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Abstract: The NJL model of one-flavor quark is employed to study the properties of QCD mater with
finite temperature, external magnetic field, and chiral chemical potential. Through the mean-field
approximation and a self-consistent method, a non-perturbative quark propagator is proposed to
deduce the gap equations, and it can be proved that besides the classic vacuum condensate, there are
non-zero statistical averages of a quark current and quark magnetic moment. Through a rigorous
algebraic method, the quark current leads to a modified chiral magnetic effect. Through a numerical
method, the quark magnetic moment is non-zero in the chiral breaking phase, and its relation with
chiral chemical potential is studied.
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1. Introduction

Studying the phase diagram and the phase transitions of QCD matter is important for
the theories and experiments of high energy physics [1,2]. It is believed that at different
temperatures and densities, the QCD matter is divided into three phases in the phase
diagram [3–5]; they are the phase of quark-gluon plasma (QGP), the phase of hadrons, and
the phase of color-superconductivity [6,7]. The order parameter to distinguish between
QGP and hadrons is the vacuum condensate, which provides a dynamical mass to the
quark. In the phase of QGP, the vacuum condensate is zero (while the chiral limit, the bare
quark, is massless), while in the phase of hadrons, the condensate is non-zero; therefore,
the phase of QGP is also known as the chiral symmetry restoring phase and the phase of
hadrons is known as the chrial symmetry breaking phase.

The NJL model is an effective model to study the non-perturbative properties of
QCD matter [8–12]. Through the mean-field approximation, this model could give a
qualitative description of the vacuum condensate and the phase transitions. It also has a
nice extendibility to study the QCD matter with diquark pairing and confinement [13–15],
the color-superconductivity [16], and the QCD matter with external magnetic field. One of
the situations to consider a magnetic field in QCD matter is the experiment of high energy
particle collision: when the charged particles collide non-centrally in the accelerator, an
extremely strong magnetic field is produced [17], and such a magnetic field impacts QCD
matter significantly [16–25].

One of the most intriguing properties induced by a magnetic field in the QCD
matter is the ‘Chiral Magnetic Effect’ (CME), which has been widely studied in recent
decades [26–30]. This effect is highly relative to the magnetic field and chiral chemical po-
tential. The importance of CME is that it leads to a local polarization effect in the product of
high energy collisions [31–33] and produces a testable physical effect for experiments [34],
which gives us the ability to verify the rationality of QCD theory and understand the
evolution of QCD matter.

In our previous work [35], we proposed a self-consistent method to prove that, with
external magnetic field and chemical potential, there is a non-zero axial vector current,
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which leads to the ‘Chiral Separation Effect’ and a non-zero quark magnetic moment. In this
paper, we employ the same method to study the NJL model of QCD matter with an external
magnetic field and chiral chemical potential and try to find out new properties of the classic
CME or other effects. In Section 2, we give the basic formulae and equations, introduce
the self-consistent method, and then prove how to get the proper quark propagator. In
Section 3, we solve the gap equations through rigorous a algebraic method and numerical
method. In Section 4, we come to the conclusion and discussions.

2. The Lagrangian and Gap Equations
2.1. Basic Formulae and the Inconsistency

Beginning with the one-flavor lagrangian of NJL model, the external magnetic field is
included and treated as a classical electromagnetic field.

L = ψ̄ /̂Dψ + G
4Nc

(ψ̄ψ)2 + µ5ψ̄γ5γ0ψ,

/̂D := /̂p − q /A, p̂0 := − ∂
∂τ , p̂i := i ∂

∂xi , (A0, A1, A2, A3) = (0, B
2 x2,− B

2 x1, 0).
(1)

In this lagrangian, the time variable is replaced by the virtual time variable τ ∈ [0, β]
at finite temperature, and β = 1

T (T is the temperature). The factor q coupling with /A is
an arbitrary electric charge. If the quark is u quark, then q = 2

3 e, and if it is d quark, then
q = − 1

3 e. The coupling constant G comes from the approximation of the gluon propagator,
and its value is determined in Section 3.2. The chiral chemical potential is µ5; it is a bare
quantity in the lagrangian and it will be renormalized in following studies.

