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Abstract: Identifying and classifying the potentially eventually positive sign patterns and the po-
tentially eventually exponentially positive sign patterns of orders greater than 3 have been raised
as two open problems since 2010. In this article, we investigate the potential eventual positivity of
the class of double star-like sign patterns S(n,m,1) whose underlying graph G(S(n,m,1)) is obtained
from the underlying graph G(S(n,m)) of the (n + m)-by-(n + m) double star sign patterns S(n,m) by
adding an additional vertex adjacent to the two center vertices and removing the edge between the
center vertices. We firstly establish some necessary conditions for a double star-like sign pattern to be
potentially eventually positive, and then identify all the minimal potentially eventually positive dou-
ble star-like sign patterns. Secondly, we classify all the potentially eventually positive sign patterns
in the class of double star-like sign patterns S(n,m,1). Finally, as an application of our results about
the potentially eventually positive double star-like sign patterns, we identify all the minimal poten-
tially eventually exponentially positive sign patterns and characterize all the potentially eventually
exponentially positive sign patterns in the class of double star-like sign patterns S(n,m,1).

Keywords: sign pattern; double star-like sign pattern; primitive digraph; eventually positive matrix;
eventually exponentially positive matrix

MSC: 15A48; 15A18; 05C50

1. Introduction

The study of combinatorial and qualitative information, which is only related to the
signs of its entries and independent of the magnitudes of its entries of a real matrix, has
attracted great attention. A sign pattern is a matrix A = (αij) whose entries belong to the
set {+,−, 0}. A real matrix A = (aij) with the sign of aij being the same as αij for all i and j
is called a realization of A. The set of all realizations of sign pattern A is denoted by Q(A),
and is called the qualitative class of A; see [1] for example. An n-by-n sign pattern B = (βij)
is a subpattern of A = (αij) if βij = αij whenever βij 6= 0. If B is a subpattern of A and
B 6= A, then B is a proper subpattern of A. If B is a subpattern of A, then A is said to be a
superpattern of B. A sign pattern A is reducible if there is a permutation matrix P such that

PTAP =

(
A11 0
A21 A22

)
,

where A11 and A22 are square matrices of order at least one. A sign pattern is irreducible if
it is not reducible; see [2,3] for more details.

An n-by-n real matrix A is said to be eventually positive if there exists a positive integer
k0, such that Ak > 0 for all k ≥ k0; see [4,5] for example. Eventually positive matrices
have been widely applied into the system of linear differential equations ẋ(t) = Ax(t)

Symmetry 2022, 14, 512. https://doi.org/10.3390/sym14030512 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030512
https://doi.org/10.3390/sym14030512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6009-2865
https://doi.org/10.3390/sym14030512
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030512?type=check_update&version=1


Symmetry 2022, 14, 512 2 of 17

(A ∈ Rn×n, x0 = x(0) ∈ Rn, t ≥ 0) whose solutions become positive at finite time and
remain positive for all time thereafter; see, for example, [6]. An n-by-n sign patternA is said
to be potentially eventually positive (PEP) if there exists some eventually positive matrices in
the qualitative class of A. PEP sign patterns are studied first by Berman et al. [7], in which
some sufficient conditions and some necessary conditions for an arbitrary sign pattern to
be PEP are established, and all the PEP sign patterns of small orders (≤3) are classified.
However, the identification and classification of PEP sign patterns of orders greater than
3 have not been solved since 2010. To classify the PEP sign patterns, [8] introduced the
minimal potentially eventually positive sign pattern. Recall that an n-by-n sign pattern
A is said to be a minimal potentially eventually positive sign pattern (MPEP), if A is PEP and
everyproper subpattern of A is not PEP.

An n-by-n sign patternA is said to be potentially eventually exponentially positive (PEEP),
if there exists some A ∈ Q(A) such that A is eventually exponentially positive. PEEP sign
patterns were studied first in [9], where some sufficient or necessary conditions for PEEP
sign patterns were established. However, as stated in [9], there are many open problems
about the PEEP sign patterns. For example, identifying and classifying the PEEP sign
patterns of orders greater than 3 were posed as open problems. To classify the PEEP sign
patterns, the MPEEP sign patterns were introduced naturally in [10]. Recall that an n-by-n
sign pattern A is said to be a minimal potentially eventually exponentially positive sign pattern
(MPEEP), if A is PEEP and every proper subpattern of A is not PEEP.

In the last few years, there has been an increasing interest in potentially eventual
positivity of sign patterns, see [11–15]. Notably, the PEP sign patterns and PEEP sign
patterns with some special graph structures have been identified and classified, such as
the star sign patterns, the double star sign patterns, the Broom sign patterns, etc. However,
there is no literature that studies the potential eventual (exponential) positivity of sign
patterns obtained by some graph operations from the known PEP (PEEP) sign patterns.

In this article, we investigate the potential eventual positivity of the class of double
star-like sign patterns S(n,m,1) whose underlying graph G(S(n,m,1)) is obtained from the
underlying graph G(S(n,m)) of the (n + m)-by-(n + m) double star sign patterns S(n,m) by
adding an additional vertex adjacent to the two center vertices, and removing the edge
between these center vertices. We first establish some necessary conditions for a double
star-like sign pattern to be PEP, and then identify all the MPEP sign patterns in the class
of double star-like sign patterns S(n,m,1), and consequently we classify all the PEP sign
patterns in the class of double star-like sign patterns S(n,m,1). As an application of our
results, we identify all the MPEEP sign patterns and classify all the PEEP sign patterns in
the class of double star-like patterns S(n,m,1).

