

√
−et,(1) coincides with the horizontal line 0, while

√
−et,(2) coincides with the

horizontal line
√−etc1.

Expanding the scattering amplitude (86) around the bound state pole (cf. (28)), one ob-
tains the physical coupling constant gTM1 M2

, expressed in two equivalent ways, using (90):

g2
TM1 M2

=
32π
√−et[

1 + 2g′2
16π

(−et)
3/2

(et−etc1)
2

] =
32π
√−et[

1 + 2
√−et

g′2/(16π)

(
1 + αh

16π

√−et

)2] . (94)

Comparison of these expressions with (42) yields Z:

Z =
2g′2
16π (−et)

3/2

(et − etc1)
2 + 2g′2

16π (−et)
3/2

=

(
1 + αh

16π

√−et

)2√−et
(

1 + αh
16π

√−et

)2√−et +
1
2

g′2
16π

, (95)

which manifests a positive quantity bounded by 1.
The value of Z and its behavior under variations of the coupling constants depend

on the specific bound states that we have met above. When h > 0, we have one bound
state with the square-root of the binding energy having the approximate expressions (90)
and (A1). For this case, the qualitative features of Z are more transparent in the second
expression of (95). When g′ → 0, for fixed h,

√−et →
√−etc1 (cf. Figure 14); then Z → 1.

When g′ increases,
√−et decreases rapidly and tends to zero. The behavior of Z remains

very similar to that of Figure 8, with the difference that the presence of h slows down the
decrease of Z. We display, in Table 1, the values of Z for several values of αh/(16π), for
g′2/(16π) = 0.5 and −etc1 = 0.01.

Table 1. Values of Z, for several positive values of αh/(16π) (Figure 14), for g′2/(16π) = 0.5 and
−etc1 = 0.01.

αh/(16π) 0 1. 5. 30. ∞

Z 0.072 0.075 0.094 0.388 1.
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When h < 0, we have two bound states with the square-root of the binding energies
having the approximate expressions (92) and (A2), on the one hand, and (93) and (A3), on
the other. For the solution 1,

√−et remains much smaller than
√−etc1 (cf. Figure 15); in

that case, the first expression of Z in (95) is more adequate for the analysis. When g′ → 0,
Z → 0. However, the evolution of Z under variations of g′ is no longer monotonic. For fixed
h, Z increases, starting from zero at g′ = 0, reaches a maximum value nearly at g′2/(16π) =
etc1αh/(32π) (' 0.16 for αh/(16π) = −31.62 and −etc1 = 0.01), then decreases down to
0. The bound state remains, therefore, very close to a molecular configuration in all the
intervals of variation of g′. The main influence of the latter is reflected in the continuous
decrease of the binding energy, accentuating the shallowness of the state. We display, in
Table 2, for αh/(16π) fixed at −31.62, with −etc1 = 0.01, the values of Z for several values
of g′2/(16π).

Table 2. Values of Z, corresponding to solution 1 of Figure 15, for several values of g′2/(16π), for
αh/(16π) = −31.62, with −etc1 = 0.01.

g′2/(16π) 0 0.1 0.16 0.25 0.5 1. 1.5 ∞

Z 0 0.029 0.030 0.027 0.018 0.008 0.005 0.

For solution 2, the second expression of Z in (95) is more adequate for the analysis.
When g′ → 0, Z → 1 (the factor (1 + αh/(16π)

√−et) does not vanish). When g′ increases,
Z decreases, reaches a minimum value nearly at g′2/(16π) = 2etc1αh/(16π) (' 0.6 for
αh/(16π) = −31.62 and−etc1 = 0.01), then increases up to 1. The bound state remains very
close to the compact configuration in all the intervals of variation of g′. The main influence
of the latter is reflected in the continuous increase of the binding energy (Figure 15). We
display, in Table 3, for αh/(16π) fixed at −31.62, with −etc1 = 0.01, the values of Z for
several values of g′2/(16π).

Table 3. Values of Z, corresponding to solution 2 of Figure 15, for several values of g′2/(16π), for
αh/(16π) = −31.62, with −etc1 = 0.01.

g′2/(16π) 0 0.1 0.25 0.5 1. 1.5 ∞

Z 1. 0.948 0.933 0.930 0.937 0.943 1.

