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Abstract: In this paper, we consider the symmetric matrix optimization problem arising in the
process of unsupervised feature selection. By relaxing the orthogonal constraint, this problem
is transformed into a constrained symmetric nonnegative matrix optimization problem, and an
efficient algorithm is designed to solve it. The convergence theorem of the new algorithm is derived.
Finally, some numerical examples show that the new method is feasible. Notably, some simulation
experiments in unsupervised feature selection illustrate that our algorithm is more effective than the
existing algorithms.
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1. Introduction

Throughout this paper, we use Rn×m to denote the set of m× n real matrices. We write
B ≥ 0 if the matrix B is nonnegative. The symbols Tr(B), BT stand for the trace and
transpose of the matrix B, respectively. The symbol ‖α‖ stands for the l2-norm of the vector
α, i.e., ‖α‖ = (αTα)

1
2 . The symbol ‖B‖F stands for the Frobenius norm of the matrix B.

The symbol Ip stands for the p× p identity matrix. For the matrices A and B, A� B denotes
the Hadamard product of A and B. The symbol max{x, y} represents the greater of x and y.

In this paper, we consider the following symmetric matrix optimization problem in
unsupervised feature selection.

Problem 1. Given a matrix A ∈ Rn×m, consider the symmetric matrix optimization problem

min
X,Y

1
2
‖A− AXY‖2

F, s.t.X ≥ 0, Y ≥ 0, XTX = Ip. (1)

Here A = [ f1, f2, · · · , fm] ∈ Rn×m is the data matrix, X ∈ Rm×p is the indicator matrix (feature
weight matrix) and Y ∈ Rp×m is the coefficient matrix.

Problem 1 arises in unsupervised feature selection, which is an important part of
machine learning. This can be stated as follows. Data from image processing, pattern
recognition and machine learning are usually high-dimensional data. If we deal with
these data directly, this may increase the computational complexity and the memory of
the algorithm. In particular, it may lead to the overfitting phenomenon for the machine
learning model. Feature selection is a common dimension reduction method, the goal of
which is to find the most representative feature subset from the original features, that is to
say, for a given original high-dimensional data matrix A, we must find out the relationship
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between the original feature space and the subspace generated by the selected feature.
Feature selection can be formalized as follows.

min
I

d(Span(A), Span(Ac)) =‖ AIc − AIY ‖F, s.t.|I| = k, (2)

where I denotes the index set of the selected features and Y is the coefficient matrix of the
initial feature space in the selected features. From the viewpoint of matrix factorization,
feature selection is expressed as follows

min
X,Y

1
2
‖ A− AXY ‖, s.t.X ≥ 0, XTX = Ip. (3)

Considering that the data in practical problems are often nonnegative, we add a constraint
to guarantee that any feature is described as the positive linear combination of the selected
features, so the problem in (3) can be rewritten as in (1).

In the last few years, many numerical methods have been proposed for solving op-
timization problems with nonnegative constraints, and these methods can be broadly
classified into two categories: alternating gradient descent methods and alternating non-
negative least squares methods. The most commonly used alternating gradient descent
method is the multiplicative update algorithm [1,2]. Although the multiplicative update
algorithm is simple to implement, it lacks a convergence guarantee. The alternating non-
negative least squares method is used to solve nonnegative subproblems. Many numerical
methods, such as the active method [3], the projected gradient method [4,5], the pro-
jected Barzilai–Borwein method [6,7], the projected Newton method [8] and the projected
quasi-Newton method [9,10], have been designed to solve these subproblems.

For optimization problems with orthogonal constraints, which are also known as opti-
mization problems on manifolds, there are many algorithms to solve this type of problem.
In general, these can be divided into two categories: the feasible method and the infeasible
method. The feasible method means that the variance obtained after each iteration must
satisfy the orthogonal constraint. Many traditional optimization algorithms, such as the
gradient method [11], the conjugate method [12], the trust-region method [13], Newton
method [8] and the quasi-Newton method [14], can be used to deal with optimization
problems on manifolds. Wen and Yin [15] proposed the CMBSS algorithm, which combined
the Cayley transform and the curvilinear search approach with BB steps. However, the
computational complexity increases when the number of variables or the amount of data
increases, resulting in the low efficiency of this algorithm. Infeasible methods can over-
come this disadvantage when facing high-dimensional data. In 2013, Lai and Osher [16]
proposed a splitting method based on Bregman iteration and the ADMM method for
orthogonality constraint problems. The SOC method is a valid and efficient method for
solving the convex optimization problems but the proof of its convergence is still uncer-
tain. Thus, Chen et al. [17] put forward a proximal alternating augmented Lagrangian
method to solve such optimization problems with a non-smooth objective function and
non-convex constraint.