2. Eventual Positivity of the Double Star-like Sign Patterns S(n,m,1)

We begin this section by introducing some necessary graph theoretical concepts which
can be found in [2,4], and the references therein. A square sign pattern A = (αij) is
combinatorially symmetric if αij 6= 0 whenever αji 6= 0. Let G(A) be the graph of order n with
vertices 1, 2, . . . , n and an edge {i, j} joining vertices i and j if and only if i 6= j and αij 6= 0.
We call G(A) the graph of the sign pattern A. A combinatorially symmetric sign pattern
matrix A is called a double star (respectively, star, Broom) sign pattern if G(A) is a double star
(respectively, star, Broom) graph. A sign pattern A = (αij) has signed digraph Γ(A) with
vertex set {1, 2, · · · , n} and a positive (respectively, negative) arc from i to j if and only if
αij is positive (respectively, negative). A (directed) simple cycle of length k is a sequence of
k arcs (i1, i2), (i2, i3), · · · , (ik, i1) such that the vertices i1, · · · , ik are distinct. Recall that a
digraph D is primitive if it is strongly connected and the greatest common divisor of the
lengths of its simple cycles is 1. It is well known that a digraph D is primitive if and only if
there exists a natural number k such that for all vertices i and j, there is a walk of length
k from vertex i to vertex j. A nonnegative sign pattern A is primitive if its signed digraph
Γ(A) is primitive; see, e.g., [7] for more details.
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For a sign pattern A = (αij), the positive part of A is defined to be A+ = (α+ij ), where

α+ij = + if αij = +, and α+ij = 0 otherwise. The negative part of A (denoted by A−) is
defined similarly. In [7], it is observed that if the sign patternA+ is primitive, thenA is PEP.
Furthermore, it is shown that if an n-by-n sign pattern A is PEP, then every superpattern
of A is PEP. Following [9], let AD(+) (respectively, AD(0) and AD(−)) be the sign pattern
obtained from sign pattern A by changing all diagonal entries to + (respectively, 0 and
−), for the readers’ conveniences. Note that Â is used for AD(+) in [7], where it is shown
that Â is PEP, if A is PEP. For an n-by-n sign pattern to be PEP, the following two results
from [7] are very necessary.

Lemma 1 ([7]). If an n-by-n sign pattern A is PEP, then there is an eventually positive matrix
A ∈ Q(A) such that

(1) ρ(A) = 1, where ρ(A) is the spectral radius of A.
(2) A1 = 1, where 1 is the n× 1 all ones vector.
(3) If n ≥ 2, the sum of all the off-diagonal entries of A is positive.

To proceed, we denote a sign pattern consisting entirely of positive (respectively,
negative) entries by [+] (respectively, [−]), and let [+]i be a square block sign pattern of
order i consisting entirely of positive entries. For block sign patterns, we have the following
Lemma 2, which is shown in [7].

Lemma 2 ([7]). Let A be the checkerboard block sign pattern
[+] [−] [+] · · ·
[−] [+] [−] · · ·
[+] [−] [+] · · ·

...
...

...
. . .


with square diagonal blocks. Then
(1) −A is not PEP;
(2) if A has a negative entry, then A is not PEP.

Now we turn to the double star-like sign patterns S(n,m,1). As shown in Figure 1,
the graph G(S(n,m,1)) consists of two stars Sn and Sm, together with one additional vertex
adjacent to the center vertices of Sn and Sm.

Figure 1. The graph G(S(4,5,1)) of sign pattern S(4,5,1).

Note that S(n,m,1) is a double star sign pattern for n = 1 or m = 1, and is a broom
sign pattern for n = 2 or m = 2. The PEP double star sign patterns have been investigated
in [8], and the PEP broom sign patterns have been investigated in [15]. Throughout the
paper, we assume that n ≥ 3 and m ≥ 3. Clearly, a sign pattern A is PEP if and only if AT
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or PTAP is PEP, for any permutation sign pattern P . Without loss of generality, let the
(n + m + 1)-by-(n + m + 1) double star-like sign pattern S(n,m,1) be of the following form

? ∗ ∗
∗ ? ∗ · · · ∗
∗ ?
...

. . .
∗ ?

∗ ? ∗ · · · ∗
∗ ?
...

. . .
∗ ?


, (∗)

where ? denotes an entry from {+,−, 0}, ∗ denotes a nonzero entry, and the unspecified
entries are all zeros.

Now we turn to establish the first necessary condition for the (n+m+ 1)-by-(n+m+ 1)
double star-like sign pattern S(n,m,1) to be PEP.

Theorem 1. Let S(n,m,1) = (αi,j) be a double star-like sign pattern of order n + m + 1 of the form
(∗). If S(n,m,1) is PEP, then S(n,m,1) is symmetric.