To determine the scattering length and the effective range, one expresses the scattering
amplitude T in the scattering region E > 0:

T = 8π(m1 + m2)
[ 32π(e− etc1)mr
(e− etc1)αh− g′2

+
(1− d)k2

πmr
− ik

]−1
, (96)

from which one deduces, with the aid of (33) and (34),

a =
1

2mr

(
− αh

16π
− 1

etc1

g′2

16π

)
, re = −

1
mr

g′2/(16π)
(

αh
16π etc1 +

g′2
16π

)2 +
1

mr

2
π
(1− d), (97)

where d is defined in (32) and α in (24). The relationship of a and re with Z [Equation (95)]
is not, however, as simple as in the previous cases [Equations (41) and (73)]. The reason
for this comes from the fact that T now contains a zero in the vicinity of the bound state
pole and does not satisfy Weinberg’s representation (44) [89,110]. For h > 0, the zero occurs
in the domain e > etc1, while for h < 0, it occurs in the domain e < etc1. Nevertheless,
expressions (97) are simple enough in terms of the elementary parameters of the theory, and
together with the knowledge of the binding energy, if they are measured experimentally
or on the lattice, allow the calculation of Z. In particular, the presence of the coupling g′

between the tetraquark and the two mesons provides re in general with a negative value,
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whatever the sign of h is. We notice that for h < 0, a is positive, as it receives contributions
from two independent bound states. For h > 0, a is positive for αh < −g′2/etc1 and negative
for αh > −g′2/etc1. For αh = −g′2/etc1, a vanishes and simultaneously re tends to −∞. For
g′2/(16π) = 0.5 and −etc1 = 0.01, the latter critical value of h occurs at αh/(16π) = 50.
(Cf. (26) for its conversion into a three-meson coupling constant g; the latter lies slightly
below the critical value gcr displayed in (7).)

6.3. Resonances

Resonances may occur when the renormalized (real) compact tetraquark mass, given
by (84), lies above the two-meson threshold. In that case, the nonrelativistic energy Etc1
of (89) is positive. The poles of the scattering amplitude (86) may have complex values.
Designating by ETR the complex energy of the pole, the equivalent of Equation (90) is now:

(eTR − etc1)(1− i
αh

16π

√
eTR) + i

g′2

16π

√
eTR = 0. (98)

When h 6= 0, this equation has to be solved numerically. Introducing the definitions:

√
eTR = u + i v, eTR = u2 − v2 + i 2uv ≡ eTRr + i eTRi, u, v real, (99)

where eTRr and eTRi are the real and imaginary parts of eTR, respectively, one can study the
behavior of eTR under variations of g′2 and h. The physical conditions to be imposed on
the solutions are v < 0, eTRi < 0 and eTRr > 0 (the resonance lies above the two-meson
threshold). In the case h = 0, the upper bound (63) had been found for g′2/(16π).

When h 6= 0, one has to distinguish two main domains of h (cf. Figure 3): (i) h > 0 and
small, corresponding to the weak-coupling regime of the meson-meson interaction; (ii) |h|
large, corresponding to the strong-coupling regime, with the possibility of existence of a
genuine molecular-type bound state (for h < 0). In the first case, the qualitative behavior of
the solutions is naturally close to that of the case with h = 0, studied in Section 5, the only
changes being small quantitative ones. Thus, for h/(16π) ≤ 0.2/

√−etc1, a conservative
upper bound for g′2 is g′2/(16π) ≤ √−etc1. When g′2 increases from 0 to its upper bound,
the resonance approaches the two-meson threshold with its imaginary part remaining finite,
but relatively decreasing. In the second case, for the same variation of g′2, the resonance
approches the threshold for h < 0 and moves away from it for h > 0. There are also regions
of h for which large values of g′2 are possible, however they are not obtained by continuous
variations of all interactions.

For completeness, we display here the equation satisfied by the imaginary part
of √eTR:

v = −1
2

g′2

16π

1(
1 + 2v αh

16π + ( αh
16π )

2|eTR|
) , (100)

with |eTR| being the modulus of eTR, which generally favors negative values of v (when
h < 0 or when h > 0 but small).

Expanding T [Equation (86)] around ETR, as in (65), one obtains the expression of the
tetraquark-two-meson coupling constant squared:

g2
TM1 M2

= 32π
√

eTR
g′2/(16π)

[
2√eTR

(
1− i αh

16π
√eTR

)2
+ i g′2

16π

] . (101)

Generally, the multiplicative factor accompanying 32π
√eTR is identified with the

compositeness coefficient (1− Z) [Equations (42), (67) and (95)]. Here, however, the corre-
sponding coefficient is complex when h 6= 0 and, therefore, a probabilistic interpretation of
it is no longer possible (cf. also [100,101]). A natural extension of the usual definition would
correspond to taking the modulus of the corresponding expression as being equivalent