Why do we study the 1 flavor NJL model rather than the 2-flavor or the (2 + 1)-flavor
NJL model? There are two reasons. Firstly, some results depend on the sign of the electric
charge of quark, so a 1-flavor NJL model with an arbitrary electric charge can clearly
demonstrate the dependency; secondly, the gap equations and some results of the 1-flavor
NJL model can be easily generalized to the cases of 2-flavor, because the fermion propagator
of 2-flavor (u, d quarks) is the equivalent to a direct sum of u quark propagator and d
quark propagator with the mean-field approximation [36]. Therefore, using the 1-flavor
NJL model can keep the discussions and deductions concise. As for the (2 + 1)-flavor NJL
model, it generally has a six-fermion interaction term in the lagrangian, and because of the
UA(1) puzzle, the Wick-contraction approximation will turn this term into a self-energy
mixed by the dynamical masses of quarks of different flavors [9]. Although the fermion
propagator can still be separated into the sum of u, d, and s quark propagators, one should
be aware that some of the formulae in this paper may not be easily generalized to the case
of the (2 + 1)-flavor NJL model.

To deduce the gap equation of quark vacuum condensate, we employed the mean-field
approximation to reorganize the four-fermion interaction term,

G
4Nc

(ψ̄ψ)2 ≈ −σψ̄ψ− Nc

G
σ2, σ := − G

2Nc
〈ψ̄ψ〉, (2)

where 〈ψ̄ψ〉 comes from the transformation ψ̄ψ = (ψ̄ψ − 〈ψ̄ψ〉) + 〈ψ̄ψ〉, 〈ψ̄ψ〉 is the
mean-field, (ψ̄ψ− 〈ψ̄ψ〉) is the fluctuation, then the mean-field approximation removes
(ψ̄ψ− 〈ψ̄ψ〉)2 in (ψ̄ψ)2 because it is a high-order correction of the fluctuation. With this
approximation, we get a new lagrangian

L′ = ψ̄( /̂D− σ + µ5γ5γ0)ψ− Nc

G
σ2, (3)

and the propagator of quark is

Ŝ =
1

/̂D− σ + µ5γ5γ0
. (4)
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Now we can use the new lagrangian Equation (3) and quark propagator Equation (4)
to deduce the partition function and free energy,

Z =
∫

Dψ̄Dψ exp
(∫ β

0
dτ
∫

d~xL′
)
= e−βJ , J =

Nc

G
σ2
∫

d~x− TNc Tr ln Ŝ−1, (5)

where the ‘Tr’ operator means taking a trace of the matrix of an operator in the Hilbert
space and spinor space. The trace of color space is the factor Nc.

The gap equation of quark vacuum condensate is the equation to find the local mini-
mums of free energy, and it is

∂J
∂σ

= 0 =⇒ 2
G

σ
∫

d~x = −T Tr Ŝ. (6)

In order to get a more concrete form of Tr Ŝ, we introduce the eigenstate of D̂2 =
p̂2

0 − D̂2
⊥ − p2

3, where D̂2
⊥ := D̂2

1 + D̂2
2 . The eigenstates is defined as |ωn〉 ⊗ |m, a〉 ⊗ |p3〉 ≡

|n; m, a; p3〉. It has the properties as below:

p̂0|ωn〉 = iωn|ωn〉, ωn = (2n + 1)πT, n ∈ Z;

p̂3|p3〉 = −p3|p3〉; D̂2
⊥|m, a〉 = (2m + 1)|q|B|m, a〉, m = 0, 1, 2, . . . .

(7)

More specific properties of the eigenstate are demonstrated in the Appendix A.
Notice that σ represents the statistical average of ψ̄ψ. We can generalize this equation

to the case of 〈ψ̄Γψ〉, where Γ ∈ {I, γµ, γ5, γ5γµ, σµν|µ, ν = 0, 1, 2, 3},

〈ψ̄Γψ〉
∫

d~x = TNc Tr(ΓŜ). (8)

2.2. The Minimal Consistency Ansatz

Through the definition of the eigenstate Equation (7) and the statistical average
Equation (8), one can verify that the averages, such as 〈ψ̄γ3ψ〉, 〈ψ̄γ5γ0ψ〉, and 〈ψ̄σ12ψ〉, are
not constantly zero, and this causes an inconsistency, since the σ, which is proportional to
〈ψ̄ψ〉, is included in the propagator Ŝ, while other averages are not in Ŝ. One can argue that
these averages do not need to be in Ŝ like σ does; they are simply dynamical properties.
Nut this is not true because, in the lagrangian of Equation (3), the four-fermion interaction
term has the Fierz identity,