Proof. Since S(n,m,1) is PEP, by Lemma 1 there is an eventually positive matrix A = (ai,j) ∈
Q(S(n,m,1)) such that ρ(A) = 1 and A1 = 1, where 1 is the n × 1 all ones vector. Let
w = (w1, w2, . . . , wn+m+1)

T be a positive left eigenvector corresponding to ρ(A). Then by
wT A = wT , which ensures that for all k = 3, 4, . . . , m + 1,

wn+2an+2,n+k + wn+k(1− an+k,n+2) = wn+k, (1)

w1a1,n+2 + wn+2(1− an+2,1 −
m+1

∑
k=3

an+2,n+k) +
m+1

∑
k=3

wn+kan+k,n+2 = wn+2, (2)

and for i = 3, 4, . . . , n + 1,
w2a2,i + wi(1− ai,2) = w2, (3)

w1a1,2 + w2(1− a2,1 −
n+1

∑
i=3

a2,i) +
n+1

∑
i=3

wiai,2 = w2. (4)

By Equality (1), we deduce that

wn+2an+2,n+k = wn+kan+k,n+2. (5)

Then an+2,n+k
an+k,n+2

=
wn+k
wn+2

> 0 and

m+1

∑
k=3

wn+2an+2,n+k =
m+1

∑
k=3

wn+kan+k,n+2. (6)

It follows that αn+2,n+k = αn+k,n+2 for all k = 3, 4, . . . , m + 1. By adding Equality (6)
to Equality (2), we obtain

w1a1,n+2 = wn+2an+2,1. (7)

Thus a1,n+2
an+2,1

= wn+2
w1

> 0. It follows that α1,n+2 = αn+2,1. By Equality (3), we obtain that,

w2a2,i = wiai,2 (8)
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which shows that α2,i = αi,2 for i = 3, 4, . . . , n + 1, and

n+1

∑
i=3

w2a2,i =
n+1

∑
i=3

wiai,2. (9)

By adding Equality (9) to Equality (4), we obtain

w1a1,2 = w2a2,1. (10)

It follows that α2,1 = α1,2. Therefore S(n,m,1) is symmetric.

Next, we proceed to establish more necessary conditions for an (n + m + 1)-by-(n +
m + 1) double star-like sign pattern S(n,m,1) to be PEP.

Lemma 3. Let S(n,m,1) = (αi,j) be a symmetric double star-like sign pattern of order n + m + 1 of
the form (∗) with α1,2 = α2,1 = + and α1,n+2 = αn+2,1 = +. If there is some i ∈ {3, 4, . . . , n+ 1}
with α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1} with αn+2,j = αj,n+2 = −, then
S(n,m,1) is not PEP.

Proof. Let s be the number of indices i such that α2,i = αi,2 = − and i ∈ {3, 4, . . . , n + 1}.
Let t be the number of indices j such that αn+2,j = αj,n+2 = − and j ∈ {n + 3, n + 4, . . . , n +
m + 1}. To complete the proof, the following three cases need to be considered respectively.

Case 1. s > 0 and t = 0.
Up to equivalence,

S(n,m,1) =


S1,1 S1,2 S1,3

(S1,2)
T S2,2

(S1,3)
T S3,3 S3,4

(S3,4)
T S4,4

,

where S1,1 =

(
? +
+ ?

)
, S2,2 = diag(?, . . . , ?) of order s, S3,3 = diag(?, . . . , ?) of order

(n− s), S4,4 = diag(?, . . . , ?) of order (m− 1), the 2-by-s matrix S1,2 =

(
0 · · · 0
− · · · −

)
,

the 2-by-(n− s) matrix S1,3 =

(
0 · · · 0 +
+ · · · + 0

)
, and the (n− s)-by-(m− 1) matrix

S3,4 =


0 · · · 0
...

. . .
...

0 · · · 0
+ · · · +

. Let S̃D(+) be a proper superpattern of (S(n,m,1))D(+) of the form

 [+]2 [−] [+]
[−] [+]s [−]
[+] [−] [+]n+m−s−1

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 2. t > 0 and s = 0.
Similarly, by permutation similarity, let S(n,m,1) be of the form in Case 1 with S2,2 =

diag(?, . . . , ?) of order t, S3,3 = diag(?, . . . , ?) of order (m − t), S4,4 = diag(?, . . . , ?) of

order (n− 1), the 2-by-m matrix S1,2 =

(
0 · · · 0
− · · · −

)
, the 2-by-(m− t) matrix S1,3 =
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(
0 · · · 0 +
+ · · · + 0

)
, and the (m − t)-by-(n − 1) matrix S3,4 =


0 · · · 0
...

. . .
...

0 · · · 0
+ · · · +

. Let

S̃D(+) be a proper superpattern of (S(n,m,1))D(+) of the form [+]2 [−] [+]
[−] [+]t [−]
[+] [−] [+]n+m−t−1

.

By Lemma 2, S̃D(+) is not PEP. Hence, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 3. s > 0 and t > 0.
Up to equivalence,

S(n,m,1) =


S1,1 S1,2 S1,3

(S1,2)
T S2,2

(S1,3)
T S3,3 S3,4 S3,5

(S3,4)
T S4,4

(S3,5)
T S5,5

,

where S1,1 =

(
? +
+ ?

)
, S2,2 = diag(?, . . . , ?) of order s, S3,3 = diag(?, . . . , ?) of order

(n− s), S4,4 = diag(?, . . . , ?) of order t, S5,5 = diag(?, . . . , ?) of order (m− t− 1), the 2-

by-s matrix S1,2 =

(
0 · · · 0
− · · · −

)
, the 2-by-(n− s) matrix S1,3 =

(
0 · · · 0 +
+ · · · + 0

)
,

the (n− s)-by-t matrix S3,4 =


0 · · · 0
...

. . .
...

0 · · · 0
− · · · −

, and the (n− s)-by-(m− t − 1) matrix

S3,5 =


0 · · · 0
...