Some unsupervised feature selection algorithms based on matrix decomposition have
been proposed and have achieved good performance, such as SOCFS, MFFS, RUFSM,
OPMF and so on. Based on the orthogonal basis clustering algorithm, SOCFS [18] does
not explicitly use the pre-computed local structure information for data points represented
as additional terms of their objective functions, but directly computes latent cluster infor-
mation by means of the target matrix, conducting orthogonal basis clustering in a single
unified term of the objective function. In 2017, Du S et al. [19] proposed RUFSM, in which
robust discriminative feature selection and robust clustering are performed simultaneously
under the l2,1-norm, while the local manifold structures of the data are preserved. MFFS
was developed from the viewpoint of subspace learning. That is, it treats feature selection
as a matrix factorization problem and introduces an orthogonal constraint into its objective
function to select the most informative features from high-dimensional data.
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OPMF [20] incorporates matrix factorization, ordinal locality structure preservation
and inner-product regularization into a unified framework, which can not only preserve the
ordinal locality structure of the original data ,but also achieve sparsity and low redundancy
among features.

However, research into Problem 1 is very scarce as far as we know. The greatest
difficulty is how to deal with the nonnegative and orthogonal constraints, because the
problem has highly structured constraints. In this paper, we first use the penalty technique
to deal with the orthogonal constraint and reformulate Problem 1 as a minimization
problem with nonnegative constraints. Then, we design a new method for solving this
problem. Based on the auxiliary function, the convergence theorem of the new method
is derived. Finally, some numerical examples show that the new method is feasible. In
particular, some simulation experiments in unsupervised feature selection illustrate that
our algorithm is more efficient than the existing algorithms.

The rest of this paper is organized as follows. A new algorithm is proposed to solve
Problem 1 in Section 2 and the convergence analysis is given in Section 3. In Section 4, some
numerical examples are reported. Numerical tests on the proposed algorithm applied to
unsupervised feature selection are also reported in that section.

2. A New Algorithm for Solving Problem 1

In this section we first design a new algorithm for solving Problem 1; then, we present
the properties of this algorithm.

Problem 1 is difficult to solve due to the orthogonal constraint XTX = Ip. Fortunately,
this difficulty can be overcome by adding a penalty term for the constraint. Therefore,
Problem 1 can be transformed into the following form

min
X,Y

F(X, Y) =
1
2
‖ A− AXY ‖2

F +
ρ

4
‖ XTX− Ip ‖2

F, s.t.X ≥ 0, Y ≥ 0, (4)

where ρ is a penalty coefficient. This extra term is used to penalize the divergence between
XTX and Ip. The parameter ρ is chosen by users to make a trade-off between making
1
2 ‖ A− AXY ‖2

F small, while ensuring that ‖ XTX− Ip ‖2
F is not excessively large.

Let the Lagrange function of (4) be

L(X, Y) = F(X, Y)− Tr(αXT)− Tr(βYT)

=
1
2

Tr[(A− AXY)T(A− AXY)]− Tr(αXT)− Tr(βYT)

=
1
2

Tr(AT A)− Tr(YTXT AT A) +
1
2

Tr(YTXT AT AXY)

− Tr(αXT)− Tr(βYT),

where α ∈ Rm×p and β ∈ Rp×m are the Lagrangian multipliers of X and Y. It is straightfor-
ward to obtain its gradient functions as follows

∇X F(X, Y) = −AT AYT + AT AXYYT + ρ(XXTX− X),

∇Y F(X, Y) = −XT AT A + XT AT AXY.

Setting the partial derivatives of X and Y to zero, we obtain

∂L
∂X

= −AT AYT + AT AXYYT + ρ(XXTX− X)− α = 0,

∂L
∂Y

= −XT AT A + XT AT AXY− β = 0,
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which implies that

α = −AT AYT + AT AXYYT + ρ(XXTX− X) = ∇X F(X, Y),

β = −XT AT A + XT AT AXY = ∇Y F(X, Y).