F [(ψ̄ψ)2] =
1

4Nc
[(ψ̄ψ)2 + (ψ̄γµψ)2 − (iψ̄γ5ψ)2 − (ψ̄γ5γµψ)2 +

1
2
(ψ̄σµνψ)2 + · · · ]. (9)

The identity suggests that (ψ̄ψ)2 and F [(ψ̄ψ)2] are dynamically equivalent; therefore, after
introducing the mean-field approximation, the terms such as 〈ψ̄Γψ〉 should also be parts of
the self-energy of the non-perturbative quark propagator. For this reason, we should start
the lagrangian in the form as below:

L = ψ̄ /̂Dψ +
G

4Nc
[(ψ̄ψ)2 + (ψ̄γµψ)2 − (iψ̄γ5ψ)2 − (ψ̄γ5γµψ)2 +

1
2
(ψ̄σµνψ)2 + · · · ] + µ5ψ̄γ5γ0ψ. (10)

The mean-field approximation to this new lagrangian will then produce terms such
as 〈ψ̄Γ⊗ λiψ〉(ψ̄Γ⊗ λiψ), where λi stands for the Gell-Mann matrices of color space, and
the non-perturbative quark propagator will take 〈ψ̄Γ⊗ λiψ〉 as parts of quark self-energy.
However, an unwieldy problem is that this kind of propagator can hardly carry forward
through algebraic calculus, let alone the numerical calculation. Of course one can try to
prove that some of these averages in the non-perturbative propagator are zero and simplify
the propagator, but it also needs to employ the algebraic method to transform Tr(ΓŜ) at
first, which falls into an endless loop.
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To break the loop, we propose an ansatz, the minimal consistency assumption: that
the self-energy of the proper non-perturbative propagator of quark only has the least terms
that will not cause inconsistency. In the case here, although Equation (4) is not the proper
propagator, it reveals that the terms 〈ψ̄γ3ψ〉, 〈ψ̄γ5γ0ψ〉, and 〈ψ̄σ12ψ〉 are not zero, and we
can next assume that they are parts of the self-energy besides σ. In order to bring in these
averages, we need to apply the mean-field approximation to the terms such as (ψ̄Γψ)2.
Firstly,

g(ψ̄Γψ)2 ≈ −ξψ̄Γψ− ξ2

4g
, ξ := −2g〈ψ̄Γψ〉. (11)

The detailed deduction of this approximation can also be found in [35]. After the mean-field
approximation, we assume only ψ̄ψ, ψ̄γ3ψ, ψ̄γ5γ0ψ, and ψ̄σ12ψ have non-zero statistical
averages in the lagrangian Equation (10), then the lagrangian of Equation (10) becomes

L′ = ψ̄( /̂D− Σ + µ5γ5γ0)ψ + LM, Σ = σ + aγ3 + bγ5γ0 + cσ12, LM = −Nc

G
(σ2 + a2 − b2 + c2),

σ := − G
2Nc
〈ψ̄ψ〉, a := − G

2Nc
〈ψ̄γ3ψ〉, b :=

G
2Nc
〈ψ̄γ5γ0ψ〉, c := − G

2Nc
〈ψ̄σ12ψ〉.

(12)

Consequently, the gap equations become

∂J
∂ξ

= 0, ξ = σ, a, b, c. (13)

One can easily prove that Equation (8) leads to the same gap equations like (13) does.
According to the assumption above, the quark propagator is

Ŝ =
1

/̂D− Σ + µ5γ5γ0
. (14)

In order to calculate Tr(ΓŜ) in the gap equations, we wish to use the eigenstate of D̂2

to implement the deduction, so Ŝ should be transformed into

Ŝ ={[ /̂D + σ− aγ3 + (b− µ5)γ
5γ0 − cσ12]( /̂D− Σ + µ5γ5γ0)}−1

× [ /̂D + σ− aγ3 + (b− µ5)γ
5γ0 − cσ12]