. . .
...

0 · · · 0
+ · · · +

. Let S̃D(+) be a proper superpattern of (S(n,m,1))D(+) of the form


[+]2 [−] [+] [−] [+]
[−] [+]s [−] [+] [−]
[+] [−] [+]n−s [−] [+]
[−] [+] [−] [+]t [−]
[+] [−] [+] [−] [+]m−t−1

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Lemma 4. Let S(n,m,1) = (αi,j) be a symmetric double star-like sign pattern of order n + m + 1 of
the form (∗) with α1,2 = α2,1 = + and α1,n+2 = αn+2,1 = −. If there is some i ∈ {3, 4, . . . , n+ 1}
with α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1} with αn+2,j = αj,n+2 = −, then
S(n,m,1) is not PEP.

Proof. Let s be the number of indices i such that α2,i = αi,2 = − and i ∈ {3, 4, . . . , n + 1}.
Let t be the number of indices j such that αn+2,j = αj,n+2 = − and j ∈ {n + 3, n + 4, . . . , n +
m + 1}. To complete the proof, it suffices to consider the following three cases.

Case 1. s > 0 and t = 0.
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Up to equivalence, let

S(n,m,1) =


S1,1 S1,2 S1,3 S1,4

(S1,2)
T S2,2

(S1,3)
T S3,3

(S1,4)
T S4,4 S4,5

(S4,5)
T S5,5

,

where S1,1 =

(
? +
+ ?

)
, S2,2 = diag(?, . . . , ?) of order s, S3,3 = diag(?, . . . , ?) of order

(n − s − 1), S4,4 = diag(?), S5,5 = diag(?, . . . , ?) of order (m − 1), the 2-by-s matrix

S1,2 =

(
0 · · · 0
− · · · −

)
, the 2-by-(n− s− 1) matrix S1,3 =

(
0 · · · 0
+ · · · +

)
, the 2-by-1

matrix S1,4 = (−, 0)T , and the 1-by-(m− 1) matrix S4,5 = (+, · · · ,+). Let S̃D(+) be a
proper superpattern of (S(n,m,1))D(+) of the form

[+]2 [−] [+] [−]
[−] [+]s [−] [+]
[+] [−] [+]n−s−1 [−]
[−] [+] [−] [+]m

.

By Lemma 2, S̃D(+) is not PEP. Thus (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 2. t > 0 and s = 0.
By permutation similarity, let S(n,m,1) be of the form in Case 1 with a minor mod-

ification: S2,2 = diag(?, . . . , ?) of order t, S3,3 = diag(?, . . . , ?) of order (m − t − 1),

S5,5 = diag(?, . . . , ?) of order (n− 1), the 2-by-t matrix S1,2 =

(
0 · · · 0
− · · · −

)
, the 2-by-

(m− t− 1) matrix S1,3 =

(
0 · · · 0
+ · · · +

)
, and the 1-by-(n− 1) matrix S4,5 = (+, · · · ,+).

Let S̃D(+) be a proper superpattern of (S(n,m,1))D(+) of the form
[+]2 [−] [+] [−]
[−] [+]t [−] [+]
[+] [−] [+]m−t−1 [−]
[−] [+] [−] [+]n

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 3. s > 0 and t > 0.
Up to equivalence,

S(n,m,1) =



S1,1 S1,2 S1,3 S1,4
(S1,2)

T S2,2
(S1,3)

T S3,3
(S1,4)

T S4,4 S4,5 S4,6
(S4,5)

T S5,5
(S4,6)

T S6,6

,

where S1,1 =

(
? +
+ ?

)
, S2,2 = diag(?, . . . , ?) of order s, S3,3 = diag(?, . . . , ?) of order

(n− s− 1), S4,4 = diag(?), S5,5 = diag(?, . . . , ?) of order t, S6,6 = diag(?, . . . , ?) of order

(m− t− 1), the 2-by-s matrix S1,2 =

(
0 · · · 0
− · · · −

)
, the 2-by-(n− s− 1) matrix S1,3 =
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(
0 · · · 0
+ · · · +

)
, the 2-by-1 matrix S1,4 = (−, 0)T , the 1-by-t matrix S4,5 = (−, · · · ,−),

and the 1-by-(m− t− 1) matrix S4,6 = (+, · · · ,+). Let S̃D(+) be a proper superpattern of
(S(n,m,1))D(+) of the form

[+]2 [−] [+] [−] [+] [−]
[−] [+]s [−] [+] [−] [+]
[+] [−] [+]n−s−1 [−] [+] [−]
[−] [+] [−] [+]1 [−] [+]
[+] [−] [+] [−] [+]t [−]
[−] [+] [−] [+] [−] [+]m−t−1

.

By Lemma 2, S̃D(+) is not PEP. Thus (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Lemma 5. Let S(n,m,1) = (αi,j) be a symmetric double star-like sign pattern of order n + m + 1 of
the form (∗) with α1,2 = α2,1 = − and α1,n+2 = αn+2,1 = +. If there is some i ∈ {3, 4, . . . , n+ 1}
with α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1} with αn+2,j = αj,n+2 = −, then
S(n,m,1) is not PEP.

Proof. By permutation similarity, the proof is similar to that of Lemma 4.