Noting that (X, Y) is the stationary point of (4), if it satisfies the KKT conditions

X ≥ 0, Y ≥ 0,∇X F(X, Y) = α ≥ 0,∇Y F(X, Y) = β ≥ 0, α� X = 0, β�Y = 0, (5)

which implies
∇X F(X, Y)� X = 0, ∇Y F(X, Y)�Y = 0,

or
(−AT AYT + AT AXYYT + ρ(XXTX− X))ij · Xij = 0, (6)

(−XT AT A + XT AT AXY)ij ·Yij = 0. (7)

According to (6) and (7) we can obtain the following iterations

X(k+1)
ij ← X(k)

ij
[AT A(Y(k))T + ρX(k)]ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij
, (8)

Y(k+1)
ij ← Y(k)

ij
[(X(k+1))T AT A]ij

[(X(k+1))T AT AX(k+1)Y(k)]ij
, (9)

which are equivalent to the following update formulations

X(k+1)
ij ← X(k)

ij −
X(k)

ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij
[∇X F(X(k), Y(k))]ij, (10)

Y(k+1)
ij ← Y(k)

ij −
Y(k)

ij

[(X(k+1))T AT AX(k+1)Y(k)]ij
[∇Y F(X(k+1), Y(k))]ij. (11)

However, the iterative formulae (10) and (11) have two drawbacks, as follows.

(1) The denominator of (10) or (11) may be zero, which violates the rule of fractional op-
eration.

(2) When X(k)
ij = 0 and [∇X F(X(k), Y(k))]ij < 0 or Y(k)

ij = 0 and [∇Y F(X(k), Y(k))]ij < 0,
the convergence cannot be guaranteed under the updating rule of (10) and (11).

In order to overcome these difficulties, we designed the following iterative methods

X(k+1)
ij ← X(k)

ij −
X(k)

ij [∇X F(X(k), Y(k))]ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ
, (12)

Y(k+1)
ij ← Y(k)

ij −
Y(k)

ij [∇Y F(X(k+1), Y(k))]ij

[(X(k+1))T AT AX(k+1)Y(k)]ij + δ
, (13)

where

X(k)
ij =

 X(k)
ij , i f [∇X F(X(k), Y(k))]ij ≥ 0.

max{X(k)
ij , σ}, i f [∇X F(X(k), Y(k))]ij < 0.

(14)

Y(k)
ij =

 Y(k)
ij , i f [∇Y F(X(k), Y(k))]ij ≥ 0.

max{Y(k)
ij , σ}, i f [∇Y F(X(k), Y(k))]ij < 0.

(15)
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Here, σ is a small positive number which can guarantee the nonnegativity of every element of
X and Y. So we can establish a new algorithm for solving Problem 1 as follows (Algorithm 1).

Algorithm 1: This Algorithm attempts to Solve Problem 1.

Input Data matrix A ∈ Rn×m, the number of selected features p, parameters σ, ρ
and δ.
Output An index set of selected features I ⊆ {1, 2, · · · , m} and |I| = p.
1. Initialize matrix X(0) ≥ 0 and Y(0) ≥ 0.
2. Set k := 0.
3. Repeat
4. Fix Y and update X by (2.9);
5. Fix X and update Y by (2.10);
6. Until convergence condition has been satisfied, otherwise set k := k + 1 and
turn to step 3.

7. End for
8. X = (x1, x2, . . . , xn)T . Compute ‖ xi ‖ and sort them in a descending order to
choose

the top p features.

The sequences {X(k)} and {Y(k)} generated by Algorithm 1 have the following property.

Theorem 1. If X(0) > 0 and Y(0) > 0, then for arbitrary k ≥ 0, we have X(k) > 0 and Y(k) > 0.
If X(0) ≥ 0 and Y(0) ≥ 0, then for arbitrary k ≥ 0, we have X(k) ≥ 0 and Y(k) ≥ 0.

Proof. It is obvious that the conclusion is true when k = 0. Now we will consider the case
k > 0.

Case I.