={ p̂2
0 − D̂2

⊥ − ( p̂3 − a)2 − σ2 + (b− µ5)2 + c2 + qBσ12 + 2p̂0(b− µ5)γ
5

+ 2[c( p̂3 − a)− σ(b− µ5)]γ
5γ0 + 2cp̂0γ5γ3}−1[ /̂D + σ− aγ3 + (b− µ5)γ

5γ0 − cσ12],

(15)

then Tr(ΓŜ) is rewritten as

Tr(ΓŜ) = tr

(
Γ

+∞

∑
n=−∞

+∞

∑
m=0

∫
〈n; m, a; p3|Ŝ|n; m, a; p3〉dadp3

)
, (16)

where ‘tr’ stands for the trace of spinor space.
With the discussions above and Equations (A14) and (A16) (Scheme II and Scheme IV),

one can algebraically prove that except 〈ψ̄ψ〉, 〈ψ̄γ3ψ〉, 〈ψ̄γ5γ0ψ〉, and 〈ψ̄σ12ψ〉, the other
〈ψ̄Γψ〉 are zero. Therefore, we can claim that the assumption at the beginning is rational
and the propagator Equation (14) is the proper propagator. That ends the demonstration of
the minimal consistency ansatz.

3. Solve the Gap Equations

Even with the minimal consistency ansatz and some simplification schemes, the final
gap equations are still too complicated to handle. However, QCD matter has two phases in
the NJL model that are studied in this paper; the chiral symmetry breaking phase and the
chiral symmetry restoring phase. Next, we will study the gap equations in different phases.



Symmetry 2022, 14, 502 5 of 14

Notice that, in the proper propagator, µ5 and b always combine in the form (µ5 − b).
Defining µ′5 := µ5 − b, clearly µ′5 is the renormalized chiral chemical potential. In the
following discussions, we treat µ′5 as a free parameter instead of µ5; therefore, the gap
equation of b can be ignored.

Similarly, in the proper propagator Equation (14), p̂3 and a are always combined in
the form ( p̂3 − a), so for the convenience of following discussions, we define p′3 := p3 + a.
Beware that it is (p3 + a) rather than (p3 − a), because ( p̂3 − a)|p3〉 = −(p3 + a)|p3〉.

3.1. The Chiral Symmetry Restoring Phase

The chiral symmetry restoring phase is characterized by σ = 0. With Equation (A17),
the gap equation of σ is

− 4π2

G
σ = qBTc ∑

n

∫ 1
(iωn)2 − [p′3 + µ′5 sgn(q)]2 − c2 dp3. (17)

Because σ = 0, this equation implies that c should also be zero. For preciseness, we have to
verify that c = 0 is a solution of the gap equation of c.

Ignoring unimportant factors, the gap equation of c has the form of c = Tr(γ3Ŝ), plus
Tr(γ3Ŝ) ∝ c, then c = 0 is a valid solution of this equation.

Now, because σ = 0 and c = 0, only the gap equation of a is left, and with
Equation (A13) it is

− 4π2

G
a = |q|BT ∑

n

∫
dp3

{
p′3 + µ′5 sgn(q)

(iωn)2 − [p′3 + µ′5 sgn(q)]2
+ 2 ∑

m

p′3
(iωn + µ′5)

2 − 2m|q|B− p′23

}
. (18)

Through Residue Theorem, the above equation becomes

− 4π2

G
a = −|q|B

∫ 1
2

sgn(p′3 + µ5 sgn(q)) +
+∞

∑
m=1

p′3√
p′23 + 2m|q|B

dp3. (19)

The integral of p3 in the right-hand side of this equation is not convergent, and Equation (A17)
can help reduce the equation to

− 4π2

G
a = −qBµ′5 − |q|Ba−

+∞

∑
m=1

2|q|Ba. (20)

Tn the result, the infinite series of m (Landau levels) is also divergent. One has to make a
cut-off to the sum of m, assuming that the cut-off is M, then there is

− 4π2

G
a = −qBµ′5 − |q|Ba−

M

∑
m=1

2|q|Ba = −qBµ′5 − (2M + 1)|q|Ba, (21)

and it results in

a =
qBµ′5

4π2

G − (2M + 1)|q|B
. (22)

Considering the definition of a that a = − G
2Nc
〈ψ̄γ3ψ〉, the statistical average of the

quark current is

〈ψ̄γ3ψ〉 = −
2NcqBµ′5

4π2 − (2M + 1)|q|BG
. (23)

This is the modified CME because of the quark current feedback to the self-energy. The
cut-off M to the sum of Landau levels is unexpected, and we will discuss the physical
meaning/effect of this cut-off in the last section.
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3.2. The Chiral Symmetry Breaking Phase

The chiral symmetry breaking phase is characterized by σ > 0. Because σ 6= 0 in this
phase, c 6= 0 either. The consequence is that the proper propagator Equation (14) leads to
complicated gap equations, such that one can hardly deduce the gap equations to the forms
suiting numerical calculation. To avoid this barrier, we propose an approximation in this
subsection to carry out the study.

