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Abstract: Using both analytical and numerical techniques, we discuss wave solutions within the
framework of an extended nonlinear Schrödinger equation with constant coefficients equipped with
spatiotemporal dispersion, self-steepening effects, and a Raman scattering term. We present the
exact traveling wave solution of the system in terms of Jacobi elliptic functions and mention some
symmetry results as they relate to the resulting ordinary differential equation. A constructed bright
soliton solution serves as the base to compare a numerical solution of the system using spectral
Fourier methods with a precise statistical low-rank approximation using a data-driven approach
aided by the Koopman operator theory. We found that the spatiotemporal feature added to the model
serves as a regularizing tool that enables a precise reconstruction of the original solution.

Keywords: traveling waves; solitons; symmetries; nonlinear Schrödinger equation; spectral methods;
Koopman operator

1. Introduction

The propagation of waves in different media has been the research subject of many
scientists in different branches of the natural sciences, engineering, and beyond. Several
systems have been proposed to describe the behavior of such waves, and many of them
have been based on the pivotal, and 1933 Nobel Prize winning, work of Erwin Schrödinger
during 1925–1926 [1]. His landmark study of wave matters later proved to be fundamental
for different areas of physics and engineering, and, as a result, various extensions of the
original Schrödinger equation have been proposed to study different phenomena (see, for
example, [2–7]). Analytic results involving extensions of the Schrödinger equation are
abundant, with many of them exploring soliton-related solutions. For example, Gomorov
and Malomed studied in [4] soliton dynamics considering a nonlinear Schrödinger-type
equation (NLSE) from a system describing the interaction between high and low frequency
waves. In [5], the same authors explored dynamics of solitons in a different extension of the
NLSE to study surface waves. Similarly, Bandelow and Ahkmediev obtained rogue waves
solutions [3] of an integrable extension of the NLSE. More recently, Ali et al. considered
in [2] another extension of the NLSE exploring solitons and resulting chaotic behaviors.
Motivated by recent advances in Koopman theory for partial differential equations and
by recent results on wave propagation within hyperbolic metamaterials, we consider
a dimensionless model, which is similar to Equation (2) in reference [2], given by the
following extended nonlinear Schrödinger equation (eNLSE):

iψt − aψxx − i bψxxx + cψxt + d|ψ|2ψ + i e
(
|ψ|2ψ

)
x
− i f ψ

(
|ψ|2

)
x
= 0 (1)

with i =
√
−1. The first term in the system (1) describes the time evolution of the

complex wave function ψ(x, t), the parameters a and b describe the second- and third-
order dispersion, c captures the spatiotemporal dispersion features, d deals with the
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cubic nonlinearity (also known as the Kerr law), the parameter e introduces the self-
steepening effect, and the last term f describes the Raman scattering effect. It is worth
mentioning that symmetries for Schrödinger-type equations have been studied by different
researchers [8–14] highlighting their importance for constructing explicit traveling wave
and soliton solutions. Some of the approaches taken on this work are adopted from results
available in the literature regarding symmetries of PDEs.

The system (1) is a natural extension of the model derived in [15] by adding spatiotem-
poral features of a pulse evolving within hyperbolic metamaterials. Thus, we explore wave
solutions of the system (1) motivated by recent results in hyperbolic metamaterials. Both
numerical and analytical solutions of the systems are presented and compared with the aid
of matrix factorization techniques and the theory of data reduction from statistics.

The use of statistical theory to explore the dynamics of nonlinear behavior in de-
terministic systems, including Schrödinger’s wave equation, has been an essential tool
in looking at the same problem but from a completely different point of view. Results
during the last few decades have allowed researchers from many institutions to understand
and interpret, to a great extent, the mechanisms of nonlinear features embedded within
nonlinear systems. Such systems are usually highly dimensional, and few of them can be
described analytically. Thus, in many cases, researchers must rely on accessible big data
sets, and such a dependency creates many challenges to advancement in the sciences.