From [∇X F(X, Y)]ij ≥ 0 it follows that Xij = Xij and

X(k+1)
ij = X(k)

ij −
X(k)

ij [∇X F(X(k), Y(k))]ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ

=
[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ijX

(k)
ij + δX(k)

ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ

−
[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ijX

(k)
ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ

+
(AT AY(k) + ρX(k))ijX

(k)
ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ

=
[(AT A(Y(k))T + ρX(k))ij + δ]X(k)

ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ
.

Hence, if X(k)
ij > 0 then X(k+1)

ij > 0 and if X(k)
ij ≥ 0 then X(k+1)

ij ≥ 0.

Case II.

From [∇X F(X, Y)]ij < 0, it follows that Xij 6= Xij and

X(k+1)
ij = X(k)

ij −
max(X(k)

ij , σ)[∇X F(X(k+1), Y(k+1))]ij

[AT AX(k)Y(k)(Y(k))T + ρX(k)(X(k))TX(k)]ij + δ
.
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Noting that max{X(k)
ij , σ} > 0 and [∇X F(X(k), Y(k))]ij < 0, we can easily conclude

that if X(k)
ij > 0 then X(k+1)

ij > 0 and if X(k)
ij ≥ 0 then X(k+1)

ij ≥ 0.

Case III.

From [∇Y F(X, Y)]ij ≥ 0 it follows that Yij = Yij and

Y(k+1)
ij = Y(k)

ij −
Y(k)

ij [∇Y F(X(k+1), Y(k))]ij

[(X(k+1))T AT AX(k+1)Y(k)]ij + δ

=
[(X(k+1))T AT AX(k+1)Y(k)]ijY

(k)
ij + δY(k)

ij

[(X(k+1))T AT AX(k+1)Y(k)]ij + δ

−
[(X(k+1))T AT AX(k+1)Y(k) − (X(k+1))T AT A]ijY

(k)
ij

[(X(k+1))T AT AX(k+1)Y(k)]ij + δ

=
[((X(k+1))T AT A)ij + δ]Y(k)

ij

[(X(k+1))T AT AX(k+1)Y(k)]ij + δ
.

Thus, if Y(k)
ij > 0 then Y(k+1)

ij > 0 and if Y(k)
ij ≥ 0 then Y(k+1)

ij ≥ 0.

Case IV.

From [∇Y F(X, Y)]ij < 0, it follows that Yij 6= Yij and

Y(k+1)
ij = Y(k)

ij −
max(Y(k)

ij , σ)[∇Y F(X, Y)]ij
[(X(k+1))T AT AX(k+1)Y(k)]ij + δ

.

Based on the fact that max{Y(k)
ij , σ} > 0 and [∇Y F(X, Y)]ij < 0, we can conclude that

if Y(k)
ij > 0 then Y(k+1)

ij > 0 and if Y(k)
ij ≥ 0 then Y(k+1)

ij ≥ 0 . �

3. Convergence Analysis

In this section, we will give the convergence theorem for Algorithm 1. For the objective
function

F(X, Y) =
1
2
‖ A− AXY ‖2

F +
ρ

4
‖ XTX− Ip ‖2

F

of Problem (4), we first prove that

F(X(k+1), Y(k+1)) ≤ F(X(k), Y(k)),

where X(k) and Y(k) are the k-th iteration of Algorithm 1, then obtain the limit point as the
stationary point of Problem (4). In order to develop this section, we need a lemma.

Lemma 1 ([21]). If there exists a function G(u, u
′
) of H(u) satisfying

G(u, u
′
) ≥ H(u), G(u, u) = H(u), (16)

then H(u) is non-increasing under the update rule

u(k+1) = arg min
u

G(u, u(k)).

Here G(u, u
′
) is called an auxiliary function of H(u) if it satisfies (16).
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Theorem 2. Fixing X, the objective function F(X, Y) is non-increasing, that is

F(X(k), Y(k+1)) ≤ F(X(k), Y(k)).

Proof. Set A = [ f1, f2, · · · , fm] and Y = (y1, y2, · · · , ym), then

‖ A− AXY ‖2
F=

m

∑
i=1
‖ fi − AXy(k)i ‖

2 .