Notice, in a NJL model with chiral chemical potential but no external magnetic field,
the statistical averages of quark current ψ̄γ3ψ and quark magnetic moments ψ̄σ12ψ are zero,
which implies that a relatively weak external magnetic field will induce weak 〈ψ̄γ3ψ〉 and
〈ψ̄σ12ψ〉, so an approximation is proposed so that we can treat 〈ψ̄γ3ψ〉 = 0 and 〈ψ̄σ12ψ〉 = 0
in the proper propagator if the magnetic field is relatively weak. Then, one can use the
propagator Equation (4) instead of Equation (14) to calculate 〈ψ̄γ3ψ〉 and 〈ψ̄σ12ψ〉.

Define λm± = [(
√

p2
3 + 2m|q|B± µ5)

2 + σ2]
1
2 , Equations (4), (8) and (16) with all the

schemes in the Appendix B and the Residue Theorem derive the gap equations of σ, a, and
c as

−4π2

G
σ =− σ

|q|B
2π ∑

m

2− δ0m

2

∫ +∞

0
ds
∫ [

e−(p2
0+λ2

m+)s + e−(p2
0+λ2

m−)s
]

dp0dp3

+ σ|q|B ∑
m

2− δ0m

2

∫ ( 1
λm+

1
eβλm+ + 1

+
1

λm−

1
eβλm− + 1

)
dp3,

(24)

− 4π2

G
a = −qBµ5, (25)

− 4π2

G
c = −σ

qB
2

∫ +∞

0

e−σ2s

s
ds + σqB

∫ 1√
p2

3 + σ2

1

eβ
√

p2
3+σ2

+ 1
dp3. (26)

Equation (25) leads to the classic CME. It seems even in the chiral symmetry breaking
phase, the CME is irrelevant to temperature and vacuum condensate, but this result is not
rigorous. We will come back to it in Section 3.3. In Equations (24) and (26), the integrals of
the proper time s is divergent, and it needs a cut-off to the lower boundary of its integral,
which is ∫ +∞

0
ds→

∫ +∞

1/Λ2
ds. (27)

According to [35], the cut-off parameter Λ and the coupling constant G are set as

G ≈ 76.89312 GeV−2, Λ ≈ 1.08631 GeV. (28)

We can then use the gap equations of σ Equation (24) to get the solutions of σ at a specific
temperature, chiral chemical potential, and magnetic field through a numerical method
and subsequently substitute the solutions into Equation (26) to get the values of c.

In Figure 1, the relations of σ-µ5 and c-µ5 with fixing temperature is drawn. Com-
pared with σ, the values of c are much smaller, and indeed, a weaker magnetic field
induces smaller c, so it verifies the rationality of the approximation that we employ in
this subsection.
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Figure 1. These figures show the σ-µ5 and c–µ5 relations with temperature fixed at 0.05 GeV and
0.1 GeV. In each figure, the results from different magnetic fields are compared.

Figure 2 shows the relations of σ-µ5 and c-µ5 when fixing a magnetic field. The detailed
discussion of these results will be discussed in the last section.

● ● ● ● ● ● ● ● ● ● ● ●
●

■ ■ ■ ■
■

■

● T=0.05GeV

■ T=0.1GeV

eB 0.01GeV
2

0. 0.05 0.1 0.15 0.2 0.25
0.

0.05

0.1

0.15

0.2

0.25

0. 0.05 0.1 0.15 0.2 0.25

0.

0.05

0.1

0.15

0.2

0.25

μ5[GeV]

σ

� G
e
V

�

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■
■

■

● T=0.05GeV

■ T=0.1GeV

eB 0.04GeV
2

0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.

0.05

0.1

0.15

0.2

0.25

0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.

0.05

0.1

0.15

0.2

0.25

μ5[GeV]

σ

� G
e
V

�

● ● ● ● ● ● ● ● ● ● ● ● ●
■ ■ ■ ■ ■

■

● T=0.05GeV

■ T=0.1GeV

eB 0.01GeV
2

0. 0.05 0.1 0.15 0.2 0.25
0.

0.002

0.004

0.006

0.008

0.01
0. 0.05 0.1 0.15 0.2 0.25

0.

0.002

0.004

0.006

0.008

0.01

μ5[GeV]

c
[G
e
V
]

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■ ■ ■ ■ ■ ■
■

■

● T=0.05GeV

■ T=0.1GeV

eB 0.04GeV
2

0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.