Symmetry 2022, 14, 515 28 of 34

to (1− Z). While such an extension would ensure the reality condition of the probability
candidate, it does not yet guarantee its boundedness by 1. Indeed, one may check that when
the coupling constant g′2 exceeds its upper bound, mentioned earlier in this subsection,
one finds, for small positive values of h, that (1− Z) exceeds 1. Such a situation has also
been found in Section 5.3 and has been interpreted as a sign of the instability of the initial
system, leading to the disappearance of the compact tetraquark from the spectrum. On
the other hand, large values of g′2 generally send back the resonance to the bound state
domain. We therefore adopt the modulus prescription, with the restriction that g′2 respects
its upper bound:

(1− Z) =
∣∣∣ g′2/(16π)
[
2√eTR

(
1− i αh

16π
√eTR

)2
+ i g′2

16π

]
∣∣∣. (102)

The general properties of Z are then similar to those met in the case h = 0. When the
resonance approaches the two-meson threshold, Z tends to 0, while when the resonance
stays in the vicinity of its primary position, this mainly corresponding to small values of g′2,
Z remains close to 1. On the other hand, large and negative values of h have the tendency
to push the resonance towards the two-meson threshold, while large and positive values of
h repel the resonance from the threshold.

It is worthwile recalling that in the case h < 0, the spectrum also contains a molecular-
type bound state, whose binding energy has been approximately estimated, in the two-
bound-state case, by means of Equation (92), where etc1 < 0. The same formula could also
be used for the evaluation of the binding energy in the resonance case, where now etc1 > 0:

√
−et0,(1) =

1(
− αh

16π −
g′2

16πetc1

) . (103)

We find that the bound state exists only when−αh/(16π) is greater than g′2/(16πetc1);
the condition of the vicinity of the bound state to the two-meson threshold actually requires
much larger values. For instance, with etc1 = 0.01 and g′2/(16π) = 0.1, one would need
−αh/16π > 10. Values of −αh/16π of the order of 30, which were frequently considered
throughout the present work, would then produce a binding energy −et0,(1) of the order
of 0.0025.

The expressions of the scattering length and the effective range are the same as in
Equations (97), with the only difference that etc1 is now positive. The contribution of the
term proportional to g′2 in a is now negative and in the case h < 0 the same competition as
in the case of the bound-state binding energy (103) arises between the contributions of h and
g′2. In the case where −αh/(16π)− g′2/(16πetc1) is negative, the bound state disappears
and the scattering length becomes negative. While the effective range is insensitive to the
sign of that combination: nevertheless, it has a singularity when the latter vanishes.

In summary, the existence of resonances is sensitive to the strength of the primary (bare)
tetraquark-two-meson coupling constant, which should remain sufficiently weak. Large
values generally resend the resonance to the bound state region. There is also an interval of
the coupling constant for which the tetraquark may disappear from the spectrum. This is
in contrast to the bound state case, where all values of the coupling constant are acceptable,
with different consequences according to the values of the four-meson coupling constant.

7. Large Nc Analysis

At large Nc values, ordinary mesons are stable noninteracting particles [92–94,111–113]
and can be considered as compact objects. Their couplings to other mesons is of subleading
order in Nc. Therefore, the latter can act on them only as perturbations, not affecting their
compact structure.

This is not the case of tetraquarks, because of the existence of internal mesonic clusters.
The compact structure of primarily existing tetraquarks is not protected by the large Nc limit.
This is due to the fact that the interaction forces acting for the formation of mesonic clusters
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are (Nc− 1) times larger than the forces forming diquark compact objects [20,29] (assuming
that the confining forces have the same color structure as one-gluon exchange terms). This
means that the primary coupling constant g′ that connects the compact tetraquark to the
two mesons should behave at large Nc like N1/2

c , assuming that the compact tetraquark
state and energy are of order N0

c . For the squared quantity, one has:

g′2 = O(Nc). (104)

Concerning the four-meson contact-type coupling constant h, we have emphasized
in Section 3 that it is not an elementary coupling constant and should rather be related
to the three-meson coupling constants of the higher-energy theory. The latter coupling
constants generically behave, at large Nc, like N−1/2

c [29,93,94,112], and vanish in that limit.
Compared to the critical coupling constant, introduced in (7), they lie in the subcritical
domain. Meson-meson interactions cannot, therefore, produce on their own bound states
in the large Nc limit. Going back to the empirical formula (26), we deduce that h is positive
and lies in its perturbative domain, behaving like g2:

h = O(N−1
c ), h > 0. (105)

The meson-meson interaction has, therefore, only a subleading effect with respect to
the direct compact-tetraquark–two-meson interaction. From Equations (52) and (91), one
deduces that the tetraquark binding energy vanishes like N−2

c :

− etc = O(N−2
c ). (106)

From (56) and (95), one also finds the behavior of the elementariness coefficient:

Z = O(N−2
c ). (107)

At large Nc, the compact tetraquark is thus transformed into a shallow, molecular-type,
bound state.