Noting that

F(X(k), Y(k+1)) =
1
2
‖ A− AX(k)Y(k+1) ‖2

F +
ρ

4
‖ (X(k))TX(k) − Ip ‖2

F,

F(X(k), Y(k)) =
1
2
‖ A− AX(k)Y(k) ‖2

F +
ρ

4
‖ (X(k))TX(k) − Ip ‖2

F,

and when X is fixed we can ignore the constant term ρ
4 ‖ XTX− Ip ‖2

F, then

F(X(k), Y(k+1)) ≤ F(X(k), Y(k))⇐⇒ 1
2
‖ A− AX(k)Y(k+1) ‖2

F≤
1
2
‖ A− AX(k)Y(k) ‖2

F

⇐⇒
m

∑
i=1
‖ fi − AX(k)y(k+1)

i ‖≤
m

∑
i=1
‖ fi − AX(k)y(k)i ‖⇐⇒‖ fi − AX(k)y(k+1)

i ‖≤‖ fi − AX(k)y(k)i ‖ .

If we need to prove F(X(k), Y(k+1)) ≤ F(X(k), Y(k)), we must prove that

H(y) = 1/2 ‖ f − AXy ‖2

is a nonincreasing function. Noting that H(y) is a quadratic function and its second-order
Taylor approximation at y(k) is as follows

H(y) = H(y(k)) + (y− y(k))T∇H(y(k)) + 1/2(y− y(k))T∇2H(y(k))(y− y(k)), (17)

where
∇H(y(k)) = −XT A f + XT AT AXy(k),

and
∇2H(y(k)) = XT AT AX.

Now we will construct a function

G(y, y(k)) = H(y(k)) + (y− y(k))T∇H(y(k)) + 1/2(y− y(k))T P(y− y(k)), (18)

where P is a diagonal matrix with

Pii =


(XT AT AXy(k))i+δ

y(k)i

, i f i ∈ I,

0, i f i /∈ I.

I = {i | y(k)i > 0,∇H(y(k))i 6= 0 or y(k)i = 0,∇H(y(k))i < 0} , {i | y(k)i > 0,∇H(y(k))i 6= 0}.
We begin to prove that G(y, y(k)) is an auxiliary function of H(y). It is obvious that

G(y, y) = H(y) is satisfied; now we prove that the inequality G(y, y(k)) ≥ H(y) holds.
Noting that

G(y, y(k))− H(y) = 1/2(y− y(k))(P−∇2H(y(k)))(y− y(k)) = 1/2(y− y(k))(P− XT AT AX)(y− y(k)).

In fact , we can prove that the matrix P− XT AT AX is a positive semi-definite matrix.
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Case I.

When ∇H(y(k)) > 0 or ∇H(y(k)) < 0 but y(k)i > δ > 0, we have y(k)i = y(k)i . For any
nonzero vector z = (z1, z2, · · · , zp)T ∈ Rp, we have

zT(P− XT AT AX)z

=
p

∑
i=1

(XT AT AXy(k))i

(Y(k))i
z2

i +
p

∑
i=1

δ

(y(k))i
z2

i −
p

∑
i=1

p

∑
j=1

(XT AT AX)ijzizj

>
p

∑
i=1

(XT AT AXy(k))i

(y(k))i
z2

i −
p

∑
i=1

p

∑
j=1

(XT AT AX)ijzizj

= 1/2
p

∑
i=1

p

∑
j=1

(XT AT AX)ij(y(k))i

(y(k))j
z2

j + 1/2
p

∑
i=1

p

∑
j=1

(ZT AT AX)ji(y(k))j

(y(k))i
z2

i −
p

∑
i=1

p

∑
j=1

(XT AT AX)ijzizj

= 1/2
p

∑
i=1

p

∑
j=1

(

√√√√y(k)i
yt

j
zj −

√√√√ yt
j

y(k)i

zi)
2(XT AT AX)ij ≥ 0.

The last inequality is true due to the nonnegativity of X, and the data matrix A generally
has practical significance, so the elements are usually nonnegative; therefore, we can obtain
that the matrix XT AT AX is also a nonnegative matrix. Thus we obtain

G(y, y(k)) ≥ H(y). (19)

Case II.