0.005

0.01

0.015

0.02

0.025
0. 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

0.

0.005

0.01

0.015

0.02

0.025

μ5[GeV]

c
[G
e
V
]

Figure 2. These figures show the σ-µ5 and c–µ5 relations with a magnetic field fixed at 0.01 GeV2 and
0.04 GeV2. In each figure, the results from different temperatures are compared.

3.3. The Modified CME in Chiral Symmetry Breaking Phase—A Rigorous Proof

In Section 3.2, it has been shown that using Equation (4) as the approximated non-
perturbative quark propagator leads to the classic CME in the chiral symmetry breaking
phase. In this subsection, we rigorously prove that, in this phase, the CME should also be
modified into Equation (22) or Equation (23).
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Define

λ :=
√
[p′3 + µ′5 sgn(q)]2 + [σ + c sgn(q)]2,

κm± :=

√
2m|q|B + p′23 + σ2 + µ′25 + c2 ±

[
2m|q|B(µ′25 + c2) + (p′3µ′5 + σc)2

] 1
2 .

(29)

With the Residue Theorem, the gap equation of a then becomes

−4π2

G
a =− |q|B

2

∫
dp3

[
p′3 + µ′5 sgn(q)

λ
+

+∞

∑
m=1

∑
±

∂κm±
∂p′3

]

+ |q|B
∫

dp3

[
p′3 + µ′5 sgn(q)

λ

1
eβλ + 1

+
+∞

∑
m=1

∑
±

∂κm±
∂p′3

1
eβκm± + 1

]
.

(30)

In the above equation, the integrals of p3 with 1
eβλ+1

or 1
eβκm±+1

in the integrands are
convergent and equal 0, which leaves the vacuum terms in the equation as,

− 4π2

G
a = −|q|B

2

∫
dp3

[
p′3 + µ′5 sgn(q)

λ
+

+∞

∑
m=1

∑
±

∂κm±
∂p′3

]
. (31)

Similar to the discussion of Equation (19) in Section 3.1, by employing Equation (A17) in
Scheme V to calculate Equation (31), it exactly equals Equation (20), then it leads to the
same modified CME Equation (22) after introducing the cut-off M to the sum of Landau
levels. That ends the proof about the modified CME in the chiral symmetry breaking phase.

4. Discussion and Conclusions

In this paper, we studied the one-flavor NJL model of the quark with finite temperature,
chiral chemical potential, and external magnetic field. The reason why we study the 1-flavor
NJL model instead of the 2-flavor or (2 + 1)-flavor NJL is for the convenience of generalizing
the results to models of more flavors. The reader should be aware that the one-flavor NJL
model is different from one-flavor QCD dynamically, because the anomaly in one-flavor
QCD will prevent the chiral symmetry [37].

One of the goals of this paper is to determine the proper quark propagator. With
the presence of a chiral chemical potential and magnetic field, there could be non-zero
statistical averages of ψ̄γ3ψ, ψ̄γ5γ0ψ, and ψ̄σ12ψ alongside ψ̄ψ, and all these averages
contribute to the self-energy of the non-perturbative quark propagator when the mean-field
approximation is applied. A rigorous way to write down the non-perturbative quark
propagator is to include all possible statistical averages in the self-energy and then to prove
that some of them are constantly zero. This is a top-down method and it is a great challenge
for now. Instead, we used a bottom-up method to find out a non-perturbative propagator—
the proper quark propagator. In our method, we propose the minimal consistency ansatz
and that the proper propagator should have the least statistical averages in the self-energy,
such that other averages are zero by using this propagator in Equation (8). Through this
ansaztz, we prove that the proper propagator is Equation (14) and the only statistical
averages which could be non-zero are 〈ψ̄ψ〉, 〈ψ̄γ3ψ〉, 〈ψ̄γ5γ0ψ〉, and 〈ψ̄σ12ψ〉.

Four statistical averages means four gap equations, but one does not need to calculate
all of them. The physical effect of 〈ψ̄γ5γ0ψ〉 is to renormalize the chiral chemical potential,
and the renormalized chiral chemical potential can be treated as a free parameter; therefore,
the gap equation of 〈ψ̄γ5γ0ψ〉 or ‘b’ is not needed. There are still three gap equations left,
and the next step is to study these equations by considering different phases of QCD matter.