Fortunately, different solution methods have been developed to approximate, with
high precision, the dynamics governing such complex systems. Transforming a highly
multidimensional nonlinear system to a quasilinear reduced one containing the key features
of the original one is an example of such an approach and one of our goals for the numerical
results section. Different techniques have been proposed to reduce the dimension of
model data. Most utilized among these techniques are singular value decomposition
(SVD), principal component analysis (PCA), proper orthogonal decomposition (POD),
dynamic mode decomposition (DMD), and their corresponding extensions. The idea to
decompose and reduce a system into its most relevant structure may have its roots in a
pair of papers [16] by B.O. Koopman and [17] by Koopman and J.V. Neumann; in these
papers, the authors depicted the possibility of the relation between dynamical properties
of a physical system (focusing on classical mechanical systems) with the structure of the
corresponding spectrum. During the subsequent decades, many contributions led to the
Koopman operator theory, which is basically an operator theoretic approach to analyze
dynamical systems. Connected to the underlying nonlinear dynamics through Koopman
operator theory is the DMD approach [18–24].

Although the above reduction methodologies have been focused purely on data,
some work has been done also to study the dynamics of nonlinear systems described by
equations aiming to handle them in the near future without analytic calculations [24–30].
The nonlinear Schrödinger equation [25,28,31,32] has been a source for these types of
studies for many reasons, one of them been the feasibility of applying it in different areas
of research, for example, in quantum computing.

In this work, we construct both a traveling wave solution and a bright soliton solution
and compare the latter with its low-rank statistical approximation generated through the
Koopman operator approach, which relies on SVD and DMD and generally can be thought
of as a data-driven technique to obtain a linear reduced order model for high-dimensional
complex systems. The rest of the manuscript is distributed as follows. In Section 2, we
construct an analytic expression first for the traveling wave solution and then for a bright
soliton solution. In Section 3, we present and compare the numerical approximations
resulting from spectral Fourier methods and the Koopman operator based on the soliton
solution. Then, we conclude our work with key final remarks.

2. Analytical Results

For the analytical considerations, we first present a traveling wave solution and then a
bright soliton solution. The latter will be the starting point for our numerical results.
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2.1. Traveling Waves

In this section, we aim to construct the exact traveling wave solution for the eNLSE
(1). Assume the system under consideration supports traveling wave solutions of the form

ψ(x, t) = φ(ξ)ei(−κx+ωt+θ), ξ = x− νt (2)

where ν is the propagation speed of a wave, κ is the wave number, and ω is the wave
frequency. The parameter θ is just a phase constant. The substitution of (2) into (1) leads to

(a + cν + 3bκ)φ′′ − [(a + bκ)κ2 − (1− cκ)ω]φ− (d + eκ)φ3 = 0 (3)

for the real part, and

bφ′′′ + [(1− cκ)ν− 2aκ − 3bκ2 − cω]φ′ + (2 f − 3e)φ2φ′ = 0 (4)

for the imaginary portion. Integrating the last Equation (4) yields

φ′′ +
1
b
[(1− cκ)ν− 2aκ − 3bκ2 − cω]φ +

1
3b

(2 f − 3e)φ3 = 0 (5)

after dividing by b and neglecting the constant of integration. Notice the indisputable
resemblance of (5) with the unforced Duffing oscillator. Its symmetries and isotypic
components in the space corresponding to the actions of its symmetric group were discussed
in [33]. Indeed, one can check also that the system (5) is Z2−equivariant (see also [33] for
more details).

Since φ must satisfy both (3) and (5), by equating the corresponding coefficients,
one gets the main parameters that describe the waveform, e.g., the wave speed, which is
given by

ν =
bΓ− e(a + 2b)

ce
, (6)

the wave number as
κ =

3e− Γ
3e

, (7)

and the frequency takes the form

ω =
3ae[cΓ(Γ− 3e)− 9e2]− b(Γ− 2e)[cΓ(Γ− 6e)− 27e2]

9ce2(cΓ + 3e)
(8)

where Γ = 3d + 2 f . Equation (5) is a Painleve type-II equation, and, as stated earlier, its
likeness with the unforced–undamped Duffing oscillator nonlinear system is evident; thus,
a solution in terms of elliptic functions shall fall out. Following the work of Beléndez et al.
in [34], the corresponding solution in terms of Jacobi elliptic functions is given by