When ∇H(y(k)) < 0 and δ > y(k)i > 0, we have y(k)i = δ, we can also use the
same technique to verify that matrix P− XT AT AX is positive semi-definite. According
to Lemma 1, we obtain that H(y) is anon-increasing function so F(X, Y) is non-increasing
when X is fixed. Therefore, we can obtain

F(X(k), Y(k+1)) ≤ F(X(k), Y(k)). (20)

This completes the proof.

Similarly, we can use the same method to verify that when Y is fixed, the function
F(X, Y) is also a non-increasing function. Thus, we have

F(X(k+1), Y(k)) ≤ F(X(k), Y(k)). (21)

Consequently, by (20) and (21), we obtain

F(X(k+1), Y(k+1)) ≤ F(X(k+1), Y(k)) ≤ F(X(k), Y(k)). (22)

Theorem 3. The sequence {(X(k), Y(k))} generated by Algorithm 1 converges to the stationary
point of Problem 1.

Proof. Since F(X(k), Y(k)) is a decreasing sequence and it is bounded with the lower bound
zero and the upper bound F(X(0), Y(0)), and combining Theorem 1, there exist nonnegative
matrices (X∗, Y∗) such that

lim
k≥0,k→∞

F(X(k), Y(k)) = F(X∗, Y∗).

Because of the continuity and monotonicity of the function F, we can obtain

lim
k≥0,k→∞

(X(k), Y(k)) = (X∗, Y∗). (23)
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Now we will prove the point {(X∗, Y∗)} is the stationary point of Problem 1, that is, we
will prove that {(X∗, Y∗)} satisfies the KKT conditions (5). We first prove

i f Y∗ij > 0, then (∇Y F(X∗, Y∗))ij = 0, (24)

and
i f Y∗ij = 0, then (∇Y F(X∗, Y∗))ij ≥ 0. (25)

Based on the definition of Yij in (14)

Y(k)
ij = max(Y(k)

ij , σ) or Y(k)
ij ,

so the sequence {Y(k)
ij }may have two convergent points Y∗ij or σ. We set

Ỹ∗ = lim
k≥0,k→∞

Y(k).

Furthermore, according to (25), we have

lim
k≥0,k→∞

(Y(k+1)
ij −Y(k)

ij ) =
Ỹ∗ij [∇Y F(X∗, Y∗)]ij

[(X∗)T AT AX∗Y∗]ij + δ
= 0. (26)

When Y∗ij > 0, we have Ỹ∗ij > 0; thereby it immediately implies ∇Y F(X∗, Y∗) = 0 which is
consistent with (24). Now we begin to prove (25). If the result is not true, there exists (i, j)
such that

Y∗ij = 0 but [∇Y F(X∗, Y∗)]ij < 0.

When k is large enough, we have [∇Y F(X(k), Y(k))]ij < 0 and

lim
k≥0,k→∞

Y(k)
ij = Ỹ∗ij = σ.

Therefore
Ỹ∗ij [∇Y F(X∗, Y∗)]ij

[(X∗)T AT AX∗Y∗]ij + δ
> 0,

which is a contradiction of (26); hence, (25) holds. (24) and (25) imply that Y∗ satisfies the
KKT conditions (5). In a similar way, we can prove that X∗ satisfies the KKT conditions (5).
Hence, (X∗, Y∗) is the stationary point of Problem 1.

4. Numerical Experiments

In this section, we first present a simple example to illustrate that Algorithm 1 is
feasible to solve Problem 1, and we apply Algorithm 1 to unsupervised feature selection.
We also compare our algorithm with the MaxVar Algorithm [22], the UDFS Algorithm [23]
and the MFFS Algorithm [24]. All experiments were performed in MATLAB R2014a on a
PC with an Intel Core i5 processor at 2.50 GHz with a precision of ε = 2.22× 10−16. Set the
gradient value

GV(X, Y) =‖ ∇X F(X, Y)� X ‖2
F + ‖ ∇Y F(X, Y)�Y ‖2

F .

Due to the KKT conditions (5) we know that if GV(X, Y) = 0 then (X, Y) is the stationary
point of Problem 1. So we use either GV(X, Y) ≤ 1.0× 10−4 or the iteration step k has
reached the upper limit 500 as the stopping criterion of Algorithm 1.
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4.1. A Simple Example

Example 1. Considering Problem 1 with n = 5, m = 4, p = 3 and

A =


0.6882 0.0113 0.6763 0.3245
0.4984 0.2828 0.5696 0.5210
0.0990 0.5896 0.5517 0.8649
0.2878 0.1720 0.9674 0.9941
0.5381 0.1701 0.6284 0.8385

.