In the chiral symmetry restoring phase, it can be proved that 〈ψ̄ψ〉 and 〈ψ̄σ12ψ〉 are
simultaneously zero. This reduces the three gap equations to one equation—the gap
equation Equation (21) of 〈ψ̄γ3ψ〉 or ‘a’. This equation needs a cut-off M to the sum of
Landau levels, which is unexpected but reasonable. The NJL model is an effective field
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theory after all, even with the mean-field approximation, and in obtaining the quantities
involving self-energy, a cut-off is normally needed. Generally, at finite temperature, the
cut-off happens at the upper limit of |~p| if no magnetic field presents, while in this paper,

|~p| becomes
√

2m|q|B + p2
3 because of the existence of the magnetic field; therefore, a

finite result sometimes requires the cut-off to the Landau levels. Equation (21) leads to
a modified CME Equation (22), which is partly different from the classic CME deduced
from Equation (25). The classic CME is independent of the coupling constant ‘G’ and
proportional to the strength of the magnetic field, while the modified CME is not. The main
cause of these differences is that the classic CME does not consider the magnetic effect to
the gluon propagator. We can actually define a modified coupling constant G′ that satisfies

4π2

G′
=

4π2

G
− (2M + 1)|q|B, (32)

and gives

G′ =
G

1− (2M + 1)|q|B G
4π2

. (33)

This relation can shed a light on how the magnetic field affects the coupling constant or
how we should approximate the gluon propagator when an external magnetic field is
considered. Equation (33) also enlightens us as to how to determine the cut-off ‘M’ to
the Landau levels; that is, if one can acquire the data of the gluon propagator under the
influence of an external magnetic field, then the cut-off can be determined appropriately.

In the chiral symmetry breaking phase, the approximation of using the original propa-
gator Equation (4) for the gap equations leads to the classic CME, but it is not correct. A
more rigorous study shows that the quark current satisfies a modified CME in the breaking
phase, whcih is the same as in the restoring phase. As for the gap equations of 〈ψ̄ψ〉 and
〈ψ̄σ12ψ〉, we use a numerical method to find out the solutions of σ and c. iIt turns out that,
much like the chemical potential, the increasing chiral chemical potential can also cause a
phase transition from the breaking phase to the restoring phase. In our previous work [35],
we proved that the existence of an external magnetic field and chemical potential induces
non-zero 〈ψ̄σ12ψ〉, which is explained as the statistical averages of the quark magnetic
moment. In this paper, the magnetic field and chiral chemical potential together also induce
non-zero 〈ψ̄σ12ψ〉 in the breaking phase. By comparing the σ-µ5 and c-µ5 relations, the
values of c are indeed much smaller than σ at the same temperature, magnetic field, and
chiral chemical potential, which verifies that the approximation of using Equation (4) is
appropriate.

For a brief conclusion, the presence of chiral chemical potential and external magnetic
field induce non-zero quark current 〈ψ̄γ3ψ〉 and non-zero quark magnetic moment 〈ψ̄σ12ψ〉,
which is a new effect. Additionally, because of the quark current feedback to the quark self-
energy, the quark current satisfies a modified CME, which is different form the classic CME.
This paper has also studies the µ5-dependence of quark magnetic moment or ‘c’, and it
seems ‘c’ has the same behavior as σ does when the phase transition happens. Nevertheless,
its magnitude is normally much smaller than σ in the chiral symmetry breaking phase;
therefore, it may not be a good order parameter for identifying the phases of QCD matter.

There are still more studies to be done. In the breaking phase, new techniques are
needed to handle the proper propagator for studying the gap equations more rigorously. In
the restoring phase, the cut-off to the Landau levels needs support from other researches,
such as the experiments or QCD theory, to verify its rationality and determine its values.
Alongside these, we tend to include the chemical potential, chiral chemical potential, and
magnetic field in one NJL model and study their effects on the condensate and CME.
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Appendix A. The Properties of |ωn; n, a; p3〉
The basic properties of |ωn〉 ⊗ |m, a〉 ⊗ |p3〉 ≡ |n; m, a; p3〉 listed in the main body are

p̂0|ωn〉 = iωn|ωn〉, ωn = (2n + 1)πT, n ∈ Z;

p̂3|p3〉 = −p3|p3〉; D̂2
⊥|m, a〉 = (2m + 1)|q|B|m, a〉, m = 0, 1, 2, . . . .