From Equations (54) and (94), one deduces the behavior of the physical coupling
constant gTM1 M2

:

g2
TM1 M2

= O(N−1
c ). (108)

This result is in accordance with other general estimates in the large Nc limit, which predict
the vanishing of the coupling constant in that limit [29,90,91,114–118]. The behavior (108)
should only be considered as a generic one. The power of the decrease may slightly change
according to the detailed flavor content of the tetraquark state or other more refined analyses.

Concerning the resonance states, we found that they show up only in the weak-
coupling regime. However, the large Nc limit imposes the strong-coupling regime. There-
fore, in that limit, resonances should disappear from the spectrum, at least from the
neighberhood of the two-meson threshold.

In conclusion, in the large Nc landscape, tetraquarks may survive only in the form of
shallow, molecular-type, bound states, which are relics of primarily created compact states.

8. Conclusions

The compact tetraquark scheme, considered in its simplest version, where diquarks
and antidiquarks are separately gathered in very small volumes, can be considered as a
starting point for the analysis of the tetraquark properties. In this situation, because of
the dominance of the attractive confining forces, one usually finds confined bound states,
in parallel to the case of ordinary hadrons. However, the very existence of underlying
meson-clustering interactions in the general system forces the initial compact state to evolve
towards a more complicated structure, where now molecular-type configurations are also
present. In an effective field theory approach, where the compact tetraquark is represented
as an elementary particle, this evolution was studied, within a scalar interaction framework,
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by means of the primary compact-tetraquark–two-meson coupling constant. Another
quantity, more related to physical observables, is the elementariness coefficient Z, which
varies between 1, corresponding to the pure elementary case, and 0, corresponding to
the completely composite case. The stronger the primary coupling constant, the smaller
the value of Z. In the strong-coupling limit, the system tends to a dominant molecular
configuration, characterized by a shallow structure. In the case of resonances, only the
weak-coupling regime provides a stable framework for their existence. For higher values
of the coupling constant, either the resonance disappears from the spectrum, or is present
to the bound state domain.

The consideration of the large Nc limit of QCD provides an additional support to the
dominance of the strong-coupling regime of the coupling constant, with all its consequences.

Many of the tetraquark candidates, whose elementariness has been evaluated in the
literature from experimental data, have led to values of Z which are neither 1, nor 0.
This is a clear indication of the mixture of configurations that results from the evolution
described above. Nonzero values of Z, even small ones, are indicative of the existence
of a primary compact state. Shallowness of bound states, with small values of Z, may
receive a natural explanation as resulting from the strong-coupling limit of the interaction
compact-tetraquark–meson-clusters, also supported by the large Nc limit of QCD.

The analysis undertaken in the present work was based on the simplest qualitative
approach, considering scalar interactions, ignoring spin degrees of freedom and details of
quark flavors, and using nonrelativistic limit and single-channel formalism for the meson
clusters. A more general and refined quantitative analysis, concerning definite candidates,
should include the missing ingredients.
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Appendix A

We present in this appendix the approximate analytic expressions of the solutions of
Equation (90) for the two cases of h.
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For the case h > 0, the approximate solution, including also the next-to-leading term
to (91), is:

√−et '
√−et0

[
1−

b′ αh
16π (

√−etc1 −
√−et0)(

g′2
16π − 2αh

16π etc1 + (2− 3b′ αh
16π )

√−et0

)
]
. (A1)

For the case h < 0, the first solution, in its approximate form, including also the
next-to-leading term to (92), is:

√
−et,(1) '

√
−et0,(1)

[
1−

√
−et0,(1)(1 +

αh
16π

√
−et0,(1))

(
g′2

16π + αh
16π etc1 +

√
−et0,(1)(2− 3 αh

16π )
√
−et0,(1)

)
]
. (A2)

The second solution, in its approximate form, including also the next-to-leading term
to (93), is:

√
−et,(2) '

√
−et0,(2) −

g′2/(16π)

2αh/(16π)

1(
g′2

16π + αh
16π etc1 −

√
−et0,(2)

) . (A3)
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