φ(ξ) = α cn
(√

β + γα2 ξ,
γα2

2(β + γα2)

)
(9)

where
β =

1
b
[(1− cκ)ν− 2aκ − 3bκ2 − cω] (10)

and
γ =

1
3b

(2 f − 3e) > 0 (11)
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in view of the key parameters (6)–(8) and along with onset conditions φ(0) = α > 0 and
φ′(0) = 0. The exact periodic traveling wave solution for the system describing wave
propagation in hyperbolic nonlinear materials is given by

ψ(x, t) = α cn
(√

β + γα2 (x− νt),
γα2

2(β + γα2)

)
ei(−κx+ωt+θ) (12)

where the speed, wave number, and frequency are given by (6), (7), and (8), respectively.
A conventional approach can be applied to the eNLSE system in order to establish

traveling waves in terms of hyperbolic functions as well. To construct a traveling wave
solution to the system (1) in terms of hyperbolic functions, we first retrieve its corresponding
speed from the imaginary part (4), which is given by

ν =
cω + 2aκ

1− cκ
(13)

whenever the constraints
b = 0 and 2 f = 3e (14)

are satisfied. Notice that (13) differs from the speed of the elliptic solution (6) where the
parameter b was preserved. Now, in view of such constraints, Equation (3) reduces into

(a + cν)φ′′ − [aκ2 − (1− cκ)ω]φ− (d + eκ)φ3 = 0. (15)

By multiplying (15) by φ′ and integrating once with zero initial conditions, we have

2(a + cν)[φ′]2 − 2[aκ2 − (1− cκ)ω]φ2 − (d + eκ)φ4 = 0 (16)

which can be rewritten as√
2(a + cν) φ′ =

√
φ2 +

(d + eκ)

2[aκ2 − (1− cκ)ω]
φ4. (17)

Using integration by parts and a suitable substitution leads to

∫ du√
u2 + u4

=

√
aκ2 − (1− cκ)ω

a + cν
(x− νt) (18)

whose solution can be written in terms of hyperbolic secant if

(d + eκ)× [aκ2 − (1− cκ)ω] < 0 (19)

or in terms of hyperbolic sine if the direction of the last inequality is reversed.

2.2. Bright Soliton

Since we are interested in a soliton solution where ψ(x, t)→ 0 as t→ ±∞, we assume
that the eNLSE (1) supports a solution of the form

ψ(x, t) = P(x, t)ei(−κx+ωt+θ) (20)

where P(x, t) represents the general amplitude, and, in the phase factor, ω, κ, and θ describe
the frequency of the soliton, the wave number, and a phase constant, respectively. Thus,
inserting the solution form (20) into the system (1) and decomposing into real and imaginary
parts lead to the speed as in the case for the hyperbolic traveling wave (13),

v =
cω + 2aκ

1− cκ
(21)
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from the imaginary part provided (14) and the identity

(bκω−ω− aκ2)P + (d + eκ)P3 + cPxt − aPxx = 0 (22)

from the real portion. For the case of bright soliton, the still unknown P = P(x, t) can be
written as

P = A sechj[τ], τ = B(x− vt) (23)

where A and B represent the amplitude constant and inverse width correspondingly. The
real parameter j will be determined by exploring the balance between nonlinearity and
dispersion. One can check that (23) reduces the identity (22) to

[(cκ + aκ2 + bκ3 −ω)− p2(a + cv)B2]A sechj[τ] + (d + eκ)A3 sech3j[τ]

+j(1 + j)(a + cv)AB2 sechj+2[τ] = 0 (24)

where the interplay between nonlinearity and dispersion leads to j = 1. The resulting value
of j reduces (24) to the following two identities:

A = B

√
2[κc2(c + bκ2) + a(1 + cκ + c2κ2)]

(d + eκ)(1− cκ − 3c2B2)
, (25)

and

ω =
κ(1− cκ)(c + bκ2) + a[κ2 − cκ3 + 3(1 + cκ)B2]