Lemma 6. Let S(n,m,1) = (αi,j) be a symmetric double star-like sign pattern of order n + m +
1 of the form (∗) with α1,2 = α2,1 = − and α1,n+2 = αn+2,1 = −. If there is some i ∈
{3, 4, . . . , n + 1} such that α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1} such that
αn+2,j = αj,n+2 = −, then S(n,m,1) is not PEP.

Proof. Let s be the number of indices i such that α2,i = αi,2 = − and i ∈ {3, 4, . . . , n + 1}.
Let t be the number of indices j such that αn+2,j = αj,n+2 = − and j ∈ {n + 3, n + 4, . . . , n +
m + 1}. To complete the proof, the following three cases need to be considered respectively.

Case 1. s > 0 and t = 0.
Up to equivalence, assume

S(n,m,1) =


S1,1 S1,2 0 S1,4

(S1,2)
T S2,2 S2,3 S2,4

0 (S2,3)
T S3,3

(S1,4)
T (S2,4)

T S4,4 S4,5
(S4,5)

T S5,5

,


where S1,1 = S2,2 = (?), S3,3 = diag(?, · · · , ?) of order s, S4,4 = diag(?, · · · , ?) of
order (n− s), S5,5 = diag(?, · · · , ?) of order (m− 1), S1,2 = (−), the 1-by-(n− s) matrix
S1,4 = (0, · · · , 0,−), the 1-by-s matrix S2,3 = (−, · · · ,−), the 1-by-(n − s + 1) matrix

S2,4 = (+, · · · ,+, 0), and the 1-by-(t − 1) matrix S4,5 = (+, · · · ,+). Let S̃D(+) be a
proper superpattern of (S(n,m,1))D(+) of the form

[+]1 [−] [+] [−]
[−] [+]1 [−] [+]
[+] [−] [+]s [−]
[−] [+] [−] [+]n+m−s−1

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 2. t > 0 and s = 0.
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Up to equivalence, by permutation similarity, let S(n,m,1) be of the form in Case
1, where S1,1 = S2,2 = (?), S3,3 = diag(?, · · · , ?) of order t, S4,4 = diag(?, · · · , ?) of
order (m− t), S5,5 = diag(?, · · · , ?) of order (n− 1), S1,2 = (−), the 1-by-(m− t) matrix
S1,4 = (0, · · · , 0,−), the 1-by-t matrix S2,3 = (−, · · · ,−), the 1-by-(m− t) matrix S2,4 =

(+, · · · ,+, 0), and the 1-by-(n − 1) matrix S4,5 = (+, · · · ,+). Let S̃D(+) be a proper
superpattern of (S(n,m,1))D(+) of the form

[+]1 [−] [+] [−]
[−] [+]1 [−] [+]
[+] [−] [+]t [−]
[−] [+] [−] [+]n+m−t−1

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Case 3. s > 0 and t > 0.
Up to equivalence,

Sn,m,1 =



S1,1 S1,2 0 S1,4
(S1,2)

T S2,2 S2,3 S2,4
0 (S2,3)

T S3,3
(S1,4)

T (S2,4)
T S4,4 S4,5 S4,6

(S4,5)
T S5,5

(S4,6)
T S6,6

,


where S1,1 = S2,2 = (?), S3,3 = diag(?, · · · , ?) of order s, S4,4 = diag(?, · · · , ?) of order
(n− s), S5,5 = diag(?, · · · , ?) of order t, S6,6 = diag(?, · · · , ?) of order (m− t− 1), S1,2 =
(−), the 1-by-(n − s) matrix S1,4 = (0, · · · , 0,−), the 1-by-s matrix S2,3 = (−, · · · ,−),
the 1-by-(n− s) matrix S2,4 = (+, · · · ,+, 0), the 1-by-t matrix S4,5 = (−, · · · ,−), and

the 1-by-(m − t − 1) matrix S4,6 = (+, · · · ,+). Let S̃D(+) be a proper superpattern of
(S(n,m,1))D(+) of the form

[+]1 [−] [+] [−] [+] [−]
[−] [+]1 [−] [+] [−] [+]
[+] [−] [+]s [−] [+] [−]
[−] [+] [−] [+]n−s [−] [+]
[+] [−] [+] [−] [+]t [−]
[−] [+] [−] [+] [−] [+]m−t−1

.

By Lemma 2, S̃D(+) is not PEP. Thus, (S(n,m,1))D(+) is not PEP. It follows that S(n,m,1)
is not PEP.

Proposition 1. The double star-like sign pattern

S1 =



? + −
+ ? + · · · +

+ ?
...

. . .
+ ?

− ? + · · · +
+ ?
...

. . .
+ ?


,
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is not PEP.

Proof. Assume that S1 is PEP. Then (S1)D(+) and all its superpattern are also PEP. Let

S̃1 =

(
[+]n+1 [−]
[−] [+]m

)
.

Then S̃1 is a superpattern of (S1)D(+) and is PEP. However, S̃1 is a checkerboard block
sign pattern and is not PEP by Lemma 2; a contradiction.

Proposition 2. The double star-like sign pattern

S2 =



? − −
− ? + · · · +

+ ?
...

. . .
+ ?

− ? + · · · +
+ ?
...

. . .
+ ?


,

is not PEP.

Proof. Assume that S2 is PEP. Then (S2)D(+) and all its superpattern are also PEP. Let

S̃2 =

(
[+]1 [−]
[−] [+]n+m

)
.

Then S̃2 is a superpattern of (S2)D(+) and is PEP. However, S̃2 is a checkerboard block
sign pattern and is not PEP by Lemma 2; a contradiction.