(A1)

|ωn〉 is the eigenstate of p̂0 (noticing at finite temperature, p̂0 is not a Hermitian
operator). Alongside Equation (A1), the orthonormalization of this eigenstate is

〈ωn|ωn′〉 = δnn′ . (A2)

|p3〉 is simply the momentum eigenstate of p̂3, while its orthonormalization and
completeness are

〈p′3|p3〉 = δ(p′3 − p3),
∫
|p3〉〈p3|dp3 = 1. (A3)

For canceling the
∫

dx3 in the left hand side of the gap equations Equation (8), we
need the relation of |p3〉 and

∫
dx3, for which there is

〈p3|p3〉 =
1

2π

∫
dx3. (A4)

|m, a〉 is the eigenstate of D̂2
⊥, which is a state in the Hilbert space spanned by |x1〉 ⊗

|x2〉. In order to find out the physical meaning of ‘a’ and its orthonormalization, we defined
an orthonormalized eigenstate of D̂1,

|D1, p〉 :=

√
2
|q|eB

|p〉 ⊗ |X〉, X :=
2

qeB
(D1 − p). (A5)

It has the properties as below:

D̂1|D1, p〉 = −D1|D1, p〉, p̂1|p〉 = −p|p〉, x̂2|X〉 = −X|X〉, (A6)

〈D1, p|D′1, p′〉 = δ(D1 − D′1)δ(p− p′),
∫

dD1dp |D1, p〉〈D1, p| = I. (A7)
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In the |D1, p〉 representation, |m, a〉 is expressed as

〈D1, p|m, a〉 = cmeia( D1
2 −p)hm(

√
2
|q|eB

D1), cm :=

(
1

m!2π
√
|q|eBπ

) 1
2

, (A8)

where hm(z) is an even-function of z, which is the solution of the Weber differential equation.
Its orthogonality is

∫
hm(z)hm′(z)dz = m!

√
2πδmm′ ,

+∞

∑
m=0

1
m!
√

2π
hm(x)hm(y) = δ(x− y). (A9)

One can then employ the properties of hm(z) to demonstrate the orthonormalization
and completeness of |m, a〉,

〈m, a|m′, a′〉 =
∫

dD1dp 〈m, a|D1, p〉〈D1, p|m′, a′〉 = δmm′δ(a− a′), (A10)

+∞

∑
m=0

∫
da |m, a〉〈m, a| =

+∞

∑
m=0

∫
dadD1dpdD′1dp′ |D1, p〉〈D1, p|m, a〉〈m, a|D′1, p′〉〈D′1, p′| = I. (A11)

One can verify that ‘a’ is the eigenvalue of ( p̂2 − qeB
2 x̂1) now.

Once more, in order to cancel the
∫

dx1dx2 in the left-hand side of the gap equations
in Equation (8), there is the equation∫

〈m, a|m, a〉da =
|q|B
2π

∫
dx1dx2. (A12)

Appendix B. Several Schemes for Deducing the Gap Equations

We introduce several useful schemes to assist the deductions in the main body.
Scheme I: For any function f (ωn) of ωn, there is

∑
n

f (ωn) = ∑
n

f (−ωn), (A13)

whether the infinite series is convergent or not.
Scheme II: If there is an odd function f (ωn) of ωn, there is

∑
n

f (ωn) =
1
2 ∑

n
[ f (ωn) + f (−ωn)] = 0, (A14)

whether the infinite series is convergent or not.
Scheme III: If there is an odd function f (x) of x, there is∫ +∞

−∞
f (x)dx = lim

Λ→+∞

∫ Λ

−Λ
f (x)dx = 0, (A15)

whether the integral is convergent or not. In quantum field theory, this scheme is in fact
the symmetric cut-off regularization scheme. According to this scheme, one can prove that
〈x3| p̂3|x3〉 = 0. Similarly, for D̂1,2, there is another scheme shown below.

Scheme IV:
〈m, a|D̂1,2|m, a〉 = 0. (A16)

Scheme V: If there is an odd function f (x) of x, there is∫ +∞

−∞
f (x + ∆)dx = lim

Λ→+∞

∫ Λ

−Λ
f (x + ∆)dx = lim

Λ→+∞

∫ Λ+∆

Λ−∆
f (x)dx. (A17)
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The core idea of this scheme is that the integral variable transformation must be carried
out after the symmetric cut-off regularization. Of course, if f (x) is integral convergent, we
have

∫
f (x + ∆)dx = 0.
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