1− cκ − 3c2B2 (26)

where the speed was retrieved in (21) as long as

cκ 6= 1 (27)

and
[κc2(c + bκ2) + a(1 + cκ + c2κ2)]× (d + eκ)(1− cκ − 3c2B2) > 0 (28)

are satisfied. Consequently, the bright soliton solution of the system (1) has the form

ψ(x, t) = A sech[B(x− vt)]ei(−κx+ωt+θ). (29)

where the amplitude (25) and the frequency (26) were described in terms of the soliton
width, and the speed was described in (21). This solution will exist as long as the conditions
given in (14), (27), and (28) are satisfied. The profile of the bright soliton (29) will be
essential for the numerical solutions of the system, which we present in the next section.

3. Numerical Approximations

In this section, we discuss the numerical solution of the eNLSE (1) using two dif-
ferent approaches. First, we construct a numerical solution (the data) using standard
spectral Fourier methods. Then, we apply the dynamic mode decomposition algorithm
and Koopman operator approaches to build a statistical low-rank approximation of the
wave dynamics embedded in the system with the least possible data.

3.1. Spectral Fourier Methods

While many numerical methods to solve partial differential equations exist, most
prominent during the last decades are finite difference methods, finite element methods,
gradient discretization methods, and spectral methods. The first three methods are based
on local representation of functions while the last makes use of global representation and,
thus, usually yields higher order accuracy. The spectral approximation methods to solve
PDEs are both efficient and highly accurate and, in our case, based on the Fourier transform
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to accommodate the highly periodic behavior of the wave dynamics embedded within the
examined system. We denote the Fourier transform (FT) of ψ(x, t) by:

F [ψ(x, t)] =
∞∫
−∞

e−ikxψ(x, t) dx = ψ̂(k, t).

For simplicity, we use ψ̂ instead of ψ̂(k, t). One can notice that the transform leads
to a result in terms of the wave number k from the original state space x, and such a result
is a vector of Fourier coefficients. A straightforward calculation of the FT of the eNLSE (1)
yields

ψ̂t = i
(a− bk)k2

1 + ck
ψ̂ + i

d
1 + ck

ψ̂|ψ|2 − e
1 + ck

̂(ψ|ψ|2)k +
f

1 + ck
̂ψ(|ψ|2)k (30)

for each k. Thus, the FT provides a representation of the time series dynamics in the Fourier
space, allowing us to solve the transformation with known iterative schemes or available
built-in functions in the computing environment of preference.

A finite but sufficiently representative space domain, e.g., x ∈ [−50, 50], is selected so
that, at the boundaries, the function is well approximated by zero. This resembles the fact
that ψ(x, t)→ 0 as t→ ±∞. The time domain is t ∈ [0, 2π] while the frequency domain
will be properly constructed. The initial condition to be considered is ψ(x, 0) = 2 sech(x)
in view of the bright soliton amplitude (23). In Figure 1, the time evolution of the solution
profile using spectral methods is provided for x ∈ [−15, 15] to depict a better view, (a) in
terms of its intensity, and (b) in terms of its corresponding contour. As expected, the wave
approximation reveals the periodic behavior typical of many Schrödinger-type equations.
We will consider this solution as our original data and will compare with its statistical
low-rank counterpart approximation on the next subsections.

Figure 1. Representation of the numerical approximation using spectral Fourier methods depicting os-
cillatory wave propagation: (a) the time evolution of the oscillatory wave profile (the constructed data)
and (b) the corresponding contour plot.This simulation considers the parameter values a = 2.09754,
b = −0.0121, c = 16.8998, d = 0.0789, e = 3.7437, f = 0.0398, and time frame t ∈ [0, 2π].