Proposition 3. The double star-like sign pattern

S3 =



? − +
− ? + · · · +

+ ?
...

. . .
+ ?

+ ? + · · · +
+ ?
...

. . .
+ ?


,

is not PEP.

Proof. Assume that S3 is PEP. Then (S3)D(+) and all its superpattern are also PEP. Let

S̃3 =

 [+]1 [−] [+]
[−] [+]n [−]
[+] [−] [+]m

.
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Then S̃3 is a superpattern of (S3)D(+) and is PEP. However, S̃3 is a checkerboard block
sign pattern and is not PEP by Lemma 2; a contradiction.

For every n-by-n (n ≥ 2) sign pattern, there is an eventually positive matrix realization
with the sum of all nonzero off-diagonal entries being positive. However, for the (n + m +
1)-by-(n + m + 1) PEP double star-like sign patterns S(n,m,1) of the form (∗), the conclusion
can be strengthened.

Theorem 2. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). If S(n,m,1) is PEP, then α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +, α2,k = αk,2 = +
for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1.

Proof. Recall that every double star-like sign pattern S(n,m,1) that is PEP must be symmetric
by Theorem 1. Suppose that α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = −. If there is some
i ∈ {3, 4, . . . , n + 1} such that α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1}
such that αn+2,j = αj,n+2 = −, then S(n,m,1) is not PEP by Lemma 4. Thus α2,k = αk,2 = +
for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1,
and S(n,m,1) = S1. However, by Proposition 1 S1 is not PEP; a contradiction.

Suppose that α1,2 = α2,1 = −, α1,n+2 = αn+2,1 = +. If there exists some i ∈
{3, 4, . . . , n + 1} such that α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1}
such that αn+2,j = αj,n+2 = −, then S(n,m,1) is not PEP by Lemma 5. Thus α2,k = αk,2 = +
for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1,
and S(n,m,1) = S3. However, by Proposition 3 S3 is not PEP; a contradiction.

Suppose that α1,2 = α2,1 = −, α1,n+2 = αn+2,1 = −. If there exists some i ∈
{3, 4, . . . , n + 1} such that α2,i = αi,2 = −, or some j ∈ {n + 3, n + 4, . . . , n + m + 1}
such that αn+2,j = αj,n+2 = −, then S(n,m,1) is not PEP by Lemma 6. Thus α2,k = αk,2 = +
for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1,
and S(n,m,1) = S2. However, by Proposition 2, S2 is not PEP; a contradiction.

Consequently, α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +. If there exists some i ∈
{3, 4, . . . , n+ 1} such that α2,i = αi,2 = −, or some j ∈ {n+ 3, n+ 4, . . . , n+m+ 1} such that
αn+2,j = αj,n+2 = −, then S(n,m,1) is not PEP by Lemma 3. If follows that α2,k = αk,2 = + for
all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1.

Lemma 7. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). If S(n,m,1) is PEP, then there is some i ∈ {1, 2, . . . , n + m + 1} such that αi,i = +.

Proof. Suppose that there is no i ∈ {1, 2, . . . , n + m + 1} such that αi,i = +. Since S(n,m,1)
is PEP, (S(n,m,1))D(−) is PEP. By Theorem 2, α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +,
α2,k = αk,2 = + for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n +
4, . . . , n + m + 1. Let

S̃D(−) =


[−]1 [+] [−] [+] [−]
[+] [−]1 [+] [−] [+]
[−] [+] [−]n−1 [+] [−]
[+] [−] [+] [−]1 [+]
[−] [+] [−] [+] [−]m−1

.

Then S̃D(−) is a proper superpattern of (S(n,m,1))D(−) and is PEP. However, S̃D(−) is
a checkerboard block sign pattern and is not PEP by Lemma 2; a contradiction. It follows
that there exist some i ∈ {1, 2, . . . , n + m + 1} such that αi,i = +.

Now we proceed to characterize the PEP double star-like sign patterns of the form (∗).

Theorem 3. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). Then S(n,m,1) is PEP if and only if α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +, α2,k =
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αk,2 = + for all k = 3, 4, . . . , n + 1, αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1,
and there is some i ∈ {1, 2, . . . , n + m + 1} such that αi,i = +.

Proof. The necessity follows from Theorem 2 and Lemma 7. The sufficiency follows from
the fact that the positive part of S(n,m,1) is primitive.

Next we turn to identifying all the MPEP double star-like sign pattern of the form
(∗). To state clearly, let S(i)

(n,m,1) = (αi,j) be the (n + m + 1)-by-(n + m + 1) double star-like
sign pattern of the form (∗) such that all nonzero off-diagonal entries are +, αi,i = + and
αj,j = 0 for all j 6= i. For example,

S
(1)
(n,m,1) =



+ + +
+ 0 + · · · +

+ 0
...

. . .
+ 0

+ 0 + · · · +
+ 0
...

. . .
+ 0


,

S
(2)
(n,m,1) =



0 + +
+ + + · · · +

+ 0
...

. . .
+ 0

+ 0 + · · · +
+ 0
...

. . .
+ 0


,

S
(3)
(n,m,1) =



0 + +
+ 0 + · · · +

+ +
...

. . .
+ 0

+ 0 + · · · +
+ 0
...

. . .
+ 0


,

S
(n+2)
(n,m,1) =



0 + +
+ 0 + · · · +

+ 0
...