Set the initial matrices

X(0) =


0.3474 0.4812 0.9596
0.7494 0.2862 0.4421
0.9394 0.5952 0.9620
0.6681 0.3364 0.6764

, Y(0) =

 0.7061 0.8338 0.4641 0.8316
0.9577 0.1552 0.2987 0.5391
0.9399 0.8304 0.5233 0.2598

.

We use Algorithm 1 to solve this problem. After 99 iterations, we get the solution of Problem 1
as follows

X(99) ≈


0 0 0.9478

0.9764 0 0
0 1.0000 0

0.0236 0 0.0522

, Y(99) ≈

 0.0005 0.9781 0.6839 1.3647
0 0 0 0

1.0662 0.0966 1.1570 0.8467

,

and
GV(X, Y) = 9.8992× 10−5.

This example shows that Algorithm 1 is feasible to solve Problem 1.

4.2. Application to Unsupervised Feature Selection and Comparison with Existing Algorithms
4.2.1. Dataset

In the next stage of our study, we used standard databases to test the performance of
our proposed algorithm. We first describe the four datasets use, the target image is shown
in Figure 1, and the characteristics of which are summarized in Table 1.

Table 1. Database Description.

Dataset Size Features Classes Data Types

COIL20 1440 1024 20 Object images

PIE 1166 1024 53 Face images

ORL 400 1024 40 Face images

Yale 165 1024 15 Face images

1. COIL20 (http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html (accessed
on 1 December 2021)): This dataset contains 20 objects. The images of each object were
taken 5 degrees apart as the object was rotated on a turntable, and for each object there are
72 images. The size of each image is 32× 32 pixels, with 256 grey levels per pixel. Thus,
each image is represented by a 1024-dimensional vector.

2. PIE (http://archive.ics.uci.edu/ml/datasets.php (accessed on 1 December 2021)):
This is a face image dataset with 53 different people; for each subject, 22 pictures were
taken under different lighting conditions with different postures and expressions.

3. ORL (http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html (accessed
on 1 December 2021)): This dataset contains ten different images of each of 40 distinct
subjects. For some subjects, the images were taken at different times, varying the lighting,

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://archive.ics.uci.edu/ml/datasets.php
http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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facial expressions (open/closed eyes, smiling/not smiling) and facial details (glasses/no
glasses). All the images were taken against a dark homogeneous background with the
subjects in an upright, frontal position (with tolerance for some side movement).

4. Yale (http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html (accessed
on 1 December 2021)): This dataset contains 165 grayscale images of 15 individuals. There
are 11 images per subject, and they have different facial expressions (happy, sad, surprised,
sleepy, normal and wink) or lighting conditions (center-light, left-light, right-light). Using
the above four datasets, we input these grayscale images as the initial value A, and then
used the initial matrix X and Y so that we could obtain a series of function values through
the iterative updating of the algorithm. Then, we were able to obtain four convergence
curves for different databases, as shown in Figure 2.
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Figure 1. Some images from different databases. (a) COIL20, (b) PIE, (c) ORL, (d) Yale.

http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Figure 2. Clustering results (ACC) of different feature selection algorithms. (a) COIL20, (b) PIE,
(c) ORL, (d) Yale.

4.2.2. Comparison Methods

1. MaxVar [22]: Selecting features according to the variance of features. The feature
with the higher variance than others is more important.

2. UDFS [23]: l2,1-norm regularized discriminative feature selection method. This
method selects the most distinctive feature through the local discrimination information of
data and the correlation of features.

3. MFFS [24]: unsupervised feature selection via matrix factorization, in which the
objective function originates from the distance between two subspaces.