3.2. Dynamic Mode Decomposition

Arising from the fluid dynamics community, the Dynamic Mode Decomposition
(DMD) is a purely data-driven technique aimed to extract spatio-temporal, coherent struc-
tures, or patterns that dominate the observed measurement data, from the system under
consideration. The key ingredient of the DMD recipe is the Singular Value Decomposition
(SVD), a numerically stable matrix factorization technique used to obtain an optimal low-
rank approximation of highly dimensional systems and to calculate pseudo-inverses of
non-square arrays that allows for determining the least squares and minimum solutions of a
linear matrix system of the form Ax = b. Thus, for every complex-valued matrix X ∈ Cn×m,
its exact SVD approximation is X = UDV? where both U ∈ Cn×n and V ∈ Cm×m are
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unitary matrices, while D is a matrix containing the singular values of XX† such that
those values are ordered from the largest to the smallest [35,36]. Here, V? represents the
conjugate transpose of matrix V, and X† denotes the More–Penrose pseudoinverse of
matrix X. The aim of this process is to retrieve the eigen-decomposition of matrix A = XX′,
which contains the dominant coherent patterns of the system under study, without having
to compute A. In several situations, the smallest singular value is zero (e.g., when X is not
full row-rank); thus, the rank of the matrix D may serve as a point of reference to truncate
the SVD while still preserving the key features of the dominant patterns. For a truncation
value r ≤ rank(D), the truncated SVD to approximate X is now X ≈ UrDrV?

r where
the value of r is selected according to the situation at hand. The amount of toleration in the
selection of r is usually tied to the specifics of the given nonlinear system. Therefore, the
role of the SVD in the DMD scheme will be to facilitate a lower rank approximation of the
original system while keeping its dominant patterns.

Having established the idea behind the SVD method, we proceed to discuss the DMD
scheme following the reasoning of Kutz et al. [35], which first requires a data set of the form:

X =

 | | |
x1 x2 · · · xm
| | |

 (31)

where usually it is expected the number of rows to be considerably larger than the number
of columns. In this work, we arrange the columns into the desired matrix X as presented
above in (31). Once we have constructed our data matrix, the DMD algorithm can be
implemented as follows:

1. Create two matrices from data set given in (31):

X1,...,m−1 =

 | | |
x1 x2 · · · xm−1
| | |

 and X
′
2,...,m =

 | | |
x2 x3 · · · xm
| | |


2. Compute the full rank SVD of X1,...,m−1 : [U, D, V′] = svd(X1,...,m−1, 0)
3. Based on the selected rank−r, construct the reduced matrices Ur, Dr, and V

′
r

4. Construct the dynamic operator Ã : Ã = U∗r X
′
V
′
r D−1

r

5. Compute eigenvalues and eigenvectors of Ã : [W, L] = eig(Ã)

6. Construct the modes (eigenvectors) of the original matrix A : Φ = X′VD−1W
7. Construct time series approximation of the original dynamical system:

x(t) =
n

∑
j=1

bjΦj eλjt where λj are the eigenvalues of L and bj are the initial conditions.

The DMD scheme will be an essential tool to construct the Koopman approximation
of the wave dynamics embedded in the eNLSE (1) in the following subsection.

3.3. Koopman Approximation

Another approach for analyzing nonlinear systems is based on the Koopman opera-
tor K, which relies on the DMD algorithm for its corresponding computations. This
approach has recently been adopted by several research groups by including Kernel
observables [37–45]. The initial success of the DMD in fluid mechanics has led to a large
number of similar algorithms being proposed for the computation of the Koopman spectral
properties, which seek to approximate K with a best fit linear model [27,29]. Arbabi and
Mezic̀ proved that applying DMD to data arranged in a Hankel-type matrix produces
the true Koopman eigenfunctions and eigenvalues [27]. Kutz showed that an observable
based on the nonlinearity present in the NLSE gives an approximation whose error is
orders of magnitude smaller than the standard DMD. Indeed, for certain systems, the right
choice of observable function can linearize the nonlinear manifold on which the system
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evolves. Typically, analytical expressions for such systems are unavailable, and, as a result,
a data-driven approach could be advantageous.

The Koopman operator aims to linearize the manifold in which the nonlinear state
dynamics x = f (x, t) are embedded by projecting into a lower dimensional, weakly

nonlinear subspace. Consider a continuous-time dynamical system
dx
dt

= f (x), where
x is the state on a smooth n-dimensional manifold M and f is a nonlinear vector-valued
function of the same dimension as x. The Koopman operator K acts on the space of all
scalar observable functions g : M→ Ck such that (Kg)(x) = g( f (x)).