. . .
+ 0

+ + + · · · +
+ 0
...

. . .
+ 0
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and

S
(n+3)
(n,m,1) =



0 + +
+ 0 + · · · +

+ 0
...

. . .
+ 0

+ 0 + · · · +
+ +
...

. . .
+ 0


.

Note that double star-like sign patterns S(3)
(n,m,1), S

(4)
(n,m,1), . . ., S(n+1)

(n,m,1) are equivalent

to each other. Similarly, double star-like sign patterns S(n+3)
(n,m,1), S

(n+4)
(n,m,1), . . ., S(n+m+1)

(n,m,1) are

equivalent to each other, especially if n = m, then S
(i)
(n,m,1) is equivalent to S

(n+i)
(n,m,1) for all

i = 2, 3, . . . , n + 1.

Proposition 4. The sign patterns S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1) are MPEP.

Proof. S
(1)
(n,m,1) is PEP for its positive part is primitive. If some nonzero off-diagonal entries

of S
(1)
(n,m,1) are changed to be 0, then the corresponding sign pattern is not irreducible

and thus is not PEP. If the only one positive diagonal entry is changed to be 0, then the
corresponding sign pattern is not PEP by Lemma 7. It follows that S(1)

(n,m,1) is MPEP. By a

similar discussion, we can show that S(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1), and S

(n+3)
(n,m,1) are MPEP.

Theorem 4. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). If n 6= m, then S(n,m,1) is MPEP if and only if S(n,m,1) is equivalent to one of

S
(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1). If n = m, then S(n,m,1) is MPEP if and only if

Sn,m,1 is equivalent to one of S(1)
(n,m,1), S

(2)
(n,m,1) and S

(3)
(n,m,1).

Proof. It suffices to show the first case. The sufficiency follows from Proposition 4. For
the necessity, since S(n,m,1) is MPEP, by Theorem 2, α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +,
α2,k = αk,2 = + for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n +
4, . . . , n + m + 1. There is some i ∈ {1, 2, . . . , n + m + 1} such that αi,i = + by Lemma 7. If
S(n,m,1) has at least two nonzero diagonal entries, then S(n,m,1) is a proper superpattern

of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) or S(n+3)

(n,m,1), up to equivalence. Since S(n,m,1) is MPEP,

one of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1) is not PEP, contradicting Proposition

4. Consequently, S(n,m,1) has exactly one positive diagonal entry. It follows that S(n,m,1) is

equivalent to one of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1).

Note that Theorem 4 indicates that for the class of (n + m + 1)-by-(n + m + 1) double
star-like sign patterns of the form (∗), if n 6= m, then there are exactly five MPEP sign
patterns, and if n = m, then there are exactly three MPEP sign patterns, up to equivalence.
Thus, we identify all the MPEP sign patterns in the class of double star-like sign patterns
of the form (∗). Next, it is time to classify all the PEP double star-like sign patterns of the
form (∗).

Theorem 5. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). If n 6= m, then S(n,m,1) is PEP if and only if S(n,m,1) is equivalent to a superpattern
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of one of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1). If n = m, then S(n,m,1) is PEP if and

only if Sn,m,1 is equivalent to a superpattern of one of S(1)
(n,m,1), S

(2)
(n,m,1) and S

(3)
(n,m,1).

Proof. It is enough to show the case n 6= m. The sufficiency is clear. For the necessity, if
S(n,m,1) is MPEP, then S(n,m,1) is equivalent to one of S(1)

(n,m,1), S
(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1)

and S
(n+3)
(n,m,1) by Theorem 4. If S(n,m,1) is PEP but not MPEP, then S(n,m,1) must be a proper

superpattern of one MPEP double star-like sign pattern. By Theorem 4, there are exactly five
MPEP sign patterns in the class of (n + m + 1)-by-(n + m + 1) double star-like sign patterns
of the form (∗), up to equivalence. It follows that S(n,m,1) is equivalent to a superpattern of

one of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1) , S(n+2)

(n,m,1) and S
(n+3)
(n,m,1).

It is known from [16] that if every matrix realization of an arbitrary n-by-n sign pattern
A is eventually positive, the A is said to require the eventual positivity. Clearly, if the sign
pattern A requires the eventual positivity, then A is PEP. In general, the converse does
not hold. However, for the double star-like sign pattern of the form (∗) with exactly one
nonzero diagonal entry, the answer is positive.

Proposition 5. Let S(n,m,1) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern of
the form (∗) with exactly one nonzero diagonal entry. Then the following statements are equivalent:

(1) S(n,m,1) is MPEP;
(2) S(n,m,1) is nonnegative and primitive;
(3) S(n,m,1) requires eventual positivity.

Proof. (1) =⇒ (2) follows from Theorem 4. (2) =⇒ (3) follows from Theorem 2.3 in [16].
If S(n,m,1) requires eventual positivity, then S(n,m,1) is PEP. By Theorem 5, S(n,m,1) is equiva-

lent to a superpattern of one of S(1)
(n,m,1), S

(2)
(n,m,1), S

(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1). For S(n,m,1)

has exactly one nonzero diagonal entry, S(n,m,1) is equivalent to one of S(1)
(n,m,1), S

(2)
(n,m,1),

S
(3)
(n,m,1), S

(n+2)
(n,m,1) and S

(n+3)
(n,m,1). Consequently, (3) =⇒ (1) follows from Proposition 4.