4.2.3. Parameter Settings

In our proposed method, the parameter ρ was selected from the set {10, 102 · · · , 109}.
In the following experiments, we set the value of ρ to be 104, 109, 108 and 107 for the
COIL20, PIE, ORL and Yale databases. The numbers of selected features were taken from
{20, 40, 60, . . . , 200} for all datasets. Then, we computed the average value of ACC and NMI
when selecting different numbers of features. The maximum iteration number (maxiter)
was set to 1000. For the sparsity parameters γ and λ in UDFS, we set γ = λ = 10−5. The
value of parameter ρ in MFFS was set as 108. We set σ = δ = ε = 10−4 in our proposed
algorithm. The results of the comparison of MaxVar, UDFS, MFFS and our proposed
algorithm are presented in Figures 3 and 4. The following two tables give the average
accuracy and normalized mutual information calculated using our proposed algorithm.
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Figure 3. Clustering results (NMI) of different feature selection algorithms. (a) COIL20, (b) PIE,
(c) ORL, (d) Yale.

4.2.4. Evaluation Metrics

There are two metrics to measure the results of clustering using the selected features.
The accuracy of clustering (ACC) and normalized mutual information (NMI) can be cal-
culated as follows. The value of ACC and NMI scales between 0 and 1, and a high value
indicates an efficient clustering result. For every dataset, there are two parts, fea and gnd,
the fea data are used to operate the selection, and after clustering one can obtain a clustering
label, denoted by si; gnd is the true label of features denoted by ti, and the ACC can be
computed using the clustering label and the true label.

ACC =

n
∑

i=1
δ(ti, map(si))

n
,

where δ(a, b) = 1 if a = b; δ(a, b) = 0 if a 6= b. The map(·) indicates a mapping that
permutes the label of clustering result to match the true label as well as possible using
the Kuhn–Munkres Algorithm [25]. For two variables P and Q, the NMI is defined in the
following form:

NMI(P, Q) =
I(P, Q)

H(P)H(Q)
,
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where I(P, Q) is the mutual information of P and Q , and H(P) and H(Q) are the entropy
of P and Q, respectively.
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Figure 4. The convergence curves of the proposed approach on four different databases. (a) ρ = 104,
(b) ρ = 109, (c) ρ = 108, (d) ρ = 107.

4.2.5. Experiments Results and Analysis

Figure 4 shows the curves of the iteration step and the values of the objective function
when Algorithm 1 was run on four datasets. We can see that the objective function value
decreases as the iteration step increases. After a finite number of iterations, the objective
function value reaches the minimum and tends to be stable.

In Tables 2 and 3, we report the best clustering accuracy and the best normalized
mutual information, expressed as the number of selected feature changes. In Tables 2 and 3,
we can see that the performance of Algorithm 1 was more effective than that of the MaxVar
Algorithm [22], the UDFS Algorithm [23] and the MFFS Algorithm [24] on all data sets,
which shows the effectiveness and robustness of our proposed method.
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Table 2. Clustering results (average ACC) of different algorithms on different databases.

Dataset Maxvar MFFS UDFS Algorithm 1

COIL20 0.4881 0.5335 0.5118 0.5404

PIE 0.3865 0.4630 0.2021 0.4799

ORL 0.3770 0.3903 0.4040 0.4798

Yale 0.3049 0.3812 0.2994 0.4000

Table 3. Clustering results (average NMI) of different algorithms on different databases.

Dataset Maxvar MFFS UDFS Algorithm 1

COIL20 0.6020 0.6495 0.6000 0.6518

PIE 0.6527 0.7098 0.4622 0.7322

ORL 0.6052 0.6161 0.6114 0.6790

Yale 0.3557 0.4489 0.3628 0.4563

In Figures 3 and 4, we present the clustering accuracy and the normalized mutual
information, expressed as the number of selected feature changes. We can see that the
performance of MFFS was slightly better than that of Algorithm 1 on COIL20. However,
on the other three datasets, Algorithm 1 was relatively more efficient compared with the
MaxVar Algorithm [22], the UDFS Algorithm [23] and the MFFS Algorithm [24], especially
when the number of selected features was large.

5. Conclusions

The symmetric matrix optimization problem in the area of unsupervised feature
selection is considered in this paper. By relaxing the orthogonal constraint, this problem
is converted into a constrained symmetric nonnegative matrix optimization problem. An
efficient algorithm was designed to solve this problem and its convergence theorem was
also derived. Finally, a simple example was given to verify the feasibility of the new method.
Some simulation experiments in unsupervised feature selection showed that our algorithm
was more effective than the existing methods.
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