The typical approach to analyzing nonlinear systems is to linearize the dynamics
(which we may not know) in the neighborhood of the critical points, however, the Koop-
man operator attempts to linearize the state space M itself, providing a global linear
representation of the dynamics that is valid far from fixed points and periodic orbits [29].
The operator K acts on a complete linear vector space, so K admits an eigen-expansion
which completely characterizes the dynamics of the system [26]. The eigenpairs of K are
used to construct the Koopman modes, which are of particular interest since projection of
the observable functions allow the system dynamics to be advanced essentially by scalar
multiplication. In the case of the system (1), the chosen observables are strictly based on
the cubic nonlinear term.

The accuracy of the Koopman reconstruction relies mostly on the selection of the
observable function. The Figure 2 depicts the reconstructed dynamics of the eNLSE using
Koopman theory after considering for the observable function only the cubic nonlinear

part g(x) =
[

x
|x|2x

]
. In our work, the spatio-temporal term play a key role in obtaining

the desired approximation. By comparing (a) in Figures 1 and 2, one can appreciate the
precise approximation of the Koopman results with the wave dynamics of the eNLSE. The
spectra in Figure 2c is approximately purely imaginary, as desired, highlighting the higher
precision of the reconstruction. Truncating at r = 8, and using the observable base on the
cubic nonlinearity lead to a good approximation of the dynamics of the eNLSE .

Figure 2. Numerical results using Koopman Decomposition. (a) Koopman wave approximation
profile reconstructing the data provided on Figure 1a. (b) Contour of the corresponding Koopman
profile depicting the same dynamics as in Figure 1b. (c) Spectrum of the Koopman operator for a
rank of r = 8. The nearly pure imaginary spectrum reflects the high quality of the reconstruction.
(d) Error measured in the least-square sense between the resulting profile from Spectral Methods and
the profile yielded by Koopman Theory of the given system. The parameter values considered are
a = 2.09754, b = −0.0121, c = 16.8998, d = 0.0789, e = 3.7437, f = 0.0398 with t ∈ [0, 2π]. The case
when b = 0 yields nearly the same results as well as when e = 0 = f with b 6= 0.



Symmetry 2022, 14, 465 9 of 11

4. Conclusions

The understanding of wave propagation in Schrödinger-type systems is still important
due to the possible wide range of applications, from communication systems to the emerg-
ing field of quantum computing. The study of the dynamics embedded in a nonlinear
system using the methods discussed on this work has been of great interest during the last
years due to its possible positive impact in the understanding of the hidden dynamics in
data sets. The idea of using only a portion of the data to construct a precise generalization is
definitely, in terms of numerical calculations, a cost-effective process. Dimension reduction
techniques to approximate the desired outputs in the most possible precise way are desired
essential elements in data science. In this work, we explored analytical and numerical wave
solutions of a highly nonlinear extension of the original Schrödinger equation motivated by
recent results in the field of material sciences. We found that the spatio-temporal dispersion
term served as a key regularization tool on the numerical algorithm for the Koopman
reconstruction of the profile created with Spectral Methods on Figure 1. The almost purely
imaginary resulting Koopman spectrum corroborates the precision of the reconstruction.
The dynamic decomposition algorithm is a landmark in the study of the hidden dynam-
ics embedded in data, and recent progress indicates it works. However, much work is
still needed to determine a process to construct the exact observables for each case in the
Koopman approach. We hope that the results presented in this work will contribute to
the advancement of understanding the dynamics within systems described by data. The
ability of the spatio-temporal dispersion in balancing the dynamics of highly nonlinear
Schrödinger-type equations is essential to reach the desired accuracy approximation of
embedded dynamics [46]. Further work on this subject is still necessary to develop a frame-
work to decide a precise observable function g(x), to better understand the influence the
spatio-temporal term and to identify possible corresponding advantages.
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