3. Eventual Exponential Positivity of the Double Star-like Sign Patterns S(n,m,1)

In this section, we investigate the eventual exponential positivity of the double star-
like sign patterns S(n,m,1) of the form (∗). First, we cite a necessary condition for an n-by-n
sign pattern to be PEEP shown in [9].

Lemma 8 ([9]). If an n-by-n sign pattern A is PEEP, then AD(+) is PEP.

The following proposition provides a necessary condition for a double star-like sign
pattern of the form (∗) to be PEEP.

Proposition 6. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign
pattern of the form (∗). If S(n,m,1) is PEEP, then α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +,
α2,k = αk,2 = + for all k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n +
4, . . . , n + m + 1.

Proof. Suppose that the double star-like sign pattern S(n,m,1) is PEEP. Then (S(n,m,1))D(+)

is PEP by Lemma 8. By Theorem 2, all nonzero off-diagonal entries of (S(n,m,1))D(+) must
be +.

Now we turn to identifying all MPEEP double star-like sign patterns.
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Proposition 7. The double star-like sign pattern

So
(n,m,1) =



0 + +
+ 0 + · · · +

+ 0
...

. . .
+ 0

+ 0 + · · · +
+ 0
...

. . .
+ 0


is MPEEP.

Proof. The double star-like sign pattern So
(n,m,1) is PEEP for its positive part (So

(n,m,1))
+ is

irreducible. It is clear that each proper subpattern of So
(n,m,1) is not irreducible and thus is

not PEEP. It follows that So
(n,m,1) is MPEEP.

Now we identify all the MPEP sign patterns in class of double star-like sign patterns
of the form (∗).

Theorem 6. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign pattern
of the form (∗). Then S(n,m,1) is MPEEP if and only if S(n,m,1) = So

(n,m,1), up to equivalence.

Proof. Proposition 7 implies the sufficiency. For the necessity, assume that the (n + m + 1)-
by-(n + m + 1) double star-like sign pattern S(n,m,1) is MPEEP. Then S(n,m,1) is PEEP,
and by Proposition 6, α1,2 = α2,1 = +, α1,n+2 = αn+2,1 = +, α2,k = αk,2 = + for all
k = 3, 4, . . . , n + 1, and αn+2,k = αk,n+2 = + for all k = n + 3, n + 4, . . . , n + m + 1. Suppose
that some diagonal entries of S(n,m,1) are nonzero. Then S(n,m,1) is a proper superpattern
of So

(n,m,1). Since S(n,m,1) is MPEEP, So
(n,m,1) is not PEEP. However, So

(n,m,1) is MPEEP by
Proposition 7. It is a contradiction. Consequently, all the diagonal entries of S(n,m,1) must
be 0. It follows that S(n,m,1) = So

(n,m,1), up to equivalence.

Theorem 6 indicates that there is exactly one MPEEP sign pattern for the class of
double star-like sign patterns of the form (∗), up to equivalence. Now we turn to classify
all the (n + m + 1)-by-(n + m + 1) double star-like sign patterns that are PEEP.

Proposition 8. Let S(n,m,1) = (αi,j) be an (n + m + 1)-by-(n + m + 1) double star-like sign
pattern of the form (∗). Then S(n,m,1) is PEEP if and only if S(n,m,1) is equivalent to one of
superpatterns of So

(n,m,1).

Proof. The sufficiency is clear. For the necessity, if S(n,m,1) is MPEEP, then the conclusion
follows from Theorem 6. If S(n,m,1) is PEEP, but not MPEEP, then S(n,m,1) must be a proper
superpattern of the exactly one MPEEP double star-like sign pattern So

(n,m,1) by Theorem 6,
up to equivalence.

It is known from [16] that if every matrix realization of sign pattern A is eventually
exponentially positive, then A is said to require the eventual exponential positivity. Clearly,
if a sign pattern A requires eventual exponential positivity, then A is also PEEP. Further-
more, the converse does not hold generally. However, for the double star-like sign patterns
of the form (∗), the converse holds. The following theorem, which follows readily from
Proposition 8 and Theorem 2.9 in [16], establishes the characterizations of the PEEP double
star-like sign patterns S(n,m,1).
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Theorem 7. Let S(n,m,1) = (αi,j) be a double star-like sign pattern of order n + m + 1 of the form
(∗). Then the following statements are equivalent:

(1) S(n,m,1) is PEEP;
(2) All arcs of the simple 2-cycles (vi, vj), (vj, vi) of the signed digraph Γ(S(n,m,1)) are

positive;
(3) All nonzero off-diagonal entries of S(n,m,1) are +;
(4) S(n,m,1) requires eventual exponential positivity;
(5) S(n,m,1) requires eventual positivity.

Note that it is shown in [17] that the n-by-n sign pattern requires the eventual expo-
nential positivity, then every cycle in its signed digraph of length 2 or more is arc-positive.

4. Discussion and Conclusions

For the class of double star-like sign patterns S(n,m,1) of order n + m + 1 of the form
(∗), we have identified the minimal PEP sign patterns and the minimal PEEP sign patterns,
and consequently classified their PEP sign patterns and PEEP sign patterns. Our results
indicate that the double star-like sign pattern S(n,m,1) is MPEEP if and only if the star sign
patterns Sn and Sm are MPEEP, and the arcs (v1, vn+2) and (vn+2, v1) are positive. However,
it is not true for the general sign patterns. It is interesting to ask how we can extend the
previous result to some extent.
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